大学物理实验教案3霍尔效应
- 格式:doc
- 大小:444.51 KB
- 文档页数:7
大学物理实验报告霍尔效应一、实验目的1、了解霍尔效应的原理。
2、掌握用霍尔效应法测量磁场的原理和方法。
3、学会使用霍尔效应实验仪器,测量霍尔电压和励磁电流,并计算霍尔系数和载流子浓度。
二、实验原理1、霍尔效应置于磁场中的载流导体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一横向电势差,这种现象称为霍尔效应。
设导体中的载流子为电子,它们以平均速度 v 沿 x 方向定向运动。
在磁场 B 作用下,电子受到洛伦兹力 F = e v × B,其中 e 为电子电荷量。
洛伦兹力使电子向导体一侧偏转,从而在导体两侧产生电荷积累,形成横向电场 E。
当电场力与洛伦兹力达到平衡时,有 e E = e v B,即 E = v B。
此时产生的横向电势差称为霍尔电压 UH ,UH = E b ,其中 b 为导体在磁场方向的宽度。
2、霍尔系数霍尔电压 UH 与电流 I 和磁场 B 以及导体的厚度 d 有关,其关系式为 UH = R H I B / d ,其中 R H 称为霍尔系数。
对于一种材料,R H 是一个常数,它反映了材料的霍尔效应的强弱。
3、载流子浓度由 R H 的表达式,可推导出载流子浓度 n = 1 /(R H e) 。
三、实验仪器霍尔效应实验仪,包括霍尔样品、电磁铁、励磁电源、测量电源、数字电压表等。
四、实验内容与步骤1、连接实验仪器按照实验仪器说明书,将霍尔样品、电磁铁、励磁电源、测量电源和数字电压表正确连接。
2、测量霍尔电压(1)保持励磁电流 IM 不变,改变测量电流 IS 的大小和方向,测量对应的霍尔电压 UH 。
(2)保持测量电流 IS 不变,改变励磁电流 IM 的大小和方向,测量对应的霍尔电压 UH 。
3、绘制曲线根据测量数据,分别绘制 UH IS 和 UH IM 曲线。
4、计算霍尔系数和载流子浓度根据曲线的斜率,计算霍尔系数 R H ,进而计算载流子浓度 n 。
五、实验数据记录与处理1、实验数据记录表格| IM (A) | IS (mA) | UH1 (mV) | UH2 (mV) | UH3 (mV) | UH4 (mV) | UH (mV) |||||||||| 05 | 10 ||||||| 05 | 20 ||||||| 05 | 30 ||||||| 10 | 10 ||||||| 10 | 20 ||||||| 10 | 30 ||||||(注:UH1、UH2、UH3、UH4 分别为在不同测量条件下得到的霍尔电压值,UH 为其平均值。
霍尔效应实验探究教案标题:霍尔效应实验探究教案一、引言霍尔效应是电磁学中一种重要的现象,指的是在导体中有电流通过时,如果垂直于电流方向施加一个磁场,将会产生电势差。
这一效应不仅在理论上有重要的意义,也在实际应用中有广泛的用途。
为了帮助学生深入了解和掌握霍尔效应的原理和实验方法,本教案将针对霍尔效应实验进行探究。
二、实验目的本实验的主要目的是通过观察和测量霍尔效应,理解其原理,并学会使用霍尔效应测量磁场强度的方法。
三、实验器材1. 直流电源2. 多用途电表3. 磁场强度测量仪器4. 导线5. 霍尔元件和测试电路四、实验步骤1. 将实验器材准备齐全,并按照实验电路图进行连接。
2. 在实验过程中,注意安全操作,遵守实验守则。
五、实验原理霍尔效应是由美国物理学家霍尔在1857年首次发现并描述的。
当导体中有电流通过时,如果垂直于电流方向产生一个磁场,磁场将对流体中的载流子施加一个力,导致电子在导体中聚集,形成一个带正电荷和带负电荷的区域,从而引起导体横向的电势差。
这种电势差就是霍尔电势。
六、实验过程1. 按照实验步骤进行实验器材和电路的连接。
2. 将导线连接到直流电源和霍尔元件上,并将多用途电表连接到霍尔元件的输出端。
3. 调节实验电路,使得电流和磁场强度保持在一定范围内。
4. 分别测量不同电流和磁场强度条件下的霍尔电势差。
5. 记录实验数据,并进行数据分析。
七、实验结果分析根据实验所得数据,可以绘制电流与霍尔电势差的曲线图,进一步分析它们之间的关系。
可以观察到,当电流和磁场强度发生变化时,霍尔电势差也会随之变化。
同时,可以利用实验数据计算、验证霍尔系数的大小。
八、实验结论通过本实验,我们深入了解了霍尔效应的原理,并学会了使用霍尔效应测量磁场强度的方法。
实验结果表明,电流和磁场强度对霍尔电势差有重要影响,并且可以通过实验数据计算出霍尔系数的值。
九、教学反思本实验设计合理、步骤简单,有助于学生理解霍尔效应的原理和实验方法。
大物实验报告霍尔效应
《大物实验报告:霍尔效应》
霍尔效应是指在导体中有电流通过时,垂直于电流方向的磁场会产生电势差,这种现象被称为霍尔效应。
霍尔效应的发现和研究对于理解电磁现象和应用于各种电子设备中具有重要意义。
在本次实验中,我们将探究霍尔效应的基本原理和应用。
实验步骤:
1. 准备实验装置:实验装置包括导体样品、电源、磁场源和电压测量仪器。
2. 施加电流:将电流通过导体样品,观察电压测量仪器的读数。
3. 施加磁场:在导体样品周围施加磁场,再次观察电压测量仪器的读数。
4. 记录数据:记录不同电流和磁场下的电压测量值。
实验结果:
通过实验数据的记录和分析,我们发现在施加磁场后,电压测量仪器的读数发生了变化。
这表明在导体中有电流通过时,垂直于电流方向的磁场会产生电势差,即霍尔效应的存在。
实验结果与霍尔效应的基本原理相符合。
实验结论:
霍尔效应是一种重要的电磁现象,它在各种电子设备中具有广泛的应用。
例如在传感器中,霍尔效应可以用来测量磁场强度;在电子仪器中,霍尔效应可以用来控制电流和电压。
因此,对霍尔效应的研究和应用具有重要的意义。
总结:
通过本次实验,我们深入了解了霍尔效应的基本原理和应用。
霍尔效应的发现和研究对于电磁现象的理解和电子设备的应用具有重要意义。
我们将继续深入
研究霍尔效应,并探索其在各种领域的应用潜力。
第1篇一、实验目的1. 理解霍尔效应的基本原理。
2. 学习使用霍尔效应实验仪测量磁场。
3. 掌握霍尔效应实验的数据记录和处理方法。
4. 通过实验确定材料的导电类型和载流子浓度。
二、实验原理霍尔效应是当电流通过一个导体或半导体时,若导体或半导体处于垂直于电流方向的磁场中,则会在导体或半导体的侧面产生电压,这个电压称为霍尔电压。
霍尔电压的大小与磁感应强度、电流强度以及导体或半导体的厚度有关。
三、实验仪器1. 霍尔效应实验仪2. 直流稳流电源3. 毫伏电压表4. 霍尔元件5. 导线6. 螺线管7. 磁铁四、实验步骤1. 仪器连接与调整- 将霍尔元件放置在实验仪的样品支架上,确保霍尔元件处于隙缝的中间位置。
- 按照实验仪的接线图连接电路,包括直流稳流电源、霍尔元件、螺线管和毫伏电压表。
- 调节稳流电源,使霍尔元件的工作电流保持在安全范围内(一般不超过10mA)。
- 使用调零旋钮调整毫伏电压表,确保在零磁场下电压读数为零。
2. 测量不等位电压- 在零磁场下,测量霍尔元件的不等位电压,记录数据。
3. 测量霍尔电流与霍尔电压的关系- 保持励磁电流不变,逐渐调节霍尔电流,从1.00mA开始,每隔1.0mA改变一次,记录每次霍尔电流对应的霍尔电压值。
- 改变霍尔电流的方向,重复上述步骤,记录数据。
4. 测量励磁电流与霍尔电压的关系- 保持霍尔电流不变,逐渐调节励磁电流,从100.0mA开始,每隔100.0mA改变一次,记录每次励磁电流对应的霍尔电压值。
- 改变励磁电流的方向,重复上述步骤,记录数据。
5. 绘制曲线- 根据实验数据,绘制霍尔电流与霍尔电压的关系曲线和励磁电流与霍尔电压的关系曲线。
6. 数据处理与分析- 根据霍尔效应的原理,计算霍尔系数和载流子浓度。
- 分析实验结果,确定材料的导电类型。
五、注意事项1. 操作过程中,注意安全,避免触电和电火花。
2. 霍尔元件的工作电流不应超过10mA,以保护元件。
3. 在调节电流和磁场时,注意观察毫伏电压表的读数变化,避免超出量程。
实验报告霍尔效应一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应法测量磁场的原理和方法。
3、学会使用霍尔效应实验仪器,测量霍尔电压、电流等物理量。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中,当在薄片的纵向通以电流时,在薄片的横向两侧会产生一个电位差,这种现象称为霍尔效应。
这个电位差称为霍尔电压,用$U_H$ 表示。
霍尔电压的产生是由于运动的载流子在磁场中受到洛伦兹力的作用而发生偏转,在薄片的两侧积累了正负电荷,从而形成了电场。
当电场力与洛伦兹力达到平衡时,电荷的积累停止,霍尔电压达到稳定值。
2、霍尔电压的计算设半导体薄片的厚度为$d$,载流子的浓度为$n$,电流为$I$,磁感应强度为$B$,则霍尔电压$U_H$ 可以表示为:\U_H =\frac{1}{nq}IBd\其中,$q$ 为载流子的电荷量。
3、测量磁场如果已知半导体薄片的参数(如载流子浓度$n$、薄片厚度$d$)以及通过的电流$I$,测量出霍尔电压$U_H$,就可以计算出磁感应强度$B$:\B =\frac{nqdU_H}{I}\三、实验仪器1、霍尔效应实验仪,包括霍尔元件、电磁铁、电源、电压表、电流表等。
2、特斯拉计,用于测量磁场强度。
四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪的各个部分,确保连接正确无误。
2、调整磁场打开电磁铁电源,逐渐增加电流,使磁场强度逐渐增大。
使用特斯拉计测量磁场强度,并记录下来。
3、测量霍尔电压(1)保持磁场强度不变,改变通过霍尔元件的电流$I$,分别测量不同电流下的霍尔电压$U_H$,记录数据。
(2)保持电流$I$ 不变,改变磁场强度,测量不同磁场强度下的霍尔电压$U_H$,记录数据。
4、数据处理(1)根据测量的数据,绘制霍尔电压$U_H$ 与电流$I$ 的关系曲线。
(2)绘制霍尔电压$U_H$ 与磁场强度$B$ 的关系曲线。
(3)根据实验原理中的公式,计算出半导体薄片的载流子浓度$n$ 和薄片厚度$d$。
大学物理实验报告【实验名称】霍尔效应【实验目的】1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。
2.学习用“对称测量法”消除付效应的影响,测量试样的VH — IS;和 VH — IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
【实验仪器】霍尔效应实验仪【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子 (电子或空穴 )被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图 1( a)所示的 N 型半导体试样,若在 X 方向通以电流 1s,在 Z 方向加磁场 B,试样中载流子(电子)将受洛仑兹力F B = ev B ( 1)则在 Y 方向即试样A、A电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。
电场的指向取决于试样的导电类型。
对N 型试样,霍尔电场逆Y 方向, P 型试样则沿 Y方向,有:Is (X)、 B (Z) E (Y) <0 (N 型)HE (Y) >0 (P 型)H显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力eEH 与洛仑兹力 eVB相等时,样品两侧电荷的积累就达到平衡,故有eE H = evB ( 2)其中 E H为霍尔电场, v 是载流子在电流方向上的平均漂移速度。
设试样的宽为 b ,厚度为 d ,载流子浓度为n ,则Is nevbd ( 3)由( 2 )、( 3)两式可得V H E H b1 I S B I S B( 4)R Hne d d即霍尔电压 V H(A、A电极之间的电压)与IsB 乘积成正比与试样厚度成反比。
1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,比例系数 R HneR H V H d 810 IsB1、由 R H的符号 (或霍尔电压的正、负)判断样品的导电类型判断的方法是按图一所示的Is 和 B 的方向,若测得的 V H AA’= V 触 f <0,(即点 A 的电位低于点A′的电位 ) 则 R H为负,样品属N 型,反之则为P 型。
霍尔效应教案【篇一:霍尔式传感器教案】教案用纸附页教案用纸附页教案用纸附页教案用纸附页教案用纸附页【篇二:利用霍尔效应测量磁场教案】利用霍尔效应测量磁场【教学目的】1.使学生了解霍尔电压产生的机制;2.使学生学会用霍尔元件测量磁场的基本方法【重点与难点】重点:霍尔效应产生的原理;难点:1、霍尔电压的产生机制;2、消除附加效应的方法【实验内容】1.霍尔元件输出特性测量(测绘vh-is曲线。
vh-im曲线)2.测绘螺线管轴线上磁感应强度的分布曲线【教学方法】口头讲述、板书、实验演示【教学过程设计】1、内容的引入:提问:(1)、电荷在磁场中作切割磁力线的运动会受到什么力的作用?这个力会使电荷的运动发生怎样的变化?(洛伦兹力;圆周运动)(2)、什么是霍尔效应?霍尔电压是怎样产生的?(见实验原理)2、重点讲解(一)、实验原理(1)霍尔效应霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如图所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛仑兹力f l作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力 f e的作用。
随着电荷积累的增加,f e增大,当两力大小相等(方向相反)时, f l=-f e,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电势uh。
设电子按均一速度v,向图示的x负方向运动,在磁场b作用下,所受洛仑兹力为:f l=-evb式中:e 为电子电量,v为电子漂移平均速度,b为磁感应强度。
大学物理实验报告霍尔效应第一篇:大学物理实验报告霍尔效应大学物理实验报告霍尔效应一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
对于图1 所示。
半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。
显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。
设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1)因为,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。
只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。
根据RH 可进一步确定以下参数。
(1)由的符号(霍尔电压的正负)判断样品的导电类型。
判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。
(2)由求载流子浓度,即。
应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。
严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。
霍尔效应教案设计第一部分:导入在教学中,我们常常需要通过导入引起学生的兴趣并预备新知识的学习。
为了让学生对霍尔效应产生兴趣,我们可以通过以下导入方式进行:1. 视频引入:播放霍尔效应的实验视频,让学生观察实验现象,并提出他们对于实验现象的猜想。
2. 故事情境引入:给学生讲述一个有关霍尔效应的故事,让学生通过故事情境了解霍尔效应的应用背景和重要性。
第二部分:知识讲解在这部分中,我们将详细介绍霍尔效应的概念和原理,以及其中的数学推导过程。
为了使学生更好地理解,我们可以采用以下教学方法:1. 概念解释:向学生简单地介绍霍尔效应的概念,即当导体中通过的电流受到磁场的影响时,会在导体两侧产生电势差。
2. 实验演示:通过实验演示来展示霍尔效应的实际效果,例如使用霍尔元件进行测量,观察电势差的产生情况。
3. 数学推导:以数学方式对霍尔效应进行推导,介绍霍尔系数、磁通密度和电流强度的关系,并通过示意图和公式进行解释。
第三部分:实践探究在这一部分,学生将有机会亲自实践和探究霍尔效应。
以下是一些实践活动的建议:1. 设计实验:让学生自行设计一个实验来验证霍尔效应。
他们可以选择适当的电路和材料,并记录实验数据。
2. 数据分析:学生根据实验数据,计算霍尔系数,并分析不同因素对霍尔系数的影响。
3. 实际应用:让学生调查和探究霍尔效应在实际生活中的应用,例如霍尔传感器和霍尔开关等。
第四部分:拓展延伸为了充实学生的知识和满足他们的好奇心,我们可以提供一些拓展和延伸内容:1. 进一步研究:鼓励学生深入了解霍尔效应的研究领域,例如霍尔元件的类型和特点,以及磁场对霍尔效应的影响等。
2. 实验设计:让学生设计一个更复杂的实验,探索霍尔效应在不同条件下的表现。
3. 实例分析:引导学生分析和解决实际问题,如基于霍尔效应的测量仪器的性能改进等。
4. 名人故事:分享一些与霍尔效应相关的科学家的故事,激发学生对科学研究的兴趣。
第五部分:总结与回顾在这最后部分,我们会对整堂课进行总结与回顾,确保学生对霍尔效应有一个清晰的理解,并能够将所学的知识应用到实际生活中。
大学物理实验教案
实验名称:霍尔效应实验目的:
1、了解霍尔效应原理。
2、了解霍尔电势差V
H 与霍尔元件工作电流
s
I之间的关系,了解霍尔电势差V
H
与励磁电流
m
I之
间的关系。
3、学习用“对称交换测量法”消除负效应产生的系统误差。
4、学习利用霍尔效应测量磁感应强度B的原理和方法。
实验仪器:
TH-H霍尔效应实验仪 TH-H霍尔效应测试
磁场测试仪
实验原理:
一、霍尔效应原理
若将通有电流的导体置于磁场B之中,磁场B(沿z轴)垂直于电流S I(沿x轴)的方向,如图所示,则在导体中垂直于B和S I的方向上出现一个横向电势差H
U,这个现象称为霍尔效应。
这一效应对金属来说并不显著,但对半导体非常显著。
利用霍尔效应可以测定载流子浓度、载流子迁移率等重要参数,是判断材料的导电类型和研究半导体材料的重要手段。
还可以用霍尔效应测量直流或交流电路中的电流强度和功率,以及把直流电流转成交流电流并对它进行调制、放大。
用霍尔效应制作的传感器广泛用于磁场、位置、位移、转速的测量。
霍尔电势差产生的本质,是当电流
S
I通过霍尔元件(假设为P型,即导电的载流子是空穴。
)时,空穴有一定的漂移速度v,垂直磁场对运动电荷产生一个洛仑兹力
()B q =⨯F v B (1)
式中q 为载流子电荷。
洛沦兹力使载流子产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =q E 与磁场作用的洛沦兹力相抵消为止,即
()q q ⨯=v B E (2)
这时载流子在样品中流动时将不偏转地通过霍尔元件,霍尔电势差就是由这个电场建立起来的。
如果是N 型样品,即导电的载流子是电子,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。
设P 型样品的载流子浓度为n ,宽度为b ,厚度为d 。
通过样品电流nevbd I S =,则空穴的速度nebd
I v S
=
,代入(2)式有 nebd
B
I S =
⨯=B v E (3) 上式两边各乘以b ,便得到
S S H H I B I B
V Eb R ned d
==
= (4) 霍尔电压H V ( A 、A '之间电压)与S I 、B 的乘积成正比,与霍尔元件的厚度d 成反比,比例系数H R ,称为霍尔系数。
它是反映材料霍尔效应强弱的重要参数。
H H S V d 1
R I B ne
=
= (5) 在应用中一般写成
H H S V K I B = (6)
比例系数ned
1
I R K S H H ==
,称为霍尔元件灵敏度,单位为mV/(mA ·T)。
一般要求H K 愈大愈好。
H K 与载流子浓度n 成反比,半导体内载流子浓度远比金属载流子浓度小,所以选用半导体材料作为霍尔元件。
H K 与片厚d 成反比,所以霍尔元件都做的很薄,一般只有0.2mm 厚。
由(4)式可以看出,知道了磁感应强度B ,只要分别测出传导电流S I 及霍尔电势差H V ,就可算出霍尔系数H R 和霍尔元件灵敏度H K 。
二、由H R 确定以下参数
(1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。
判断的方法是按图所示的S I 和B 的方向,若测得的H V >0,(即电流流入端电势高于流出端的电势),则H R 为正,样品属P 型,反之则为N 型。
(2) 由H R 求载流子浓度n ,即e
R 1
n H =。
应该指出,这个关系是假定所有载流子都具有相同的漂移速度得到的(严格一点,应考虑载流子的速度统计分布,在若磁场下应引入一个修正因子
38
π)。
(3)结合电导率的测量,求载流子的迁移率μ。
电导率σ可以通过图6-1所示的A 、C (或A '、C ')电极进行测量。
设A 、C 间的距离为L ,样品的横截面积为bd S =,流过样品的电流为S I 。
在零磁场下,若测得A 、C 间的电压为σU ( 即AC U ),可由下式求得σ。
S σI L
σV S
=
(6-7) 根据材料的电导率μσne =关系,即σR μH =,或者ρμR H =,测出σ值即可求μ。
式中μ为载流子的迁移率,即单位电场下载流子的运动速度。
一般电子的迁移率比空穴迁移率大,所以霍尔元件多采用N 型材料。
三、霍耳元件副效应的影响及其消除
1.霍耳元件的副效应
在研究固体导电过程中,继霍耳效应之后不久又发现了厄廷豪森(Etinghausen )、能斯特(Nernst )和里纪—勒杜克(Righi-Ledue )效应,它们都归属于热磁效应。
(1)厄廷豪森效应
1887年厄廷豪森发现,由于载流子的速度不相等,它们在磁场的作用下,速度大的受到洛仑兹力大,绕大圆轨道运动;速度小的则绕小圆轨道运动,这样导致霍耳元件的一端较另一端具有较多的能量而形成一个横向的温度梯度。
因而产生温差电效应,形成电势差,记为E U 。
其方向决定于H I 和磁场B 的方向,并可判断E V 与H V 始终同向
(2)能斯特效应
由于输入电流端引线的焊接点a 、b 处的电阻不相等,通电后发热程度不同,使a 和b
两端之间存在温度差,于是在a 和b 之间出现热扩散电流。
在磁场的作用下,在c 、e 两端出现了横向电场,由此产生附加电势差,记为N V 。
其方向与H I 无关,只随磁场方向而变。
(3)里纪—勒杜克效应
由于热扩散电流的载流子的迁移率不同,类似于厄廷豪森效应中载流子速度不同一样,也将形成一个横向的温度梯度,以产生附加电势差,记为RL V 。
其方向只与磁场方向有关,且与H V 同向。
2.不等势电势差
不等势电势差是由于霍耳元件的材料本身不均匀,以及电压输入端引线在制作时不可能绝对对称地焊接在霍耳片的两侧所引起的,如图所示。
因此,当电流H I 流过霍耳元件时,在电极3、4之间也具有电势差,记为0V ,其方向只随H I 方向不同而改变,与磁场方向无关。
3.副效应的消除
根据以上副效应产生的机理和特点,除E V 外,其余的都可利用异号法消除其影响,因
图2 能斯特效应 图3 不等势电势差
而需要分别改变H I 和B 的方向,测量四组不同的电势差,然后作适当的数据处理,而得到
H V 。
取B +、H I +测得
10H E N RL V V V V V V =++++
取B +、H I -测得
20H E N RL V V V V V V =--++-
取B -、H I -测得
30H E N RL V V V V V V =+---
取B -、H I +测得
40H E N RL V V V V V V =----+
消去N V 、RL V 和0V 得
12341
()4
H E V V V V V V =-+--
因E
H V V ,一般可忽略不计,所以
12341
()
4H V V V V V =-+-
(7) 本实验要利用霍尔效应测量长直螺线管轴线上的磁感应强度。
实验内容
1、 掌握仪器性能,连接测试仪与实验仪各组之间的连线
(1)开关机前,测试仪的“I S 调节”和“I M 调节”旋钮均置零位(即逆时针旋到底)。
(2)连接测试仪和实验仪之间各组的连线。
2、绘V H —I S 曲线
将测试仪的“功能切换”置V H ,取I M =0.600A ,分别取I S =0.50,1.00,1.50,2.00,2.50,3.00mA ,依次测量+I S , +B ;+I S ,-B ;-I S ,-B ;-I S , +B 相应的V H ,值。
3、测绘V H —I M 曲线
保持I S 值不变(取I S =2. 00mA ),分别取I M =0.100,0.200,0.300,0.400,0.500,0.600A ,依次测量+I S , +B ;+I S ,-B ;-I S ,-B ; -I S , +B 相应的V H 值。
4、在零磁场下,取I S =0.20mA ,测量σU
实验数据记录与处理
mm .d 500= mm .b 004= mm .l 004=
=0B
1、A .I M 6000= ==0600.0B B T
以s I 为横坐标,H V 为纵坐标作图,求斜率k 霍尔系数为
H kd R B == C /m 3
载流子浓度31
8H n R e
π== 3m -
2、 2.00s I mA =
以M I 为横坐标,H V 为纵坐标作图,求斜率k 3、电导率
s I l
V bd
σσ=
= S/m 载流子的迁移率H R μσ== /Vs m 2。