排列、组合及二项式定理
- 格式:doc
- 大小:245.50 KB
- 文档页数:10
排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
排列组合和二项式定理一、排列组合1.1 排列排列是指从一组元素中选取一部分进行操作,按照一定的顺序进行排列。
在排列中,每个元素只能使用一次。
例如,从1、2、3这三个元素中选出两个进行排列,可以得到以下6个排列: 12、13、21、23、31、32。
排列的数目可以用符号P表示,表示从n个元素中选取r 个进行排列。
排列数的计算公式如下所示: P(n, r) = n! / (n - r)!其中,!表示阶乘,例如4! = 4 × 3 × 2 × 1 = 24。
1.2 组合组合是指从一组元素中选取一部分进行操作,不考虑元素的顺序。
与排列不同,组合中的元素只有选择与不选择两种情况。
例如,从1、2、3这三个元素中选出两个进行组合,可以得到以下三个组合: 12、13、23。
组合的数目可以用符号C表示,表示从n个元素中选取r 个进行组合。
组合数的计算公式如下所示: C(n, r) = n! / (r! × (n - r)!)二、二项式定理二项式定理是代数学中的一个重要定理,用于展开任意幂的二项式。
二项式定理公式如下所示: (a + b)^n = C(n, 0) × a^n × b^0 + C(n, 1) × a^(n-1) × b^1 + C(n, 2) × a^(n-2) × b^2 + … + C(n, n) × a^0 × b^n其中,C(n, r)表示组合数,表示从n个元素中选取r个进行组合。
a和b表示两个变量,n表示幂。
在二项式定理中,展开后的式子包含了各个组合数和变量的乘积,这些乘积的和即为二项式定理的展开结果。
二项式定理在代数学中有着广泛的应用,它可以用于计算各种复杂的代数表达式的展开结果。
二项式定理也是高中数学课程中常见的内容,通过学习二项式定理,可以帮助学生更好地理解代数学中的概念。
排列组合与二项式定理一、排列与组合简介在概率论和组合数学中,排列和组合是两个重要的概念。
排列和组合通常被用来描述从给定的有限集合中选择若干元素的方式。
排列指的是从一组元素中选择若干不同的元素并按照一定的顺序排列的方式。
对于一个有n个元素的集合,从中选择r个元素进行排列的方式数目记作P(n, r)。
排列主要有两种情况:1.重复元素情况下的排列,即元素可重复使用。
此时,P(n, r) = n^r.2.不重复元素情况下的排列,即元素不可重复使用。
此时,P(n, r) = n(n-1)(n-2)…(n-r+1) = n!/(n-r)!.组合指的是从一组元素中选择若干不同的元素,而不考虑元素的顺序的方式。
对于一个有n个元素的集合,从中选择r个元素进行组合的方式数目记作C(n, r)。
组合的计算公式为:C(n, r) = n!/[(n-r)!*r!].二、二项式定理的概念与展开二项式定理是高中数学中非常重要的一个定理,也是排列组合理论的重要应用。
它用于展开一个二项式的幂。
二项式定理的公式为:(x+y)^n = C(n,0)x ny^0 + C(n,1)x(n-1)y^1 + C(n,2)x(n-2)y^2 + … + C(n,n-1)x1y^(n-1) +C(n,n)x^0y^n.其中,C(n,r)表示从n个元素中选择r个元素进行组合的方式数目。
三、二项式定理的解读与应用二项式定理可以用来求解(x+y)^n的展开式中的各项系数。
在展开式中,每一项的系数就是对应的组合数。
举例说明,当n=3时,展开式为:(x+y)^3 = C(3,0)x3y^0 + C(3,1)x2y^1 + C(3,2)x1y^2 + C(3,3)x0y^3.展开后,得到:(x+y)^3 = x^3 + 3x^2y + 3x y^2 + y^3.可以看出,展开式中的每一项系数正好是对应的组合数。
二项式定理在概率论、组合数学、代数等领域具有广泛的应用。
排列组合、二项式定理与概率统计
概率统计与排列组合和二项式定理是数学中的重要知识。
它们主要用来解释和计算物理实验的概率,以及理解事件出现的概率统计规律。
排列组合是概率统计的基础,是指在一组数中,每个数字的位置不同的可能的组合数。
它的公式有:A(n,m)=n(n-1)...(n-m+1)。
这里的A表示从n个中取出m个的排列数。
二项式定理(亦称二项分布定理)是研究一个随机变量满足二项分布的定理。
它是推导概率统计解决一些问题的重要方法,它通过如下公式来计算事件发生的概率:
C(n,k)=An,m/k!,其中n表示试验次数,m表示成功的次数,k表示重复的次数。
概率统计用来研究不同事件出现的可能性和规律。
这些规律会告诉我们正发生的事件的可能性有多大,并帮助我们更好地解释现象。
概率统计的计算和分析是一个复杂的过程,需要全面的、简易的的方法。
排列组合、二项式定理等工具是进行概率统计分析的有力帮助,它们可以帮助我们了解不同事件出现的概率,并对现象加以解释和推断。
排列组合、二项式定理(附答案)第六章:排列组合与二项式定理一、考纲要求:1.掌握加法原理和乘法原理,能够用这两个原理解决简单的问题。
2.理解排列和组合的意义,掌握排列数和组合数的计算公式以及组合数的性质,并能够用它们解决简单的问题。
3.掌握二项式定理和二项式系数的性质,并能够用它们计算和论证简单的问题。
二、知识结构:加法原理和乘法原理排列和组合排列数和组合数的公式和应用二项式定理和二项式系数的性质和应用三、知识点、能力点提示:1.加法原理和乘法原理是排列组合的基础,掌握这两个原理为处理排列和组合中的问题提供了理论根据。
2.排列和排列数公式是中学代数中的独特内容,研究对象和研究方法与前面掌握的知识不同,解题方法比较灵活。
历届高考主要考查排列的应用题,通常是选择题或填空题。
3.组合和组合数公式是历届高考中常出现的题型,主要考查排列组合的应用题,通常是选择题或填空题。
组合数有两个性质:对称性和递推关系。
4.二项式定理和二项式系数的性质是高中数学中的重要内容,主要考查计算和论证方面的问题,通常是选择题或证明题。
3a4的值为(。
)A.4B.6C.8D.10解:根据二项式定理,展开(2x+3)的四次方可得:2x+3)4= C412x)4+ C422x)3(3)+ C432x)2(3)2+ C442x)(3)3+ C453)416x4+96x3+216x2+216x+81将(2x+3)表示成a+a1x+a2x+a3x+a4x的形式,可得:a+a1x+a2x+a3x+a4x= C4a4+ C41a3x+ C42a2x2+ C43ax3+ C44x416a4+96a3x+216a2x2+216ax3+81x4 由此可得:a+a2a3a4C4a4+ C42a2+ C43a+ C4416a4+216a2+81又因为(2x+3)的系数为1,所以a=2,代入上式可得:a+a2a3a416(2)4+216(2)2+81=8故选C.例21:有两排座位,第一排有3个座位,第二排有5个座位,8名学生入座(每人一个座位),则不同座法的总数是多少?解:对于8个人的任意一个排列均可“按先前排从左到右再后排从左到右”的次序入座,所以应有$P_8$种不同的入座法。
8、九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数? 【参考答案】可以分为两类情况:① 若取出6,则有()211182772P C C C +种方法; ②若不取6,则有1277C P 种方法.根据分类计数原理,一共有()211182772P C C C ++1277C P =602种方法. 9、从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有 种.【参考答案】由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有26C 种方法;第二步是在组装计算机任意选取3台,有35C 种方法,据乘法原理共有3526C C ⋅种方法.同理,完成第二类办法中有2536C C ⋅种方法.据加法原理完成全部的选取过程共有+⋅3526C C 3502536=⋅C C 种方法. 经典例题:例1.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同取法共有( )A .150种B. 147种C. 144种D. 141种【答案】取出的四个点不共面的情况要比取出的四个点共面的情况复杂,可采用间接法,先不加限制任取四点,再减去四面共点的取法.在10个点中任取4点,有410C 种取法,取出的4点共面有三类 第一类:共四面体的某一个面,有446C 种取法;第二类:过四面体的一条棱上的三点及对棱的中点,如图中的平面ABE ,有6种取法; 第三类:过四面体的四条棱的中点,面与另外两条棱平行,如图中的平面EFGM ,共有3个. 故取4个不共面的点的不同取法共有410C -(446C +6+3)=141,因此选D例2. 一天要排语文、数学、英语、生物、体育、班会六节课(上午四节,下午二节),要求上午第一节不排体育,。
第十章 排列、组合与概率1. 分类计数原理和分步计数原理 (1) 分类计数原理:做一件事,完成它可以有n 类办法,(是对完成这件事的所有方法的一个分类),在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.说明:分类时,首先要根据问题的特点确定一个分类的标准,然后在确定的分类标准下进行分类;其次分类时要注意满足一个基本要求:完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法,即不重复也不遗漏.只有满足这些条件,才能用分类计数原理. (2)分步计数原理:做一件事情,完成它需要分成n 个步骤,(是指完成这件事的任何一种方法,都要分成n 个步骤),做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有n m m m N ⨯⋅⋅⋅⨯⨯=21 种不同的方法.说明:分步时首先要根据问题的特点确定一个分步的标准;其次分步时还要注意满足完成一件事必须并且只需连续完成这n 个步骤后这件事才算完成,只有满足这些条件,才能用分步计数原理.(3)“分类”与“分步”的相同点和不同点分类计数原理和分步计数原理的共同点是它们完成一件事情,共有多少种不同的方法.区别在于完成一件事情的方式不同:分类计数原理是“分类完成”,即任何一种办法中用任何一个方法都能独立完成这件事;分步计数原理是“分步完成”,即这些方法需要分步骤顺次相依,且每一个步骤都完成了,才能完成这件事情.区分分类还是分步的关键..是看经.过这个过程,有没有完成整个事情................ 2.排列(1) 排列的概念:从n 个不同元素中,任取m (m n ≤)个不同元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个不同元素的一个排列.说明:○1不同元素;○2排列有序性;○3相同排列:元素相同,顺序相同. (2)排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 个不同元素的排列数,用符号mn A 表示.(3)排列数公式:)1()2)(1(+-⋅⋅⋅--=m n n n n A m n (,,m n N m n *∈≤).(4)阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘.规定0!1=. (5)排列数的另一个计算公式:mn A =!()!n n m -.3.组合(1)组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个不同元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.说明:○1不同元素;○2“只取不排”——无序性;○3相同组合:元素相同. 说明:○1不同元素;○2“只取不排”——无序性;○3相同组合:元素相同. (2)组合数的概念:从n 个不同元素中取出m ()m n ≤个不同元素的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数....用符号mn C 表示. (3)组合数公式:(1)(2)(1)!mmn nm mA n n n n m C Am ---+==;或)!(!!m n m n C m n-=),,(n m N m n ≤∈*且.(4)组合数的性质1:m n n m n C C -=,规定:10=n C ; 组合数的性质2:m n C 1+=m n C +1-m n C .4.排列与组合的区分根据排列与组合的定义,前者是从n 个不同元素中选取m 个不同元素后,还要按照一定的顺序排成一列,而后者只要从n 个不同元素中选取m 个不同的元素并成一组,所以区分某一问题是排列还是组合问题.关键看选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题,而交换任意两个元素的位置对结果没有影响,则是组合问题.也就是说排列与选取元素的顺序有关,组合与选取元素的顺序无关.排列与组合的共同点,就是都要“从n 个不同元素中,任取m 个元素”,而不同点在于元素取出以后,是“排成一排”,还是‘“组成一组”,其实质就是取出的元素是否存在顺序上的差异.因此,区分排列问题和组合问题的主要标志是:是否与元素的排列顺序有关.............有顺序的是排列问题,无顺序的则是组合问题.例如123和321,132是不同的排列,但它们都是相同的组合.再如两人互通一次信是排列问题,互握一次手则是组合问题.5.解排列、组合应用题的途径与思路解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘). 具体说,解排列组合的应用题,通常有以下途径:①以元素为主,即先满足特殊元素的要求,再考虑其他元素. ②以位置为主,即先满足特殊位置的要求,再考虑其地位置.③先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数. 排列、组合应用题的解题思路:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘.6.解排列、组合混合应用题的基本方法排列组合综合题的求解,要合理进行分类、分步.基本方法是:先“组”后“排”,即先分类,再分步.排列组合应用题大致可分为三大类:不带限制条件的排列或组合题;带有约束条件的排列或组合题;排列与组合的综合题.解此类问题常用的方法有: ①相邻元素的排列应用题,一般采用“捆绑法”. ②元素间隔排列应用题,一般采用“插空法”.③含有特殊元素和特殊位置的排列,组合应用题,常采用“特殊元素法”,从元素为主出发,先安排特殊元素;从位置为主出发,先安排好特殊位置上元素,结合排除法解决此类问题.④指标问题采用“隔板法”.⑤有关“分堆”与“到位”应用问题常采用“分组法”与“分配法”.若只分堆,不指定到具体位置,则需注意平均分的情况;所谓“到位”是指分堆后给某人或指定到某些位置. 总之,排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①以元素为主,应先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数. 前两种方法叫直接解法,后一种方法叫间接解法,求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.其中蕴涵有:分类讨论思想,转化思想和对称方法等数学思想方法,具体的解题策略有: ①特殊元素优先安排策略; ②合理分类与准确分类策略; ③先选后排策略;④正难则反,等价转化的策略; ⑤相邻问题捆绑处理的策略;⑥间隔问题插空处理的策略;⑦定序问题除法处理的策略; ⑧分排问题直排处理的策略;⑨“小团体”排列问题中先整体后局部策略;⑩构造模型的策略. 7.二项式定理(1)二项式定理:01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈ ,特例:1(1)1n r r nn n x C x C x x +=+++++ .(2)二项展开式的通项公式:1r n r rr n T C a b -+=.(3)二项展开式的通项公式,反映出展开式在指数、项数、系数等方面的内在联系,因此能运用二项展开式的通项公式求特定项、特定项系数、常数项、有理项及系数最大、绝对值最大的项.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. (4)二项式系数的性质()na b +展开式的二项式系数是0n C ,1n C ,2n C ,…,nn C .rn C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n .二项式系数的性质有:○1对称性.与首末两端“等距离”的两个二项式系数相等(∵m n mn n C C -=;直线2n r =是图象的对称轴).○2增减性与最大值:当n 是偶数时,中间一项2nn C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值.○3各二项式系数和:n n n r n n n nC C C C C 2210=+⋅⋅⋅++⋅⋅⋅+++ 在1(1)1n r r n n n x C x C x x +=+++++ 中,令1x =,则0122n r n n n n n n C C C C C =++++++8.随机事件的概率(1)必然事件、不可能事件、随机事件:必然事件是指在一定条件下必然发生的事件;不可能事件指在一定条件下不可能发生的事件;随机事件指在一定条件下可能发生也可能不发生的事件.(2)随机事件概率:指大量重复进行同一试验,随机事件A 发生的频率nm (n 是试验的总次数,m 是事件A 发生的次数)接近的常数.记作P (A ).它反映的是,这个事件发生可能性的大小.即一个随机事件的发生既有随机性(对单次试验来说)又有规律性(对大量重复试验来说).规律性体现在nm 的值具有稳定性.当随机试验的次数不断增多,nm 的值总在这个常数附近摆动且摆动的幅度越来越小.所以,概率可以看作是频率在理论上的期值.由于n m ≤≤0,故10≤≤nm ,于是可得1)(0≤≤A P .9. 等可能性事件及其概率基本事件:一次试验连同其中可能出现的每一个结果,即每个结果对应每一个基本事件,如果这次试验中可能出现的结果有n 个,而且所有这些结果出现的可能性都相等,那么每一个结果所对应的基本事件的概率都是n1.等可能性事件:一次试验中所有可能出的n 个基本结果出现的可能性都相等,这n 个结果对应着n 个基本事件,如果某事件A 包含着这n 个等可能基本事件中的m 个基本事件,称事件A 为等可能随机事件,由于每个等可能基本事件的概率为n1,事件A 中的m 个事件有一个发生则事件A 就发生了,故事件A 发生的概率n m A P =)(.10. 互斥事件(1)互斥事件:不可能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任何两个都是互斥的,那么就说n A A A ,,,21 彼此互斥.从集合的角度看,n 个事件彼此互斥,是指各个事件所含的结果组成的集合彼此不相交.(2)互斥事件有一个发生的概率设A 、B 是两个互斥事件,那么B A +表示这样一个事件:在同一试验中,A 与B 中有一个发生就表示它发生.事件B A +的概率是)()()(B P A P B A P +=+,这就是说,如果事件B A ,互斥,那么事件B A +发生(即B A ,中有一个发生)的概率,等于事件B A ,分别发生的概率的和.(3)一般地,如果事件n A A A ,,,21 ,彼此互斥,那么事件n A A A +++ 21发生(即n A A A ,,,21 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即 )()()(),,,(2121n n A P A P A P A A A P ++==(4)对立事件对立事件:两个互斥事件在一次试验中必有一个发生时,这样的两个互斥事件叫做对立事件.事件A 的对立事件通常记作:A .说明:在一次试验中,两个互斥的事件有可能都不发生,只有两个互斥事件在一次试验中必有一个发生时,这样的两个互斥事件才叫做对立事件.也就是说,两个互斥事件不一定是对立事件,而两个对立事件必是互斥事件,即两个事件对立是这两个事件互斥的充分不必要条件.从集合的角度看,由事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.(5)对立事件概率公式:)(1)(A P A P -=说明:这个公式的作用是,当直接求某一事件的概率较为复杂时,可先转而求其对立事件的概率,使概率的计算得到简化. 11.相互独立事件(1)相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件.两个事件相互独立是指其中一个事件的发生与否对另一个事件发生的概率没有影响.一般地,如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都是相互独立的. (2)独立事件同时发生:事件A 、B 同时发生,记作B A ⋅. (3)独立事件同时发生的概率()()()B P A P B A P ⋅=⋅这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积. (4)一般地,如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即:()()()()n n A P A P A P A A A P 2121⋅=⋅12. 独立重复试验(1)独立重复试验:在相同条件下,重复地各次之间相互独立地进行的一种试验,称为独立重复试验.在独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.(2)n 次独立重复试验中某事件恰好发生k 次的概率如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为 ()()kn kkn n P P C k P --=1【考点梳理】1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类。
第11讲排列组合和二项式定理,概率(2021高考数学新东方内部第11讲排列、组合和二项式定理,概率(2021高考数学---新东方内部第一一章排列组合与二项式定理1.排列数公式成年男子n(n?1)(n?2)?(n?m?1)?Nn(m?n);an?Nn(n?1)(n?2)?2.1.(n?m)!如①1!+2!+3!+…+n!(n?4,n?n*)的个位数字为;(答:3)②满足a8x?6a8x?2的x=(答:8)组合数公式曼恩?(n?1)???(n?m?1)n!0c?M(m?n);指定0!?1,中国?一amm?(m?1)???2?1m!?n?m?!mnmnm如已知cn?cm?1?an?6,求n,m的值.(答:m=n=2)(了解)排列数、组合数的性质①cnmcnn?M1②cnm?cnm?1?cnm??1;kk?1.③kcn?ncn?1.1.④crr?crr?1.crr?r?cnr1.⑤NN(n?1)!?Nn11??⑥.(n?1)!n!(n?1)!2.解排列组合问题的依据是:分类和添加(每种方法都可以独立完成这项任务,相互独立,每次都得到最终结果,只有一种方法可以完成这项任务),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序的安排,无序的组合如①将5封信投入3个邮筒,不同的投法共有种;(答:35)②从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种;(答:70)③ 从收集中?1,2,3? 和1,4,5,6? 如果将每个元素作为点的坐标,则它位于直角坐标系中中能确定不同点的个数是_;(答:23)④72的正约数(包括1和72)共有个;(答:12)⑤?a的一边ab上有4个点,另一边ac上有5个点,连同?a的一个顶点总共有10个点。
将这些点作为顶点可以形成三个三角形;(答复:cb90)⑥ 使用六种不同的颜色来分隔右图中的四个区域a、B、C和D,并且允许使用相同的颜色一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有d种不同涂法;(答:480)⑦ 同一个房间里的四个人每人写一张新年贺卡,然后每人拿一张别人寄来的新年贺卡。
排列、组合及二项式定理【考点梳理】一、考试内容1.分类计数原理与分步计数原理。
2.排列、排列数公式。
3.组合、组合数公式。
4.组合数的两个性质。
5.二项式定理,二项式展开的性质。
二、考试要求1.掌握分类计数原理及分步计数原理,并能用这两个原理分析和解决一些简单的问题。
2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它解决一些简单的问题。
3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。
三、考点简析1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类。
(2)分步计数原理中的分步。
正确地分类与分步是学好这一章的关键。
3.排列(1)排列定义,排列数(2)排列数公式:系m n A =)!(!m n n -=n ·(n-1)…(n-m+1) (3)全排列列:n n A =n!(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=7204.组合(1)组合的定义,排列与组合的区别(2)组合数公式:C n m =)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n (3)组合数的性质①C n m =C n n-m②r n r n r n C C C 11+-=+ ③rC n r =n ·C n-1r-1④C n0+C n1+…+C n n=2n⑤C n0-C n1+…+(-1)n C n n=0即C n0+C n2+C n4+…=C n1+C n3+…=2n-15.二项式定理(1)二项式展开公式(a+b)n=C n0a n+C n1a n-1b+…+C n k a n-k b k+…+C n n b n(2)通项公式:二项式展开式中第k+1项的通项公式是T k+1=C n k a n-k b k6.二项式的应用(1)求某些多项式系数的和。
(2)证明一些简单的组合恒等式。
(3)证明整除性。
①求数的末位;②数的整除性及求系数;③简单多项式的整除问题。
(4)近似计算。
当|x|充分小时,我们常用下列公式估计近似值:①(1+x)n≈1+nx②(1+x)n≈1+nx+2)1(nnx2(5)证明不等式。
四、思想方法1.解排列组合应用题的基本规律(1)分类计数原理与分步计数原理使用方法有两种:①单独使用;②联合使用。
(2)将具体问题抽象为排列问题或组合问题,是解排列组合应用题的关键一步。
(3)对于带限制条件的排列问题,通常从以下三种途径考虑:①元素分析法:先考虑特殊元素要求,再考虑其他元素。
②位置分析法:先考虑特殊位置的要求,再考虑其他位置。
③整体排除法:先算出不带限制条件的排列数,再减去不满足限制条件的排列数。
(4)对解组合问题,应注意以下三点:①对“组合数”恰当的分类计算,是解组合题的常用方法。
②是用“直接法”还是“间接法”解组合题,其原则是“正难则反”。
③设计“分组方案”是解组合题的关键所在。
2.解排列、组合题的基本策略与方法(1)去杂法对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
(2)分类处理某些问题总体不好解决时,常常分成若干类,再由分类计数原理得出结论。
这是解排列组合问题的基本策略之一。
注意的是:分类不重复不遗漏,即:每两类的交集为空集,所有各类的并集为全集。
(3)分步处理与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步,其原则是先分类,后分步。
(4)插入法(插空法)某些元素不能相邻或某些元素要在某特殊位置时可采用插入法。
即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间。
(5)“捆绑”法把相邻的若干特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”。
将特殊元素在这些位置上全排列,即是“捆绑法”。
(6)穷举法:将所有满足题设条件的排列与组合逐一排列出来。
(7)探索法:对于复杂的情况,不易发现其规律的问题,需仔细分析,从特殊到一般,或一般到特殊,探索出其中规律,再给予解决。
(8)消序处理对均匀分组问题的解决,一定要区分开是“有序分组”还是“无序分组”,若是“无序分组”,一定要清除均匀分组无形中产生的有序因素。
(9)“住店”法解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复。
把不能重复的元素看作“客”,能重复的元素看作“店”,再利用分步计数原理直接求解的方法称为“住店”法。
(10)等价命题转换法将陌生、复杂的问题转化为熟悉、简单的问题。
这是解数学题的主要思想方法之一,也是解较难的排列、组合题的重要策略。
3.赋值法所谓赋值法是指在二项展开公式两边用特殊值代入,得出某些等式及组合数的性质。
解决与二项式系数相关的问题。
4.构造二次式5.算两次对同一对象从两个不同角度去进行计数,再将两方面计算的结果综合起来,获得所需结论。
这样一种处理问题的方法,称之为算两次。
在排列组合中,常对同一问题可有不同的分类办法去解,可得到有关排列数与组合数的不同关系式。
【例题解析】例1 完成下列选择题与填空题(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。
A.81B.64C.24D.4(2)四名学生争夺三项冠军,获得冠军的可能的种数是()A.81B.64C.24D.4(3)有四位学生参加三项不同的竞赛,①每位学生必须参加一项竞赛,则有不同的参赛方法有;②每项竞赛只许有一位学生参加,则有不同的参赛方法有;③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有。
解析(1)完成一件事是“分步”进行还是“分类”进行,是选用基本原理的关键。
将“投四封信”这件事分四步完成,每投一封信作为一步,每步都有投入三个不同信箱的三种方法,因此:N=3×3×3×3=34=81,故答案选A。
本题也可以这样分类完成,①四封信投入一个信箱中,有C31种投法;②四封信投入两个信箱中,有C32(C41·A22+C42·C22)种投法;③四封信投入三个信箱,有两封信在同一信箱中,有C42·A33种投法、,故共有C31+C32(C41·A22+C42C22)+C42·A33=81(种)。
故选A。
(2)因学生可同时夺得n项冠军,故学生可重复排列,将4名学生看作4个“店”,3项冠军看作“客”,每个“客”都可住进4家“店”中的任意一家,即每个“客”有4种住宿法。
由分步计数原理得:N=4×4×4=64。
故答案选B。
(3)①学生可以选择项目,而竞赛项目对学生无条件限制,所以类似(1)可得N=34=81(种);②竞赛项目可以挑学生,而学生无选择项目的机会,每一项可以挑4种不同学生,共有N=43=64(种);③等价于从4个学生中挑选3个学生去参加三个项目的竞赛,每人参加一项,故共有C43·A33=24(种)。
注本题有许多形式,一般地都可以看作下列命题:设集合A={a1,a2,…,a n},集合B={b1,b2,…,b m},则f:A→B的不同映射是m n,f:B→A的不同映射是n m。
若n≤m,则f:A→B的单值映射是:A m n。
例2 同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有()A.6种B.9种C.11种D.23种解法一由于共四人(用1,2,3,4代表甲、乙、丙、丁四人),这个数目不大,化为填数问题之后,可用穷举法进行具体的填写:再按照题目要求检验,最终易知有9种分配方法。
解法二记四人为甲、乙、丙、丁,则甲送出的卡片可以且只可以由其他三人之一收到,故有3种分配方式;以乙收到为例,其他人收到卡片的情况可分为两类:第一类:甲收到乙送出的卡片,这时丙、丁只有互送卡片1种分配方式;第二类:甲收到的不是乙送出的卡片,这时,甲收到卡片的方式有2种(分别是丙和丁送出的)。
对每一种情况,丙、丁收到卡片的方式只有一种。
因此,根据乘法原理,不同的分配方式数为3×(1+2)=9。
解法三给四个人编号:1,2,3,4,每个号码代表1个人,人与号码之间的关系为一对一的关系;每个人送出的贺年卡赋给与其编号相同的数字作为代表,这样,贺年卡的分配问题可抽象为如下“数学问题”:将数字1,2,3,4,填入标号为1,2,3,4的4个方格里,每格填写一个数字,且每个方格的编号与所填数字都不同的填法共有多少种(也可以说成:用数字1,2,3,4组成没有重复数字的4位数,而且每位数字都不等于位数的4位数共有多少个)?这时,可用乘法原理求解答案:首先,在第1号方格里填写数字,可填上2、3、4中的任一个数,有3种填法;其次,当第1号方格填写的数字为i(2≤i≤4)时,则填写第i种方格的数字,有3种填法;最后,将剩下的两个数填写到空着的两个空格里,只有1种填法(因为剩下的两个数中,至少有1个与空着的格子的序号相同)。
因此,根据乘法原理,得不同填法:3×3×1=9注 本题是“乱坐问题”,也称“错排问题”,当元素较大时,必须用容斥原理求解,但元素较小时,应用分步计数原理和分类计数原理便可以求解,或可以穷举。
例3 宿舍楼走廊上有有编号的照明灯一排8盏,为节约用电又不影响照明,要求同时熄掉其中3盏,但不能同时熄掉相邻的灯,问熄灯的方法有多少种?解法一 我们将8盏灯依次编号为1,2,3,4,5,6,7,8。
在所熄的三盏灯中,若第一盏熄1号灯,第二盏熄3号灯,则第3盏可以熄5,6,7,8号灯中的任意一盏,共有4种熄法。
若第一盏熄1号灯,第2盏熄4号灯,则第3盏可以熄6,7,8号灯中的任意一盏。
依次类推,得若1号灯熄了,则共有4+3+2+1=10种熄法。
若1号灯不熄,第一盏熄的是2号灯,第二盏熄的是4号灯,则第三盏可以熄6,7,8号灯中的任意一盏,共有3种熄法。
依次类推得,若第一盏灯熄的是2号灯,则共有3+2+1=6种熄法。
同理,若第一盏熄的是3号灯,则共有2+1=3种熄法。
同理,若第一盏熄的是4号灯,则有1种熄法。
综上所述共有:10+6+3+1=20种熄法。
解法二 我们可以假定8盏灯还未安装,其中5盏灯是亮着的,3盏灯不亮。
这样原问题就等价于:将5盏亮着的灯与3盏不亮的灯排成一排,使3盏不亮的灯不相邻(灯是相同的)。
5盏亮着的灯之间产生6个间隔(包括两边),从中插入3个作为熄灭的灯——就是我们经常解决的“相邻不相邻”问题,采用“插入法”,得其答案为C 63=20种。
注 解法一是穷举法,将所有可能的情况依次逐一排出。