28动力学综合练习2
- 格式:doc
- 大小:549.50 KB
- 文档页数:7
动力学综合练习一1、在轻绳两端各系一小球,一人用手拿着上端的小球站在三层楼的阳台上,放手后让小球自由下落,两球相继落地的时间差为Δt 1,如果人站在四楼的阳台上,同样放手让小球自由地下落,两球相继落地的时间差为Δt 2,则Δt 1和Δt 2相比较有:( )A 、Δt 1<Δt 2B 、Δt 1=Δt 2C 、Δt 1>Δt 2D 、无法判断2、如图,为三个物体运动的v-t 图象,其中A 、B 两物体是从不同地点出发,A 、C 是从同一地点出发,则以下说法正确的是:( )A 、A 、C 两物体的运动方向相反B 、t=4s 时,A 、B 两物体相遇C 、t=4s 时,A 、C 两物体相遇D 、t=2s 时,A 、B 两物体相距最近3、两光滑平板MO 、NO 构成一具有固定的夹角0θ=750的V 型槽,一球置于槽内,用θ表示NO 板与水平面之间的夹角,如图所示。
若球对NO 板的压力大小正好等于球所受重力的大小,则下列θ值中哪个是正确的:( )A 、150B 、300C 、450D 、6004、如图所示,小圆环A 吊着一个质量为m 2的物块并套在另一个竖直放置的大圆环上,有一细线一端栓在小圆环A 上,另一端跨过固定在大圆环最高点B 的一个小滑轮后吊着一个质量为m 1的物块,若各处摩擦力均不计,绳不可伸长,若平衡时,弦AB 所对应的圆心角为α,则两物体的质量之比m 1:m 2应为:( )A 、cos α/2B 、sin α/2C 、2sin α/2D 、2cos α/25、如图所示,木板B 放在粗糙水平面上,木块A 放在B 的上面,A的右端通过一不可伸长的轻绳固定在竖直墙上,用水平恒力F 向左拉动B ,使其以速度V 做匀速运动,此时绳水平且拉力大小为T ,下列说法正确的是:( )A 、绳上拉力T 与水平恒力F 大小相等T αC 、木板B 受到A 和地面施加的两个滑动摩擦力的合力大小等于FD 、若木板B 以2V 匀速运动,则拉力仍为F6、一滑块在水平地面上沿直线滑行,t =0时其速度为1 m/s 。
考情概览:解读近年命题思路和内容要求,统计真题考查情况。
2024年真题研析:分析命题特点,探寻常考要点,真题分类精讲。
近年真题精选:分类精选近年真题,把握命题趋势。
必备知识速记:归纳串联解题必备知识,总结易错易混点。
名校模拟探源:精选适量名校模拟题,发掘高考命题之源。
2024年高考各卷区均不同程度地考查了两类基本动力学问题或者实验问题。
预测2025年高考两类基本动力学问题依然是考查的重点。
考向一常规实验1.(2024年1月浙江卷第16题)如图1所示是“探究加速度与力、质量的关系”的实验装置。
(1)该实验中同时研究三个物理量间关系是很困难的,因此我们采用的研究方法是_____;A.放大法B.控制变量法C.补偿法(2)该实验过程中操作正确的是____;A.补偿阻力时小车未连接纸带B.先接通打点计时器电源,后释放小车C.调节滑轮高度使细绳与水平桌面平行(3)在小车质量___(选填“远大于”或“远小于”)槽码质量时,可以认为细绳拉力近似等于槽码的重力。
上述做法引起的误差为___(选填“偶然误差”或“系统误差”)。
为减小此误差,下列可行的方案是___;A.用气垫导轨代替普通导轨,滑块代替小车B.在小车上加装遮光条,用光电计时系统代替打点计时器C.在小车与细绳之间加装力传感器,测出小车所受拉力大小(4)经正确操作后获得一条如图2所示的纸带,建立以计数点0为坐标原点的x 轴,各计数点的位置坐标分别为0、1x 、⋯、6x 。
已知打点计时器的打点周期为T ,则打计数点5时小车速度的表达式=v ___;小车加速度的表达式是___。
A.6322(15)x x a T -=B.6322(3)x x a T -=C.()54322(10)x x x x a T +-+=【答案】①.B②.B ③.远大于④.系统误差⑤.C⑥.6410x x T-⑦.A【解析】(1)[1]该实验中同时研究三个物理量间关系是很困难的,因此我们可以控制其中一个物理量不变,研究另外两个物理量之间的关系,即采用了控制变量法。
九年级数学人教版《锐角三角函数》单元测试题(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值( )A .扩大2倍B .缩小12 C .不变 D .无法确定2.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则∠A 的余弦值是( )A.35B.34C.43D.453.已知在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AB 的长等于( )A.2sin α B .2sin α C.2cos αD .2cos α 4.在Rt △ABC 中,∠C =90°,sinA =45,AC =6 cm ,则BC 的长度为( )A .6 cmB .7 cmC .8 cmD .9 cm 5.在Rt △ABC 中,∠B =90°,tanA =512,则cosA =( )A.125 B.1213 C.513 D.5126.三角形的三个内角之比为1∶2∶3,则最小角的正切值是( )A .1 B.22 C.33D. 3 7.(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32) 8.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C.55 D.129.如图,在△ABC 中,AD ⊥BC ,垂足为D.若AC =62,∠C =45°,tan ∠ABC =3,则BD 等于( )A .2B .3C .3 2D .2 310.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( )A .sinB =AD AB B .sinB =ACBCC .sinB =AD AC D .sinB =CDAC11.将宽为2 cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A.23 3 cm B.433 cm C. 5 cm D .2 cm12.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13 m 至坡顶B 处,再沿水平方向行走6 m 至大树脚底点D 处,斜面AB 的坡度(或坡比)i =1∶2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1 mB .17.2 mC .19.7 mD .25.5 m13.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC =2BF ,连接AE ,EF.若AB =2,AD =3,则cos ∠AEF 的值是( )A. 3B.32 C.22 D.1214.如图,以坐标原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(sin α,cos α)D .(cos α,sin α)15.如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1∶2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米16.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上,若点P 到BD 的距离为32,则点P 的个数为( )A .1B .2C .3D .4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:cos 245°+3tan60°+cos30°+2sin30°-2tan45°= .18.张丽不慎将一道数学题沾上了污渍,变为“如图,在△ABC 中,∠B =60°,AB =63,tanC =,求BC 的长度”.张丽翻看答案后,得知BC =6+33,则部分为 . 19.如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C =1,tan ∠BA 2C =13,tan∠BA 3C =17,计算tan ∠BA 4C =113,…,按此规律,写出tan ∠BA n C = .(用含n 的代数式表示)三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)Rt△ABC中,∠C=90°,c=0.8,b=0.4,解这个直角三角形.解:21.(本小题满分9分)△ABC中,(3·tanA-3)2+|2cosB-3|=0.(1) 判断△ABC的形状;(2) 若AB=10,求BC,AC的长.解:22.(本小题满分9分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6 m.求树高DE.解:23.(本小题满分9分)如图,某船由西向东航行,在点A处测得小岛O在北偏东60°方向,船航行了10海里后到达点B,这时测得小岛人教版数学九年级下册第二十八章锐角三角函数单元提优卷人教版数学九年级下册第二十八章锐角三角函数单元提优卷一、选择题1.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的5倍,则∠A的正弦值( D ) A.扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2.小明在某次投篮中刚好把球打到篮板的点D 处后进球.已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD 与水平线AE 的夹角为a ,如图所示.若tana=310,则点D 到地面的距离CD 是( C )A.2.7米B.3.0米C.3.2米D.3.4米3.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60 cm 长的绑绳EF ,tan α=,则“人字梯”的顶端离地面的高度AD 是( B )A . 144 cmB . 180 cmC . 240 cmD . 360 cm4.在Rt △ABC 中,∠C =90°,BC =1,AC =,则∠A 的度数是( A )A . 30°B . 45°C . 60°D . 70°5.如图,有两个全等的正方形ABCD 和BEFC ,则tan(∠BAF +∠AFB)=( A )A.1B.56 C. 23D. 6.把Rt △ABC 各边的长度都扩大3倍得到Rt △A ′B ′C ′,那么锐角∠A 、∠A ′的余弦值的关系是( B )A .cosA =cosA ′B .cosA =3cosA ′C .3cosA =cosA ′D .不能确定7.如图,小岛在港口P 的北偏西60°方向,距港口56海里的A 处,货船从港口P 出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( A )海里/时 /时 海里/时 海里/时8.如图,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( A ) A.B.C.D.9.如图,△ABD 和△BDC 都是直角三角形,且∠ABD=∠BDC=90°,∠BAD=30°,∠DBC=45°,则tan ∠DAC 的值为( C )A.B. C. D. 310.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( D )A .26米B .28米 C.30米 D .46米11.如图,△ABC 内接于⊙0,AD 为⊙0的直径,交BC 于点E ,若DE=2,0E=3,则tan ∠ACB ·tan ∠ABC=( C )A.2B.3C.4D.5二、填空题12.在Rt △ABC 中,∠C =90°,AC ∶BC =1∶2,则sinB =________. [答案] 3413.如图,在半径为3的⊙0中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC=2,则tanD=____.[答案]14.已知对任意锐角α,β均有cos(α+β)=cos α·cos β-sin α·sin β,则cos75°=________.【答案】6-2415.如图,在△ABC 中,AB=AC=10,点D 是边上一动点(不与B ,C 重合),∠ADE=∠B=a ,DE 交AC 于点E ,且cosa=45,则线段CE 的最大值为____.【答案】6.416.一个人由山脚爬到山顶,须先爬倾斜角为30度的山坡300米到达D ,再爬倾斜角为60度的山坡200米,这座山的高度为______________(结果保留根号)【答案】(150+100)米17.如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为20 m,则电梯楼的高BC为____________米(精确到0.1).(参考数据:≈1.414≈1.732)【答案】54.618.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为_____米.【答案】5三、解答题19.在Rt△ABC中,∠C=90°,sin B=,求cos A的值.【答案】解在△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cos A=sin B=.20.被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)坐落在风景如画的如意湖畔,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图,刘明在点C处测得楼顶B的仰角为45°,王华在高台上的D处测得楼顶的仰角为40°.若高台DE的高为5米,点D到点C的水平距离EC为47.4米,A,C,E三点共线,求“玉米楼”AB的高度.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)【解析】如图,过点D 作DM ⊥AB 于点M ,交BC 于点F ,过点C 作CG ⊥DM 于点G ,设BM=x 米,由题意,得DG=47.4米,CG=5米,∠BFM=45°,∠BDM=40°,则FM=BM=x 米,GF=CG=5米,∴DF=DG +GF=52.4米,∴DM=BM tan BDM ∠=x tan 40︒≈x0.84(米),∵DM -FM=DF ,∴x0.84-x=52.4,解得x≈275.1,∴AB=BM +AM=BM +DE ≈280米. 答:“玉米楼”AB 的高约为280米.21.计算:sin 45°+cos 230°+2sin 60°. 【答案】解 原式=×+2+2×=++=1+. 22.如图,AB 是⊙O 的直径,延长AB 至P ,使BP=OB ,BD 垂直于弦BC ,垂足为点B ,点D 在PC 上,设∠PCB=α,∠P0C=β,求证tan α·tan β=13【解析】如图,连接AC ,则∠A=12∠POC=2β. ∵AB 是⊙O 的直径,∴∠ACB=90°,∴tan 2β=BCAC.∵BD ⊥BC ,tan α=BD BC ,BD ∥AC ,∴△PBD ∽△PAC ,∴BD AC =PBPA.∵PB=OB=OA ,∴PB PA =13.∴BD AC =13.∴tan α·tan 2β=BD BC ·BC AC =BDAC人教版九年级数学下册 第二十八章锐角三角函数检测卷一、选择题(每小题3分,共30分)1.已知在Rt △ABC 中,∠C =90°,AB =8,BC =5,那么下列式子中正确的是( A )A.sin A =58B.cos A =58C.tan A =58 D.以上都不对 2.若cos A =32,则∠A 的大小是( A ) A.30° B.45° C.60° D.90°3.已知在Rt △ABC 中,∠C =90°,sin A =37,BC =4,则AB 的长度为( D ) A.43 B.74 C.8103 D.2834.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( A )A.2+ 3B.2 3C.3+ 3D.3 35.△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列四个选项中,错误的是( C )A.sin α=cos αB.tan C =2C.sin β=cos βD.tan α=16.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔为2 海里的点A处.如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是( C )A.2 海里B.2sin55°海里C.2cos55°海里D.2tan55°海里7.Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,那么c 等于( B )A.a cos A+b sin BB.a sin A+b sin BC.asin A+bsin B D.acos A+bsin B8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( D )A.4sinθ米2 B.4cosθ米2 C.(4+tanθ4)米2 D.(4+4tanθ)米29.如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD 垂直.当灯罩的轴线DO通过公路路面的中心时照明效果最佳.此时,路灯的灯柱BC高度应该设计为( D )A.(11-22)米B.(113-22)米C.(11-23)米D.(113-4)米10.如图,小明爬山,在山脚下B处看山顶A的仰角为30°,小明在坡度为i=512的山坡BD上去走1300米到达D处,此时小明看山顶A的仰角为60°,则山高AC为( B )A.600-250 3B.6003-250C.350+350 3D.500 3二、填空题(每小题4分,共24分)11.计算:2sin60°12.如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于13.传送带和地面所成斜坡的坡度为1∶0.75,它把物体从地面送到离地面高8米的地方,物体在传送带上所经过的路程为10米.14.如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平(结果保留根号).15.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=12 .16.△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是三、解答题(共66分)17.(6分)计算:2cos 245°-(tan60°-2)2-(sin60°-1)0+(12)-2 解:原式=2×(22)2-|3-2|-1+4=1-(2-3)-1+4=3+2.18.(6分)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213.19.(6分)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,求大厅两层之间的距离BC 的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB·sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.20.(8分)如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.21.(8分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20 cm,BC=18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20 cm,∴AD=AC·sin50°=20×0.8=16 cm,CD=AC·cos50°=20×0.6=12 cm,∵BC=18 cm,∴DB=BC-CD=18-12=6 cm,∴AB=AD2+BD2=162+62=292,∵17=289<292,∴王浩同学能将手机放入卡槽AB内.22.(10分)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73)人教新版九年级下学期单元测试卷:《锐角三角函数》一.选择题1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tan A =()A.B.1C.D.2.若0°<∠A<45°,那么sin A﹣cos A的值()A.大于0B.小于0C.等于0D.不能确定3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.04.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1利用上述公式计算下列三角函数①s in105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0其中正确的个数有()A.1个B.2个C.3个D.4个5.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT6.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A.(b+2a,2b)B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c)D.(a﹣c,﹣2a﹣2c)7.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm8.如图,一辆小车沿坡度为的斜坡向上行驶13米,则小车上升的高度是()A.5米B.6米C.6.5米D.12米9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置侧倾器测得楼房CD顶部点D的仰角为30°,向前走20米到达E处,测得点D的仰角为60°已知侧倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米)()A.30米B.18.9米C.32.6米D.30.6米10.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时二.填空题11.已知Rt△ABC中,∠C=90°,AC=3,∠B=37°,则BC的长为(注:tan ∠B=0.75,sin∠B=0.6,c os∠B=0.8)12.用不等号“>”或“<”连接:sin50°cos50°.13.若tanα=1(0°<α<90°),则sinα=.14.已知,在Rt△ABC中,∠C=90°,tan B=,则cos A=.15.在△ABC中,若|sin A﹣|+(cos B﹣)2=0,则∠C的度数是.16.请从下列两个小题中任选一个作答,若多选,则按第一题计分.A:一个正多边形的一个外角为36°,则这个多边形的对角线有条.B:在△ABC中AB=AC,若AB=3,BC=4,则∠A的度数约为.(用科学计算器计算,结果精确到0.1°.)17.如图,点A(t,2)在第一象限,OA与x轴所夹的锐角为α,sinα=,则t=18.如图,小明想测量学校教学楼的高度,教学楼AB的后面有一建筑物CD,他测得当光线与地面成22°的夹角时,教学楼在建筑物的墙上留下高2米高的影子CE;而当光线与地面成45°的夹角时,教学楼顶A在地面上的影子F与墙角C有13米的距离(点B,F,C在同一条直线上),则AE之间的长为米.(结果精确到lm,参考数据:sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)三.解答题19.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.20.我们知道:sin30°=,tan30°=,sin45°=,tan45°=1,sin60°=,tan60°=,由此我们可以看到tan30°>sin30°,tan45°>sin45°,tan60°>sin60°,那么对于任意锐角α,是否可以得到tanα>sinα呢?请结合锐角三角函数的定义加以说明.21.在Rt△ABC中,∠C=90°,若sin A=.求cos A,sin B,tan B的值.22.计算:3tan30°+cos245°﹣2sin60°.23.(1)验证下列两组数值的关系:2sin30°•cos30°与sin60°;2sin22.5°•cos22.5°与sin45°.(2)用一句话概括上面的关系.(3)试一试:你自己任选一个锐角,用计算器验证上述结论是否成立.(4)如果结论成立,试用α表示一个锐角,写出这个关系式.24.如图,在平面直角坐标系中,P是第一象限的点,其坐标为(6,y),且OP与x轴正半轴的夹角α的正切值为.求:(1)y的值;(2)角α的正弦值.25.某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.26.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号).参考答案一.选择题1.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tan A===,故选:A.2.【解答】解:∵cos A=sin(90°﹣A),余弦函数随角增大而减小,∴当0°<∠A<45°时,sin A<cos A,即sin A﹣cos A<0.故选:B.3.【解答】解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.4.【解答】解:①sin105°=sin(45°+60°)=sin60°cos45°+cos60°sin45°=×+×=,故此选项正确;②tan105°=tan(60°+45°)====﹣2﹣,故此选项正确;③sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=×﹣×=,故此选项正确;④cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=×﹣×=0,故此选项正确;故正确的有4个.故选:D.5.【解答】解:“SHIET”表示使用该键上方的对应的功能.故选:D.6.【解答】解:作CH⊥x轴于H,AC交OH于F.∵tan∠BAC==2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO,∵∠CHB=∠AOB=90°,∴△CBH∽△BAO,∴===2,∴BH=﹣2a,CH=2b,∴C(b+2a,2b),由题意可证△CHF∽△BOD,∴=,∴=,∴FH=2c,∴C(﹣b﹣2c,2b),∵2c+2b=﹣2a,∴2b=﹣2a﹣2c,b=﹣a﹣c,∴C(a﹣c,﹣2a﹣2c),故选:C.7.【解答】解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.8.【解答】解:作BC⊥AC.在Rt△ABC中,∵AB=13m,BC:AC=5:12,∴可以假设:BC=5k,AC=12k,∵AB2=BC2+AC2,∴132=(5k)2+(12k)2,∴k=1,∴BC=5m,故选:A.9.【解答】解:过B作BF⊥CD,作FG⊥BD,∵∠BDF=∠FDC=30°,∴EF=FH,∵∠BGF=90°,∴EF=FH=10,∴DF=20,∴DC=DH+HC=10+1.6≈18.9.故选:B.10.【解答】解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,AB=12,∠ABD=45°+(90°﹣75°)=60°,∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt△ACD中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.故选:B.二.填空题(共8小题)11.【解答】解:∵∠C=90°,∴tan B=,∴BC===4.故答案为4.12.【解答】解:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.13.【解答】解:∵tanα=1(0°<α<90°),∴∠α=45°,则sinα=,故答案为.14.【解答】解:如图,由tan B=,得AC=4k,BC=3k,由勾股定理,得AB=5k,cos A===,故答案为:.15.【解答】解:∵在△ABC中,|sin A﹣|+(cos B﹣)2=0,∴sin A=,cos B=,∴∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°.故答案为:90°.16.【解答】解:A、由一个正多边形的一个外角为36°,得360÷36=10,则这个多边形的对角线有=35,B、由AB=AC,若AB=3,BC=4,得cos A=≈0.667,A=42.5故答案为:35,42.5°.17.【解答】解:过A作AB⊥x轴于B.∴sinα=,∵sinα=,∴=,∵A(t,2),∴AB=2,∴OA=,∴t=,故答案为:.18.【解答】解:过点E作EM⊥AB,垂足为M.设AB为xm,在Rt△ABF中,∠AFB=45°,∴BF=AB=xm,∴BC=BF+FC=(x+13)m,在Rt△AEM中,AM=AB﹣BM=AB﹣CE=(x﹣2)m,又tan∠AEM=,∠AEM=22°,∴=0.4,解得x≈12,则ME=BC=BF+13≈12+13=25(m).在Rt△AEM中,cos∠AEM=,∴AE=≈≈27(m),故AE的长约为27m.故答案为:27.三.解答题(共8小题)19.【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∴sin∠ECM==.20.【解答】解:对于任意锐角α,都有tanα>sinα,理由如下:如图,△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,设∠A=α.则tanα=,sinα=,∵b<c,∴>,∴tanα>sinα.21.【解答】解:∵sin A==,∴设AB=13x,BC=12x,由勾股定理得:AC===5x,∴cos A==,sin B=cos A=,tan B==.22.【解答】解:3tan30°+cos245°﹣2sin60°===.23.【解答】解:(1)∵2sin30°•cos30°=2××=,sin60°=.2sin22.5°•cos22.5≈2×0.38×0.92≈0.7,sin45°=≈0.7,∴2sin30°•cos30°=sin60°,2sin22.5°•cos22.5=sin45°;(2)由(1)可知,一个角正弦与余弦积的2倍,等于该角2倍的正弦值;(3)2sin15°•cos15°≈2×0.26×0.97≈,sin30°=;故结论成立;(4)2sinα•cosα=sin2α.24.【解答】解:(1)作PC⊥x轴于C.∵t anα=,OC=6,∴PC=8,即y=8.(2)∵OP==10.则sinα===.25.【解答】解:连接BD,作OB⊥CD于点O,∵在直角三角形BCO中,∠BCD=60°,AB长为4m,C为AB的中点,∴OC=m,OB=OC=m,在直角三角形BOD中,设CD为x,OD=DC﹣OC=x﹣1,BD=CD﹣0.5=x﹣0.5,OB=,可得:,解得:x=3.75,答:CD的长为3.75m.26.【解答】解:过B作BF⊥AD于F.在Rt △ABF 中,AB =5,BF =CE =4.∴AF =3.在Rt △CDE 中,tan α==i =. ∴∠α=30°且DE ==4,∴AD =AF +FE +ED =3+4.5+4=7.5+4.答:坡角α等于30°,坝底宽AD 为7.5+4.人教版九年级下学期第28章锐角三角函数 单元过关测试卷 含参考答案一、选择题(每小题3分,共18分)1、在Rt △ABC 中,∠C =90º,b=53c ,则sinB 的值是( ) A 、53 B 、54 C 、43 D 、34 2、在△ABC中,若1sin 02A B -=,则△ABC 是( ) A 、等腰三角形 B 、等腰直角三角形 C 、直角三角形 D 、等边三角形3、如图,在菱形ABCD 中,DE ⊥AB ,cosA=53,BE=2,则tan ∠DBE 的值是( ) A 、21 B 、2 C 、25 D 、554、如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .32 m B.62 m C .(32﹣2)m D .(62﹣2)m5、一人乘雪橇沿坡度为i=1:3的斜坡滑下,滑下距离S(米)与时间t (秒)之间的关(第3题) (第4题) (第6题) E D C B A D B C A B D C E A系为S=2210t t +,若滑动时间为4秒,则他下降的垂直高度为( )A 、72米B 、36米C 、336米D 、318米6、某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立 于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处, 然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么 大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1米B .17.2米C .19.7米D .25.5米二、填空题(每小题3分,共21分)7、在△ABC 中,∠C =90°,若sinB =31,则sinA 的值为 8、如图,P 是∠α 的边OA 上一点,且点P 的坐标为(3,4), 则sin α=9、升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为 . (取3=1.732,结果精确到0.1m )10、如图,线段AB 、DC 分别表示甲、乙两座楼房的高,AB ⊥BC , DC ⊥BC ,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在点A 测得D 点的仰角α=45°,则乙建筑物高DC= 米.11、如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是 米.12、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为13、四边形的对角线的长分别为,可以证明当时(如图1),四边形的面积,那么当所夹的锐角为θ时(如图2),四边形的面积 .(用含的式子表示) 三、解答题(共61分)14、计算:(8分)(145sin 60)︒-︒(2)3sin60°﹣2cos30°﹣tan60°•tan45°.(第10题) (第11题) (第13题) D 图1 C 图215、(8分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i (指坡面的铅直高度与水平宽度的比).且AB=20 m .身高为1.7 m 的小明站在大堤A 点,测得高压电线杆端点D 的仰角为30°.已知地面CB 宽30 m ,求高压电线杆CD 的高度(结果保留0.1m,1.732).16、(8分)如图,在四边形ABCD 中,∠BCD 是钝角,AB=AD ,BD 平分∠ABC ,若CD=3,BD=62,sin ∠DBC=33,求对角线AC 的长.17、(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)18、(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (≈1.411.73≈2.45, )AB19、(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
动力学2A 一、选择题1. 水溶液反应 Hg 22+ + Tl 3+ ─→ 2Hg 2+ + Tl + 的速率方程为r = k [Hg 22+][Tl 3+]/[Hg 2+]。
以下关于反应总级数 n 的意见哪个对? ( ) (A) n = 1 (B) n = 2 (C) n = 3 (D) 无 n 可言 2. 根据常识, 试确定238U 的半衰期近似为:(a 表示年) ( )(A) 0.3×10-6 s (B) 2.5 min (C) 5580 a (D) 4.5×109 a3. 某反应物反应掉 7/8 所需的时间恰好是它反应掉 1/2 所需时间的 3 倍,则该反应的级数是: ( )(A) 零级 (B) 一级反应 (C) 二级反应 (D) 三级反应 4. 1-1 级对峙反应由纯 A 开始反应,当进行到 A 和 B 浓度相等的时间为: (正、逆向反应速率常数分别为 k 1 ,k 2) ( ) (A) t = ln12k k (B) t =11221ln kk k k - (C) t =1121212ln k k k k k +- (D) 112121ln k t k k k k =+- 5. 一级反应完成 99.9% 所需时间是完成 50% 所需时间的: ( )(A) 2 倍 (B) 5 倍 (C) 10 倍 (D) 20 倍 6. 一个反应的活化能是33 kJ ·mol -1, 当 T = 300 K 时,温度每增加 1K ,反应速率常数增加的百分数约是: ( )(A) 4.5% (B) 90% (C) 11% (D) 50% 7. 均相反应 A + Bk 1C +D , A + Bk 2E +F 在反应过程中具有∆[C]/∆[E]= k 1/k 2的关系, ∆[C],∆[E] 为反应前后的浓差,k 1,k 2是反应 (1),(2)的速率常数。
下述哪个是其充要条件? ( )(A) (1),(2) 都符合质量作用定律 (B) 反应前 C ,E 浓度为零 (C) (1),(2) 的反应物同是 A ,B (D) (1),(2) 反应总级数相等8. 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( )(A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 9. 某二级反应,反应物消耗 1/3 需时间 10 min ,若再消耗 1/3 还需时间为: ( )(A) 10 min (B) 20 min (C) 30 min (D) 40 min 10. 某具有简单级数反应的速率常数的单位是 mol ·dm -3·s -1,该化学反应的级数为: ( )A B 2(A) 2 级 (B) 1 级 (C) 0 级 (D) 3 级 11. 反应速率的简单碰撞理论中引入了概率因子P ,可表示为反应截面与碰撞截面之比(σ r /σ AB ),于是 ( )(A) P >1 (B) P <1 (C) P =1 (D) 不一定二、填空题12. 某反应物的转化率分别达到 50%,75%,87.5% 所需时间分别为 t 12,2t 12,3t 12,则反应对此物质的级数为 _______ 。
1-3 解:运动方程:θtan l y =,其中kt =θ。
将运动方程对时间求导并将030=θ代入得34cos cos 22lk lk l y v ====θθθ938cos sin 2232lk lk y a =-==θθ1-6证明:质点做曲线运动,所以质点的加速度为:n t a a a +=,设质点的速度为v ,由图可知:aav v yn cos ==θ,所以: y v v a a n =将c v y =,ρ2n va =代入上式可得 ρc v a 3=证毕 1-7证明:因为n 2a v =ρ,v a a v a ⨯==θsin n 所以:va ⨯=3v ρ 证毕1-10解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式:t v L s 0-=,并且 222x l s +=将上面两式对时间求导得:0v s -= ,x x s s 22= ovovF N Fg myθxo由此解得:xsv x 0-= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得:2002v v s x x x=-=+ (b)将(a)式代入(b)式可得:3220220xlv x x v x a x -=-== (负号说明滑块A 的加速度向上)取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:g F F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的运动微分方程:N F F ym F mg xm +-=-=θθsin cos其中:2222sin ,cos l x l lx x +=+=θθ0,3220=-=y x l v x将其代入直角坐标形式的运动微分方程可得:23220)(1)(x lxl v g m F ++= 1-11解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即:θcos A B v v = (a ) 因为x R x 22cos -=θ (b )将上式代入(a )式得到A 点速度的大小为:22R x xRv A -=ω (c )由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得:222222)(x R R x xω=-将上式两边对时间求导可得:x x R x x R x xx 2232222)(2ω=--将上式消去x 2后,可求得:22242)(R x xR x--=ω (d)由上式可知滑块A 的加速度方向向左,其大小为 22242)(R x xR a A -=ω取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:g F F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的 运动微分方程:mg F F ym F xm N -+=-=θθsin cos其中:x R x xR22cos ,sin -==θθ, 0,)(22242=--=y R x x R x ω将其代入直角坐标形式的运动微分方程可得2525)(,)(225222242R x x R m mg F R x x R m F N --=-=ωω1-13解:动点:套筒A ;动系:OC 杆;定系:机座;运动分析:绝对运动:直线运动;相对运动:直线运动;牵连运动:定轴转动。
压轴题01动力学与运动学综合问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一结合牛顿定律与运动学公式考察经典多过程运动模型 (1)热点题型二动力学图像的理解与应用 (3)热点题型三结合新情景考察动力学观点 (4)类型一以生产生活问题为情境构建多过程多运动问题考动力学观点 (4)类型二以问题探索情景构建物理模型考动力学观点 (4)类型三以科研背景为题材构建物理模型考动力学观点 (5)三.压轴题速练 (5)一,考向分析1.本专题是动力学方法的典型题型,包括动力学两类基本问题和应用动力学方法解决多运动过程问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2023年高考对于动力学的考察仍然是照顾点。
2.通过本专题的复习,可以培养同学们的审题能力,分析和推理能力。
提高学生关键物理素养.3.用到的相关知识有:匀变速直线运动规律,受力分析、牛顿运动定律等。
牛顿第二定律对于整个高中物理的串联作用起到至关重要的效果,是提高学生关键物理素养的重要知识点,因此在近几年的高考命题中动力学问题一直都是以压轴题的形式存在,其中包括对与高种常见的几种运动形式,以及对于图像问题的考察等,所以要求考生了解题型的知识点及要领,对于常考的模型要求有充分的认知。
二.题型及要领归纳热点题型一结合牛顿定律与运动学公式考察经典多过程运动模型多过程问题的处理(1)不同过程之间衔接的关键物理量是不同过程之间的衔接速度。
(2)用好四个公式:v=v0+at,x=v0t+12at2,v2-v20=2ax,x=v+v02t。
(3)充分借助v-t图像,图像反映物体运动过程经历的不同阶段,可获得的重要信息有加速度(斜率)、位移(面积)和速度。
①多过程v-t图像“上凸”模型,如图所示。
特点:全程初、末速度为零,匀加速直线运动过程和匀减速过程平均速度相等。
速度与时间关系公式:v=a1t1,v=a2t2得a 1a 2=t 2t 1速度与位移关系公式:v 2=2a 1x 1,v 2=2a 2x 2得a 1a 2=x 2x 1平均速度与位移关系公式:x 1=vt 12,x 2=vt 22得t 1t 2=x 1x 2②多过程v -t 图像“下凹”模型,如图所示。
第23讲动力学和能量观点的综合应用A.行李从A到B过程中传送带对行李做功为60JB.行李在传送带上留下的摩擦痕迹长度为0.08mC.行李从A到B过程中与传送带因摩擦产生热量为1.6JD.行李从A到B过程中电动机额外消耗的电能为1.6J2.如图所示,水平地面上有一倾角为37q =o 的传送带,以016m /s v =的速度逆时针匀速运行。
将一煤块从20.4m h =的高台由静止开始运送到地面,煤块可看做质点,已知煤块的质量为1kg m =,煤块与传送带之间的动摩擦因数为0.25m =,重力加速度为210m /s g =,sin 370.6=o ,cos370.8=o ,煤块由高台运送到地面的过程中,下列说法正确的是( )A .运送煤块所用的时间为4.125sB .煤块与传送带之间因摩擦产生的热量为32JC .摩擦力对煤块做的功为4J -D .煤块的机械能减少了36JA .煤屑刚落到传送带上的加速度为27.5m/s B .煤屑从落到传送带开始到与传送带速度相等时前进的位移是0.1mC .传送带电机因输送煤屑而多产生的输出功率是51WD .传送带电机因输送煤屑而多产生的输出功率是54WA .木板A 的质量为4kgB .系统损失的机械能为1JC .木板A 的最小长度为0.5mD .AB 间的动摩擦因数为0.12.如图,一质量为M 的木板静止在光滑水平桌面上,另一质量为m 的小物块(可视为质点)从木板上的左端以速度0v 开始运动并从右端滑下,该过程中,物体m 的动能减少量为k1ΔE ,长木板M 的动能增加量为k2E D ,m M 、间摩擦产生的热量为Q (不考虑空气阻力),关于k1k2E E D D ,,Q 的数值,下列数值可能的是( )A .k1k 2Δ3J Δ1J 2JE E Q ===,,B .k1k 2Δ7J Δ2J 5J E E Q ===,,C .k1k 2Δ8J Δ4J 4J E E Q ===,,D .k1k 2Δ10J Δ3J 6JE E Q ===,,3.如图所示,质量为1kg M =的长木板放在粗糙的水平地面上,质量0.5kg m =的小物块置于长木板右端,小物块与长木板之间的动摩擦因数10.4m =,长木板与地面之间的动摩擦因数20.1m =。
物理高考一轮复习两类动力学问题专题提升训练(附答案)动力学是实际力学的一个分支学科,它主要研讨作用于物体的力与物体运动的关系,下面是两类动力学效果专题提升训练,请大家仔细练习。
一、选择题(在题后给的选项中,第1~4题只要一项契合标题要求,第5~9题有多项契合标题要求.)1.(2021年广州调研)如图K3-2-1甲,运动在润滑水平面上O点的物体,从t=0时辰末尾遭到如图K3-2-1乙所示的水平力作用,设向右为F的正方向,那么物体()A.不时向左运动B.不时向右运动C.不时匀减速运动D.在O点左近左右运动【答案】B【解析】设物体质量为m,由图象可知,0~1 s内物体向右做匀减速直线运动,1 s末的速度v1=;1~2 s内物体以初速度v1=向右做匀减速直线运动,2 s末的速度v2=v1-=0;综上可知,物体会不时向右运动.选项B正确.2.质量为 2 kg 的物体运动在足够大的水平空中上,物体与空中间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t=0时辰末尾,物体遭到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图K3-2-2所示.重力减速度g取10 m/s2,那么物体在t=0至t=12 s这段时间的位移大小为()A.18 mB.54 mC.72 mD.198 m【答案】B【解析】滑动摩擦力大小Fmg=4 N,那么0~3 s物体运动,6~9 s物体做匀速直线运动,3~6 s和9~12 s做减速度相等的匀减速直线运动,减速度a=m/s2=2 m/s2.6 s末的速度v1=23 m/s=6 m/s,12 s末的速度v2=6 m/s+23 m/s=12m/s.3~6 s发作的位移大小x1=3 m=9 m,6~9 s 发作的位移大小x2=63 m=18 m,9~12 s发作的位移大小x3=3 m=27 m,那么0~12 s发作的位移大小x=x1+x2+x3=54 m,应选项B 正确.4. (2021年河南模拟)2021年8月14日,中国乒乓球地下赛在苏州市体育中心体育馆拉停战幕,吸引了上千市民前往观看.假定运发动在训练中手持乒乓球拍托球沿水平面做匀减速运动,球拍与球坚持相对运动且球拍平面和水平面之间的夹角为.设球拍和球质量区分为M、m,不计球拍和球之间的摩擦,不计空气阻力,那么()A.运发动的减速度大小为gsinB.球拍对球的作用力大小为mgcosC.运发动对球拍的作用力大小为D.运发动对空中的作用力方向竖直向下【答案】C【解析】以乒乓球为研讨对象,球受重力和球拍的支持力,不难求出球遭到的合力为mgtan ,其减速度为gtan ,遭到球拍的支持力为mg/cos ,由于运发动、球拍和球的减速度相等,选项A、B错误;同理运发动对球拍的作用力大小为(M+m)g/cos ,选项C正确;将运发动看做质点,由上述剖析知道运发动在重力和空中的作用力的合力作用下发生水平方向的减速度,空中对运发动的作用力应该斜向上,由牛顿第三定律知道,运发动对空中的作用力方向斜向下,选项D 错误.5.(2021年黑龙江模拟)如图K3-2-4所示,A、B两物块的质量区分为2 m和m, 运动叠放在水平空中上. A、B间的动摩擦因数为,B与空中间的动摩擦因数为.最大静摩擦力等于滑动摩擦力,重力减速度为 g.现对A施加一水平拉力F,那么()A.当 F mg时,A、B都相对空中运动B.当 F=mg时,A的减速度为gC.当 Fmg时,A相对B滑动D.无论F为何值,B的减速度不会超越g【答案】BCD【解析】当A、B刚要发作相对滑动时,A、B间的摩擦力到达最大静摩擦力,即f=2mg ,隔离B剖析,依据牛顿第二定律得,23mg=ma,解得a=g.对全体剖析,依据牛顿第二定律有:F-3mg=3ma,解得F=3mg.故当Fmg时,A、B发作相对滑动,故C正确;经过隔离B剖析,知B的减速度不会超越g,故D正确;当F=mg时,A、B坚持相对运动,对全体剖析,减速度a===g,故B正确;当Fmg,知小于A、B之间的最大静摩擦力,那么A、B不发作相对滑动,对全体剖析,由于全体遭到空中的最大静摩擦力fm=3mg=mg,知A、B不能相对空中运动,故A错误.6.(2021年潮州模拟)如图K3-2-5所示,一小车放在水平空中上,小车的底板上放一润滑小球,小球经过两根轻弹簧与小车两壁相连.当小车匀速运动时,两弹簧L1、L2恰处于自然形状.当发现L1变长、L2变短时,以下判别正确的选项是()A.小车能够正在向右做匀减速运动B.小车能够正在向右做匀减速运动C.小车能够正在向左做匀减速运动D.小车能够正在向左做匀减速运动【答案】BC【解析】L1变长,L2变短,小球遭到L1向左的拉力和L2向左的弹力,合力方向向左,那么减速度方向向左,选项B、C正确.7.如图K3-2-6所示,质量为m的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端的距离为L,动摇时绳与水平方向的夹角为,当传送带区分以v1、v2的速度做逆时针转动时(v1A.F1C.t1一定大于t2D.t1能够等于t2【答案】BD【解析】皮带以不同的速度运动,物体所受的滑动摩擦力相等,物体仍处于运动形状,故F1=F2;物体在两种不同速度下运动时有能够先减速再匀速,也能够不时减速,故t1能够等于t2.8.如图K3-2-7所示,甲、乙两图都在润滑的水平面上,小车的质量都是M,人的质量都是m,甲图人推车、乙图人拉绳子(绳与轮的质量和摩擦均不计)的力都是F,关于甲、乙两车的减速度大小,以下说法正确的选项是()A.甲车的减速度大小为B.甲车的减速度大小为0C.乙车的减速度大小为D.乙车的减速度大小为0【答案】BC【解析】关于甲,以人、车全体为研讨对象,水平方向合力为零,由牛顿第二定律,得a甲=0;关于乙,水平方向全体受力为2F,再由牛顿第二定律,得a乙=,所以选项B、C正确.9.(2021年全国卷Ⅰ)2021年11月,歼15舰载机在辽宁号航空母舰上着舰成功.图K3-2-8(a)为应用阻拦系统让舰载机在飞行甲板上快速中止的原理表示图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立刻封锁,阻拦系统经过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后中止.某次下降,以飞机着舰为计时零点,飞机在t=0.4 s时恰恰钩住阻拦索中间位置,其着舰到中止的速度时间图线如图K3-2-8(b)所示.假设无阻拦索,飞机从着舰到中止需求的滑行距离约为1 000 m.航母一直运动,重力减速度的大小为g.那么()A.从着舰到中止,飞机在甲板上滑行的距离约为无阻拦索时的1/10B.在0.4~2.5 s时间内,阻拦索的张力简直不随时间变化C.在滑行进程中,飞行员所接受的减速度大小会超越2.5gD.在0.4~2.5 s时间内,阻拦系统对飞机做功的功率简直不变【答案】AC【解析】速度时间图象中,图线与坐标轴所围图形的面积为物体的位移,所以可以计算飞机受阻拦时运动的位移约为x=700.4 m+(3.0-0.4)70 m=119 m,A正确;0.4 s到2.5 s时间内,速度时间图象的斜率不变,说明两条绳索张力的合力不变,但是两力的夹角不时变小,所以绳索的张力不时变小,B错;0.4 s到2.5 s时间内平均减速度约为a= m/s2=26.7 m/s2;C正确;0.4 s到2.5 s时间内,阻拦系统对飞机的作用力不变,飞机的速度逐渐减小,由P=Fv可知,阻拦系统对飞机做功的功率逐渐减小,D错.二、非选择题10.(2021年汕头模拟)一质量m=2.0 kg的小物块以一定的初速度冲上一倾角为37、足够长的斜面,某同窗应用传感器测出小物块从一末尾冲上斜面到往后上滑进程中多个时辰的瞬时速度,并用计算机作出了小物块上滑进程的速度-时间图象,如图K3-2-9所示,求:(sin 37=0.6,cos 37=0.8,g取10 m/s2)(1)小物块冲上斜面进程中减速度的大小;(2)小物块与斜面间的动摩擦因数;(3)小物块所抵达斜面最高点与斜面底端的距离.【答案】(1)8 m/s2 (2)0.25 (3)4.0 m【解析】(1)由小物块上滑进程的速度时间图象,可得小物块冲上斜面进程中的减速度a==m/s2=-8 m/s2,减速度大小为8 m/s2.(2)对小物块停止受力剖析如下图,有mgsin 37+f=ma,FN-mgcos 37=0,f=FN.代入数据,得=0.25.(3)由图象知距离s=t=1.0 m=4.0 m.11.消防队员为延长下楼的时间,往往抱着竖直的杆直接滑下.假定一名质量为60 kg、训练有素的消防队员从7楼(即离空中18 m的高度)抱着竖直的杆以最短的时间滑下.杆的质量为200 kg,消防队员着地的速度不能大于6 m/s,手和腿对杆的最大压力为1 800 N,手和腿与杆之间的动摩擦因数为0.5,设外地的重力减速度g=10 m/s2.假定杆是固定在空中上的,杆在水平方向不移动.试求:(1)消防队员下滑进程中的最大速度;(2)消防队员下滑进程中杆对空中的最大压力;(3)消防队员下滑的最短时间.【答案】(1)12 m/s (2)2 900 N (3)2.4 s【解析】(1)消防队员末尾阶段自在下落的末速度即为下滑进程的最大速度vm,有2gh1=v.消防队员遭到的滑动摩擦力Ff=FN1=0.51 800 N=900 N.减速阶段的减速度大小a2==5 m/s2,减速进程的位移为h2,由v-v2=2a2h2,又h=h1+h2,以上各式联立,可得vm=12 m/s.(2)以杆为研讨对象,得FN2=Mg+Ff=2 900 N.依据牛顿第三定律,得杆对空中的最大压力为2 900 N.(3)最短时间tmin=+=2.4 s.12.(2021年中山模拟)如图K3-2-10所示,一润滑斜面固定在水平空中上,质量m=1 kg的物体在平行于斜面向上的恒力F作用下,从A点由运动末尾运动,抵达B点时立刻撤去拉力F.尔后,物体抵达C点时速度为零.每隔0.2 s经过速度传感器测得物体的瞬时速度,下表给出了局部测量数据. 图K3-2-10t/s 0.0 0.2 0.4 2.2 2.4 v/(ms-1) 0.0 1.0 2.0 3.3 2.1 试求:(1)斜面的倾角(2)恒力F的大小;(3)t=1.6 s时物体的瞬时速度.【答案】(1)37 (2)11 N (3)6.9 m/s【解析】(1)物体从A到B做匀减速运动,设减速度为a1. 那么a1= m/s2=5 m/s2,假定物体减速了2.2 s,那么2.2 s 末速度为11 m/s,由表格数据知2.2 s末的速度为3.3 m/s,故当t=2.2 s时,物体已经过B点.因此减速进程减速度大小a2= m/s2=6 m/s2,mgsin =ma2,解得=37.(2)由(1)知a1=5 m/s2,F-mgsin =ma1,解得F=11 N.(3)设第一阶段运动的时间为t1,在B点时有5t1=2.1+6(2.4-t1),t1=1.5 s.可见,t=1.6 s的时辰处在第二运动阶段,由逆向思想可得v=2.1 m/s+6(2.4-1.6) m/s=6.9 m/s.两类动力学效果专题提升训练及答案的全部内容就是这些,更多精彩内容请继续关注查字典物理网。
华东师大版九年级数学下册第28章样本与总体综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是()A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本C.为了了解全市中学生的睡眠情况,应该采用普查的方式D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是2002、2021年我县有101万名初中毕业生参加升学考试,为了了解这101万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.101万名考生B.101万名考生的数学成绩C.2000名考生D.2000名考生的数学成绩3、为了解某校八年级900名学生的体重情况,从中随机抽取了100名学生的体重进行统计分析.在这个问题中,样本是指()A.100 B.被抽取的100名学生C.900名学生的体重D.被抽取的100名学生的体重4、下列事件中,调查方式选择合理的是()A.为了解某批次汽车的抗撞击能力,选择全面调查B.为了解某市中学生每天阅读时间的情况,选择全面调查C.为了解某班学生的视力情况,选择全面调查D.为选出某校短跑最快的学生参加全市比赛,选择抽样调查5、某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有()个.①这种调查采用了抽样调查的方式,②7万名考生是总体,③1000名考生是总体的一个样本,④每名考生的数学成绩是个体.A.2 B.3 C.4 D.06、为了解某市参加中考的51000名学生的视力情况,抽查了其中1500名学生的视力情况进行统计分析,下列叙述正确的是()A.51000名学生是总体B.每名学生是总体的一个个体C.1500名学生的视力情况是总体的一个样本D.以上调查是普查7、为了解某县2021年参加中考的14000名学生的视力情况,抽查了其中1000名学生的视力进行统计分析,下面叙述错误的是()A.14000名学生的视力情况是总体B.样本容量是14000C.1000名学生的视力情况是总体的一个样本D.本次调查是抽样调查8、下列调查中,适合采用全面调查方式的是()A.市场上某食品防腐剂是否符合国家标准B.某城市初中每周“诵读经典”时间C.疫情期间对国外入境人员的核酸检测D.对某品牌手机的防水性能的调查9、为了解某市七年级15000名学生的体重情况,从中抽取了500名学生进行测量,这500名学生的体重是()A.总体B.个体C.总体的一个样本D.样本容量10、为了了解某乡今年果农的年收入分布情况.从全乡果农中抽取50户果农的年收入进行统计分析.在这个问题中.样本是指()A.50 B.被抽取的50户果农C.被抽取的50户果农的年收入D.某乡2020年果农的年收入第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、某中学有520名学生参加升学考试从中随机抽取60名考生的数学成绩进行分析,在这个问题中:总体是_______;个体是_______;样本是_______;样本容量是_______.2、只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做_______.抽样调查的几个组成部分:要考察的全体对象称为_______.组成总体的每一个考察对象称为_______.被抽取的那些个体组成一个_______.样本中个体的数目称为_______.3、扇形图能清楚地表示出各部分在总体中所占的_______.扇形图通过扇形的大小来反映各个部分占总体的百分比.且扇形的大小是由_______的大小决定的.条形图能得出具体的人数,扇形图能得出各部分的百分比.4、某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是______.(填“总体”,“样本”或“个体”)5、某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,有下列说法:①该调查的方式是全面调查;②本城市只有40个成年人不吸烟;③本城市一定有20万人吸烟;④样本容量是50.其说法正确的有____(填序号).6、某学校有学生2000名,从中随意询问200名,调查收看电视的情况,结果如下表:2t6t4t8tt815 47 78 41 19则全校每周收看电视不超过4小时的人数约为________.7、为了了解某校七年级1500名学生的数学期中考试成绩,从中抽取了200名学生的成绩进行统计,在这个问题中,样本容量是________.8、为了解新冠肺炎疫情解封后刚复学时学生的心理健康,某中学在2000名同学中随机抽查了500名同学进行问卷调查,则本次抽查的样本容量是______.9、数学兴趣小组随机调查了“幸福小区”10户家庭一周内使用环保袋的数量,数据如下(单位:个):6,5,7,8,7,5,8,10,5,9.利用上述数据估计该小区800户家庭一周内需要环保袋共_______个.10、小张所在的公司共有600名员工,他为了解公司员工所使用的手机品牌情况,随机调查了部分员工,并将调查得到的数据绘制成如图所示的统计图,那么小张所在公司使用“华为”品牌手机的人数约是_____人.三、解答题(5小题,每小题8分,共计40分)1、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为,图中的a值为;(2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?2、今年5月22日,我国“杂交水稻之父”、中国工程院院士、“共和国勋章”获得者、让国人吃饱饭的伟大科学家袁隆平先生不幸逝世.“一粥一饭,当思来之不易”,倡导“光盘行动”,让同学们珍惜粮食,某校政教处在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有______名;(2)将条形统计图补充完整;(3)学校政教处通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人食用一餐,据此估算,该校3800名学生一餐浪费的食物可供多少人食用一餐?3、某中学为了解八年学级生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:(1)表格中的a=,b=;(2)在这次调查中,参加志愿者活动的次数的众数为,中位数为;(3)若该校八年级共有700名学生,根据调查统计结果,估计该校八年级学生参加志愿者活动的次数大于4次的人数.4、2022年元旦,正在太空“出差”的神舟十三号航天员乘组发来祝福视频,中国人在太空迎新年、过春节将成为常态.某校政治组采取随机抽样的方法对该校学生进行了“神舟十三号航天员乘组”的问卷调查,调查结果分为A“非常了解”、B“比较了解”、C“基本了解”和D“不了解”四个等级.老师根据调查结果绘制了如下统计图,请根据图中提供的信息解答下列问题:“神舟十三号航天员乘组”调查条形统计图“神舟十三号航天员乘组”调查扇形统计图(1)本次参与问卷调查的学生有______人;扇形统计图中“基本了解”部分所对应的扇形圆心角是______度;(2)请补全条形统计图;(3)请估计该校2000名学生中对“神舟十三号航天员乘组”不了解的人数约有多少?(写出必要的计算过程)5、虎林市教育局为了解九年级学生每学期参加综合实践活动的情况,随机抽样调查某校九年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出该校九年级学生总数.(2)求出活动时间为5天的学生人数,并补全频数分布直方图.(3)求该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是多少?-参考答案-一、单选题1、D【解析】【分析】根据全面调查、抽样调查、样本和样本容量判断即可.【详解】A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A 错误;B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;C、∵全市中学生人数太多,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,故D正确;故选:D【点睛】本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.2、D【解析】【分析】根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.【详解】解:根据样本的定义可得,在这个问题中,样本是2000名考生的数学成绩.故选:D【点睛】本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量,解题的关键是掌握样本的有关概念.3、D【解析】【分析】根据样本的定义进行判断即可.【详解】样本是观测或调查的一部分个体,所以样本是指被抽取的100名学生的体重.故选:D.【点睛】本题考查了样本的定义,掌握样本的定义进行判断是解题的关键.4、C【解析】【分析】全面调查是指对总体中每个个体都进行的调查,一般适用于总体中个体数量不太多的情况;抽样调查是指不必要或不可能对总体进行全面调查时,就从总体中抽取一部分个体进行调查,然后根据调查数据来推断总体的情况;根据全面调查与抽样调查的含义即可确定正确答案.【详解】了解汽车的抗撞击能力具有破坏性,用抽样调查,∴A选项不合题意,某市中学生人数较多,适合抽样调查,∴B选项不合题意,一个班的学生人数较少,适合选择全面调查,∴C选项符合题意,选出短跑最快的学生,每个学生都有可能,应选择全面调查,∴D选项不符合题意,故选:C.【点睛】本题考查了全面调查与抽样调查,掌握两者的含义是本题的关键.5、A【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.【详解】解:①为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;②7万名考生的数学成绩是总体,故说法错误;③1000名考生的数学成绩是总体的一个样本,故说法错误;④每名考生的数学成绩是个体,故说法正确.综上,正确的是①④,共2个,故选:A.【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考察的事物.6、C【解析】【分析】普查是对总体中的每个个体都进行的调查方式,抽样调查是从总体中抽取部分个体进行调查,通过调查样本来收集数据.总体是考察的全体对象,个体是组成总体的每一个考察对象,样本是被抽取的个体组成,根据定义分析判断即可.【详解】A、51000名学生的视力情况是总体,选项错误;B、每名学生的视力情况是总体的一个个体,选项错误;C、1500名学生的视力情况是总体的一个样本,选项正确;D、该调查属于抽样调查,选项错误.故选:C【点睛】本题考查抽样调查和普查的区别,总体、个体、样本的定义,根据相关知识点解题是关键.7、B【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 14000名学生的视力情况是总体,故该选项正确,不符合题意;B. 样本容量是1000,故该选项不正确,符合题意;C. 1000名学生的视力情况是总体的一个样本,故该选项正确,不符合题意;D. 本次调查是抽样调查,故该选项正确,不符合题意故选B【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.市场上某食品防腐剂是否符合国家标准,适合抽样调查,此选项不符合题意;B.城市初中每周“诵读经典”时间,适合抽样调查,此选项不符合题意;C.疫情期间对国外入境人员的核酸检测,适合全面调查,此选项符合题意;D.对某品牌手机的防水性能的调查,适合抽样调查,此选项不符合题意;故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、C【解析】【分析】总体是指考查的对象的全体;个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】解:A、总体是七年级15000名学生的体重情况,这500名学生的体重是样本,故A错误;B、个体是七年级每一名学生的体重,故B错误;C、这500名学生的体重是总体的一个样本,故C正确;D、样本容量是500,故D错误;故选:C.【点睛】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10、C【解析】【分析】研究某个问题时,从对象的所有观测结果中抽取一部分样品,这部分样品叫做所有观测结果的样本.【详解】解:在这个问题中,样本是指被抽取的50户果农的年收入故选:C.【点睛】本题考查样本的概念,是基础考点,掌握相关知识是解题关键.二、填空题1、 520名考生的升学考试数学成绩每一个考生的升学考试数学成绩抽取60名考生的升学考试数学成绩 60【解析】略2、抽样调查总体个体样本样本容量【解析】略3、百分比圆心角【解析】略4、样本【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,根据概念分析即可得到答案.【详解】解:1500名考生的数学成绩是总体的一个样本,故答案为:样本【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.5、④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:①该调查的方式是抽样调查,此选项说法错误;②本城市成年人不吸烟的有1001050⨯=20(万人),此项说法错误;③本城市大约有20万成年人吸烟,此项说法错误;④样本容量是50,此项说法正确;其中正确的是④.故答案为:④.【点睛】本题考查用样本估计总体及抽样调查的有关概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6、620人【分析】根据2000乘以样本中每周收看电视不超过4小时的人数所占样本的比例即可求得全校每周收看电视不超过4小时的人数【详解】解:全校每周收看电视不超过4小时的人数约为15472000620200+⨯=(人), 故答案为:620人.【点睛】本题考查了根据样本求总体,从统计图获取信息是解题的关键.7、200【解析】【分析】结合题意,根据样本容量的性质分析,即可得到答案.【详解】根据题意,样本容量是200;故答案为:200.【点睛】本题考查了样本容量的知识;解题的关键是熟练掌握样本容量的性质,从而完成求解.8、500【解析】【分析】根据样本的容量的定义即可得出答案,样本容量是样本中包含的个体的数目,不带单位.中学在2000名同学中随机抽查了500名同学进行问卷调查,在这次抽样调查中,样本容量是500.故答案为:500.【点睛】本题考查了样本的容量的定义,理解定义是解题的关键.9、5600【解析】【分析】根据题目中的10户一周内使用环保袋的数量,可以计算出这10户一共使用环保袋的数量,然后即可计算出800户家庭一周内需要环保袋的数量.【详解】解:(6+5+7+8+7+5+8+10+5+9)×(800÷10)=70×80=5600(个)即估计该小区800户家庭一周内需要环保袋共5600个,故答案为:5600.【点睛】本题考查用样本估计总体,是基础考点,掌握相关知识是解题关键.10、210【解析】【分析】用样本中使用华为品牌的人数所占比例乘以总人数即可得出答案.解:小张所在公司使用“华为”品牌手机的人数约是600×3535152051015+++++=210(人),故答案为:210.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.三、解答题1、(1)100,18;(2)见解析;(3)1.5,1.5,1.32(4)72人【解析】【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为18%,400乘以18%即可求得.【详解】(1)总人数为:3030%100÷=(人);18100%18%100⨯=故答案为:100,18(2)每天平均课外阅读时间为1.5小时的人数为:10012301840---=(人)补充条形统计图如下:(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5中位数为1.5,平均数为()10.512130 1.540182 1.32100⨯⨯+⨯+⨯+⨯=; (4)40018%72⨯=(人)∴估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有72人【点睛】本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键.2、(1)1000;(2)补图见解析;(3)大约可供760人食用一餐.【解析】【分析】(1)用“没有剩”的人数除以其所占百分比即可得到总人数;(2)先求出“剩少量”的人数,然后补全统计图即可;(3)先求出样本中,浪费的粮食可供人食用的人数占比,然后估计总体即可.【详解】解:(1)由题意得这次被调查的同学共有40040%1000÷=名;(2)由(1)可知,“剩少量”的人数=1000-400-250-150=200人,∴补充完整的条形统计图如图所示;(3)∵1000人浪费的粮食可供200人食用一餐. ∴20038007601000⨯=, ∴这餐饭3800名学生浪费的粮食大约可供760人食用一餐.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,画条形统计图等等,准确读懂统计图是解题的关键.3、(1)4,5;(2)4,4;(3)245人【解析】【分析】(1)根据所给数据分别求出次数为3和次数为5的人数即可;(2)根据中位数和众数的定义求解即可;(3)先求出样本中八年级学生参加志愿者活动的次数大于4次的人数占比,然后估计总体即可.【详解】解:(1)由所给数据可知:次数为3的人数有4人,即4a =;次数为5的人数有5人,即5b =, 故答案为:4,5;(2)由表格可知次数为4的人数最多,即参加志愿者活动的次数的众数为4,∵一共有20名学生参加调查,∴中位数为次数排在第10位和第11位的两个数据的平均数,即4442+=,故答案为:4,4;(3)由表格可知,样本中一共有5+2=7名学生参加志愿者活动的次数大于4次,∴估计该校八年级学生参加志愿者活动的次数大于4次的人数为770024520⨯=人.【点睛】本题主要考查了中位数,众数,频数分布表,用样本估计总体,解题的关键在于能够熟知相关知识.4、 (1)400,144(2)补全条形统计图见解析.(3)估计该校2000名学生中对“神舟十三号航天员乘组”不了解的人数约有100人.【解析】【分析】(1)用A等级人数除以其对应百分比可得总人数,用360°乘以C等级人数占总人数的比例即可得;(2)用总人数乘以B等级人数所占百分比求出其人数即可补全图形;(3)用总人数乘以样本中D等级人数所占比例即可得.(1)解:本次参与调查问卷的学生有80÷20%=400(人),扇形统计图中“基本了解”部分所对应的扇形圆心角是360°×160400=144°,故答案为:400,144.(2)补全条形图如下:(3)2000×20400=100(人),答:估计该校2000名学生中对“神舟十三号航天员乘组”不了解的人数约有100人.【点睛】点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.5、(1)200;(2)50,图见解析;(3)90【解析】【分析】(1)根据综合实践活动的天数为4天的人数60人,所占比例为30%,即可求得总人数;(2)将总人数乘以实践活动的天数为5天的学生人数所占的比例即可求得, 活动时间为5天的学生人数,进而求得活动时间为7天的人数,即可补全统计图(3)分别求得活动时间为5,6,7天的人数,求其和即可【详解】解:(1)活动的天数为4天的人数60人,所占比例为30%,。
10月月考综合练习二班级姓名座号一、单项选择题1.如图,小车上的物体质量为m=8 kg,它被一根水平方向上拉伸了的弹簧拉住而静止在小车上,这时弹簧的弹力为6 N.现沿水平向右的方向对小车施以作用力,使小车由静止开始运动起来,运动中加速度由零逐渐增大到1 m/s2,随即以1 m/s2的加速度做匀加速直线运动。
以下说法正确的是CA.物体受到的摩擦力一直减小B.当小车加速度(向右)为0.75 m/s2时,物体受摩擦力作用C.物体与小车始终保持相对静止,弹簧对物体的作用力始终没有发生变化D.小车以1 m/s2的加速度向右做匀加速直线运动时,物体受到的摩擦力为8 N2.竖直放置在水平面上的轻弹簧上放着质量为2 kg的物体A,处于静止状态.若将一个质量为3 kg 的物体B轻放在A上的一瞬间,则B对A的压力大小为(g取10 m/s2)A.30 N B.0 C.15 N D.12 N3.如图所示,质量为m的物体用细绳拴住放在水平粗糙传送带上,物体到传送带左端的距离为L,稳定时绳与水平方向的夹角为θ,当传送带分别以v1、v2的速度做逆时针转动时(v1<v2),绳中的拉力分别为F1、F2;若剪断细绳时,物体到达左端的时间分别为t1、t2,则下列说法正确的是A.F1<F2B.F1=F2 C.t1一定大于t2D.t 1一定等于t23.(滚动单独考查)如图所示,顶角为直角、质量为M的斜面ABC放在粗糙的水平面上,∠A=30°,∠B=60°,且斜面与水平面间动摩擦因数为μ。
现沿垂直于BC方向对斜面施加一力F,斜面仍保持静止状态,则关于斜面受到地面对它的支持力N和摩擦力f的大小,正确的是A.N=Mg,f=F B.N=Mg+F,f=μMgC.N=Mg+F,f=F D.N=Mg+F,f=F4.5.如图,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ.且θ+β<90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力F和地面对斜面的支持力N的大小变化情况是A.F逐渐增大,F1逐渐减小,N逐渐减小B.F逐渐减小,F1逐渐减小,N逐渐增大C.F逐渐增大,F1先减小后增大,N逐渐增大D.F逐渐减小,F1先减小后增大,N逐渐减小6.表面光滑、半径为R的半球固定在水平地面上,球心O的正上方O′处有一无摩擦的定滑轮,轻质细绳两端各系一个小球挂在定滑轮上,如图所示,两小球平衡时,若滑轮两侧细绳的长度分别为L1=2.4R和L2=2.5R,则这两个小球的质量之比m1∶m2为(不计球的大小)A.24∶1 B.25∶1 C.24∶25 D.25∶247.如图所示,质量分别为m、2m的球A、B由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀加速运动的电梯内,细线中的拉力为F,此时突然剪断细线,在线断的瞬间,弹簧的弹力的大小和小球A的加速度大小分别为A.+g B.+g C.+g D.+g8.()8.北京奥运会闭幕式演出中出现了一种新型弹跳鞋叫弹跳跷(如图所示).在表演过程中,一名质量为m的演员穿着这种鞋从距地面H高处由静止落下,与水平地面撞击后反弹上升到距地面高h 处.假设弹跳鞋对演员的作用力类似于弹簧的弹力,演员和弹跳鞋始终在竖直方向运动,不考虑空气阻力的影响,则该演员A.在向下运动的过程中始终处于失重状态B.在向上运动的过程中始终处于超重状态C.在向下运动的过程中先处于失重状态后处于超重状态D.在向上运动的过程中先处于失重状态后处于超重状态*9.二、计算题10.10.有5个质量均为m的相同木块,并列地放在水平地面上,如图所示,已知木块与地面间的动摩擦因数为μ,当木块1受到水平力F的作用时,5个木块同时向右做匀加速运动,求:(1)匀加速运动的加速度.(2)第4块木块受到第3块木块作用力的大小.11.12.(2009年安徽卷)在2008年北京残奥会开幕式上运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚韧不拔的意志和自强不息的精神.为了探求上升过程中运动员与绳索和吊椅间的作用,可将过程简化.一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示.设运动员的质量为65 kg,吊椅的质量为15 kg,不计定滑轮与绳子间的摩擦,重力加速度取g=10 m/s2.当运动员与吊椅一起正以加速度a=1 m/s2上升时,试求:(1)运动员竖直向下拉绳的力大小;(2)运动员对吊椅的压力大小.13.一传送带装置如图,其中AB段是水平的,长度L AB=4 m,BC段是倾斜的,长度l BC=5 m,倾角为θ=37°,AB和BC在B点通过一段极短的圆弧连接(图中未画出圆弧),传送带以v=4 m/s的恒定速率顺时针运转.已知工件与传送带间的动摩擦因数μ=0.5,重力加速度g取10 m/s2.现将一个工件(可看做质点)无初速度地放在A点,求:(1)工件第一次到达B点所用的时间:(2)工件沿传送带上升的最大高度;(3)工件运动了23 s时所在的位置.*14.(2012武汉市部分学校调研测试)如图所示,质量M=1 kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m=1 kg、大小可忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,g取10 m/s2。
(1)若木板长L=1 m,在铁块上加一水平向右的恒力F=8 N,经过多长时间铁块运动到木板的右端?(2)若在铁块右端施加一从零开始连续增大的水平向右的力F,假设木板足够长,在图中画出铁块受到木板的摩擦力f随拉力F大小变化而变化的图象.10月月考综合练习二考答案一、选择题:B A B 牛顿第二定律得m B g -F N =m B a 解得F N =12 N .据牛顿第三定律可知B 对A 的压力大小12 N .故选D.3.答案:B 解析:对物体受力分析可知:物体受重力、绳子的拉力、支持力、摩擦力,物体受到的摩擦力为滑动摩擦力.由平衡条件可得μ(mg -F sin θ)=F cos θ,传送带分别以v 1、v 2的速度逆时针转动且物体稳定时,绳与水平方向的夹角为θ相同,故两次拉力F 相等,故A 错误、B 正确.绳子剪断后,若物体一直加速,则到达左端的速度v 0=2μgL .当v 0≥v 2,物体两次都是先加速再匀速,运动时间不等;当v 2≥v 0≥v 1,物体的运动有两种可能,一种情况是一直加速,另一种情况是先加速后匀速,故运动时间不等;当v 0≤v 1时,两种情况下物体都是一直做加速运动,运动时间相等,所以C 、D 错误.8.解析 在空中时,加速度为g ,方向向下,处于失重状态;蹬地加速时,加速度a 向上,处于超重状态;蹬地减速后期,加速度a 向上,处于超重状态.所以在向下运动的过程中先处于失重状态后处于超重状态,C 正确;在向上运动的过程中先处于超重状态后处于失重状态,D 错误.答案 C二、计算题:10.10.解析:(1)选5个木块组成的系统为研究对象,设每一木块受到的滑动摩擦力为F f ,则系统所受外力的合力是:F 合=F -5F f =F -5μmg系统的质量是5m ,由牛顿第二定律得:F -5μmg =5ma 故系统的加速度是a =F -5μmg 5m =F5m-μg .(2)选第4、第5两木块组成的系统为研究的对象,水平受力如图2所示,由牛顿第二定律得:F N34-2F f =2ma ,故第4块木块受到第3块木块的作用力为:F N34=2ma +2F f =2m (F 5m -μg )+2μmg =25F .答案:(1)F 5m -μg (2)25F11.解:(1)根据H =12gt 2 得t =3 s由x =v 0t 得x =30 m.(2)对于B 球,根据μmg =ma 可得加速度大小a =5 m/s 2判断得在A 落地之前B 已经停止运动,x A =x =30 m 由v 20=2ax B 得x B =10 m 则:Δx =x A -x B =20 m12.【解析】方法一:(1)设运动员和吊椅的质量分别为M 和m ,绳拉运动员的力为F .以运动员和吊椅整体为研究对象,受到重力的大小为(M+m)g,向上的拉力为2F,根据牛顿第二定律2F-(M+m)g=(M+m)aF=440 N根据牛顿第三定律,运动员拉绳的力大小为440 N,方向竖直向下.(2)以运动员为研究对象,运动员受到三个力的作用,重力大小,Mg,绳的拉力F,吊椅对运动员的支持力F N.根据牛顿第二定律:F+F N-Mg=MaF N=275 N根据牛顿第三定律,运动员对吊椅的压力大小为275 N,方向竖直向下.方法二:设运动员和吊椅的质量分别为M和m;运动员竖直向下的拉力大小为F,对吊椅的压力大小为F N.根据牛顿第三定律,绳对运动员的拉力大小为F,吊椅对运动员的支持力大小为F N.分别以运动员和吊椅为研究对象,根据牛顿第二定律:F+F N-Mg=Ma ①F-F N-mg=ma ②由①②解得F=440 N,F N=275 N.13.14.解:(1)工件刚放在水平传送带上的加速度为a1由牛顿第二定律得:μmg=ma1解得a1=μg=5 m/s2经t1时间与传送带的速度相同,则t1==0.8 s前进的位移为x1=a1t=1.6 m此后工件将与传送带一起匀速运动至B点,用时t2==0.6 s所以工件第一次到达B点所用的时间t=t1+t2=1.4 s(2)设工件上升的最大高度为h,由动能定理得(μmg cos θ-mg sin θ)·=0-mv2解得h=2.4 m(3)工件沿传送带向上运动的时间为t3==2 s此后由于工件在传送带的倾斜段运动时的加速度相同,在传送带的水平段运动时的加速度也相同,故工件将在传送带上做往复运动,其周期为TT=2t1+2t3=5.6 s工件从开始运动到第一次返回传送带的水平部分,且速度变为零所需时间t0=2t1+t2+2t3=6.2 s而23 s=t0+3T这说明经23 s工件恰好运动到传送带的水平部分,且速度为零.故工件在A点右侧,到A点的距离x=L AB-x1=2.4 m222221133()()44S x x R R ππππ=-=或8.25 14.解:(1)假设铁块和木板以及木板和地面都有相对滑动,则铁块的加速度大小a 1==4 m/s 2木板的加速度大小a 2==2 m/s 2由a 2>0可见,假设成立.设经过时间t 铁块运动到木板的右端,则有a 1t 2-a 2t 2=L解得t=1 s .(1分)(2)①当F≤μ1(M+m)g=2 N 时,m 、M 相对静止且对地静止,f=F;②设F=F 1时,m 、M 恰保持相对静止,此时系统的加速度为a=a 2=2 m/s 2. 以系统为研究对象,据牛顿第二定律有F 1-μ1(M+m)g=(M+m)a 解得F 1=6 N所以,当2 N<F≤6 N 时,m 、M 相对静止,系统向右做匀加速运动,其加速度a=以M 为研究对象,据牛顿第二定律有f-μ1(M+m)g=Ma 解得f=+1(N)③当F>6 N 时,m 、M 发生相对运动,f=μ2mg=4 N所以,f 随拉力F 大小变化而变化的图象如图所示.。