高中简单立体几何体(附例题详解)
- 格式:doc
- 大小:419.00 KB
- 文档页数:10
高中立体几何典型500题及解析(二)(51~100题)51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。
求:AM 及CN 所成的角的余弦值;解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。
∵N 为AD 的中点, NE∥AM 省 ∴NE=21AM 且E 为MD 的中点。
设正四面体的棱长为1, 则NC=21·23= 43且ME=21MD=43 在Rt△MEC 中,CE 2=ME 2+CM 2=163+41=167∴cos ∠CNE=3243432167)43()43(222222-=⋅⋅-+=⋅⋅-+NECN CE NE CN ,又∵∠CNE ∈(0, 2π)∴异面直线AM 及CN 所成角的余弦值为32.注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。
2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。
最后作答时,这个角的余弦值必须为正。
52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 31==EC BE FD AF 。
求异面直线AB 及CD 所成的角。
解析:在BD 上取一点G ,使得31=GD BG ,连结EG 、FG在ΔBCD 中,GDBG EC BE =,故EG//CD ,并且41==BC BE CD EG ,所以,EG=5;类似地,可证FG//AB ,且43==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠FGE=215327532222222-=⋅⋅-+=⋅⋅-+GF EG EF GF EG ,故∠FGE=120°。
立体几何立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,文科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及简单几何体的变面积以及体积.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.【考查题型】选择,填空,解答题【限时检测】(建议用时:90分钟)一、单选题AA是1.(2018·上海高考真题)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA为底面矩形的一边,则这样的阳正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1马的个数是()A.4 B.8 C.12 D.16【答案】D【分析】根据新定义和正六边形的性质可得答案.【详解】根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选D.【点睛】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.2.(2020·上海虹口区·高三一模)在空间,已知直线l及不在l上两个不重合的点A、B,过直线l做平面α,使得点A、B到平面α的距离相等,则这样的平面α的个数不可能是()A.1个B.2个C.3个D.无数个【答案】C【分析】分情况讨论可得出.【详解】(1)如图,当直线AB与l异面时,则只有一种情况;(2)当直线AB与l平行时,则有无数种情况,平面α可以绕着l转动;(3)如图,当l过线段AB的中垂面时,有两种情况.故选:C.3.(2020·上海高三一模)如图,在正四棱柱1111ABCD A B C D -中,底面边长2AB =,高14A A =,E 为棱1A A 的中点.设BAD ∠=α、BED θ∠=、1B ED γ∠=,则α、β、γ之间的关系正确的是( ).A .αγθ=>B .γαθ>>C .θγα>>D .αθγ>>【答案】B 【分析】求出α、β、γ的大小即可求解. 【详解】由题意可得2BAD πα∠==,连接BD ,则BDE 为等边三角形,所以3BED πθ∠==, 连接1B D ,则222122426B D =++=22222BE DE ==+=取1B D 的中点O ,连接EO ,则16BO 862EO =-=所以16tan 32B EO ∠==, 所以13B EO π∠=,即123B ED πγ∠==,所以γαθ>>.故选:B4.已知长方体1111ABCD A B C D -,下列向量的数量积一定不为0的是( )A .1AD AB ⋅B .11AD BC ⋅ C .1BD BC ⋅ D .1BD AC ⋅【答案】C【分析】利用正方体几何性质计算出数量积为零的选项,根据长方体的性质证明数量积一定不为零的选项.【详解】当长方体1111ABCD A B C D -为正方体时,根据正方体的性质可知: 1111,,AB AD AD B C BD AC ⊥⊥⊥,所以10AB AD ⋅=、110AD B C ⋅=、10BD AC ⋅=.根据长方体的性质可知:1BC CD ⊥,所以1BD 与BC 不垂直,即1BD BC ⋅一定不为0.故选:C5.(2020·上海高三一模)已知正方体1111ABCD A B C D -,点P 是棱1CC 的中点,设直线AB 为a ,直线11A D 为b .对于下列两个命题:①过点P 有且只有一条直线l 与a 、b 都相交;②过点P 有且只有一条直线l 与a 、b 都成45︒角.以下判断正确的是( )A .①为真命题,②为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①为假命题,②为假命题【答案】B 【分析】作出过P 与两直线相交的直线l 判断①;通过平移直线a ,b ,结合异面直线所成角的概念判断②.【详解】解:直线AB 与A 1D 1 是两条互相垂直的异面直线,点P 不在这两异面直线中的任何一条上,如图所示:取BB 1的中点Q ,则PQ ∥A 1D 1,且 PQ =A 1D 1,设A 1Q 与AB 交于E ,则点A 1、D 1、Q 、E 、P 共面, 直线EP 必与A 1D 1 相交于某点F ,则过P 点有且只有一条直线EF 与a 、b 都相交,故①为真命题; 分别平移a ,b ,使a 与b 均经过P ,则有两条互相垂直的直线与a ,b 都成45°角,故②为假命题. ∴①为真命题,②为假命题.故选:B .【点睛】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想,是中档题.二、填空题6.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π;【分析】根据圆的周长公式易得圆锥底面周长,也就是圆锥侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图扇形的圆心角的大小.【详解】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.【点睛】思路点睛:该题考查的是有关圆锥侧面展开图的问题,解题思路如下:(1)首先根据底面半径求得底面圆的周长;(2)根据圆锥侧面展开图扇形的弧长就是底面圆的周长,结合母线长,利用弧长公式求得圆心角的大小. 7.(2020·上海闵行区·高三一模)如图,已知正四棱柱1111ABCD A B C D -的底面边长为2,高为3,则异面直线1AA 与1BD 所成角的大小是_______.【答案】22;【分析】根据11//AA DD ,得到1DD B ∠异面直线1AA 与1BD 所成的角,然后在1Rt DD B △,利用正切函数求解.【详解】因为11//AA DD ,所以1DD B ∠异面直线1AA 与1BD 所成的角,在正四棱柱1111ABCD A B C D -的底面边长为2,高为3, 所以1122tan 3BD DD B DD ∠==, 因为1(0,)2DD B π∠∈, 所以122arctan3DD B ∠=, 故答案为:22arctan 38.(2019·上海市建平中学高三月考)某几何体由一个半圆锥和一个三棱锥组合而成,其三视图如图所示(单位:厘米),则该几何体的体积(单位:立方厘米)是________.【答案】12π+2,高为3;半圆锥的底面是半径为1的半圆,高为3;据此计算出该几何体的体积.【详解】由三视图可知,三棱锥的体积:1223132V ⎛=⨯⨯= ⎝⎭;半圆锥体积:()11113232V ππ=⨯⨯⨯⨯⨯=,所以总体积为:12π+. 故答案为12π+.【点睛】本题考查空间几何体的体积计算,难度较易.计算组合体的体积时,可将几何体拆分为几个容易求解的常见几何体,然后根据体积公式完成求解.9.(2020·上海高三其他模拟)如图直三棱柱ABB 1-DCC 1中, BB 1⊥AB ,AB=4,BC=2,CC 1=1,DC 上有一动点P ,则△APC 1周长的最小值是 .【答案】521+试题分析:要求周长的最小值,因边为定值,只要求另两边之和的最小值,因两点直线线段最短,所以的最小值为因此△APC 1周长的最小值是521考点:棱柱的相关知识.10.(2020·上海高三一模)已知母线长为6cm 的圆锥的侧面积是底面积的3倍,则该圆锥的底面半径为________cm .【答案】2【分析】设底面半径为r ,由两个面积的关系可得底面半径的值.【详解】解:设底面半径为r ,则由题意,可得213262r r ππ=⨯⨯,解得2r , 故答案为:2.【点睛】本题考查圆锥的侧面积及圆的面积公式,属于基础题.11.(2020·上海高三其他模拟)已知圆锥的母线长为l ,过圆锥顶点的最大截面三角形的面积为212l ,则此圆锥底面半径r 与母线长l 的比r l的取值范围是____________. 【答案】22【分析】先判断两条母线的夹角=90θ时最大截面三角形的面积为212l 22l r ≤和r l <,最后求出r l 的取值范围即可. 【详解】解:过圆锥顶点的截面三角形的面积:1sin 2S l l θ=⋅⋅(θ为两母线的夹角), 因为过圆锥顶点的最大截面三角形的面积为212l ,即两条母线的夹角=90θ时的截面面积,此时底面弦长为2l ,所以22l r ≤,又r l <,所以212r l≤<, 故答案为:2[,1)2【点睛】本题考查空间几何体,是基础题.12.(2020·上海青浦区·高三二模)用一平面去截球所得截面的面积为23cm π,已知球心到该截面的距离为1cm ,则该球的表面积是___________2cm .【答案】16π【分析】由已知求出小圆的半径,然后利用勾股定理求出球的半径,即可求出球的表面积【详解】解:因为用一平面去截球所得截面的面积为23cm π,所以小圆的半径为3cm ,因为球心到该截面的距离为1cm ,所以球的半径为221(3)2+=cm ,所以球的表面积为24216S ππ=⨯=2cm ,故答案为:16π【点睛】此题考查球的截面的半径、球心到截面的距离与球的半径间的关系,属于基础题13.(2020·上海普陀区·高三月考)已知一个半圆柱的高为4,其俯视图如图所示,其左视图的面积为8,则该半圆柱的表面积为______.【答案】1612+π【分析】由圆柱的主视图和左视图知该圆柱的底面直径为4,高为3,由此能求出该几何体的表面积,得到答案.【详解】由题意,其左视图为矩形,其左视图的面积为8,半圆柱的高h 为4,可得半圆的半径r 为2,由于半圆柱的表面积为两个底面半圆面积加侧面展开图形的面积, 即2211222224224161222S r rh rh πππππ=⨯⨯++=⨯⨯⨯+⨯⨯+⨯⨯=+.故答案为:1612+π.【点睛】本题主要考查了空间几何体的三视图的应用,以及圆柱的表面积的计算问题,同时考查了圆柱的结构特征的应用,属于基础题.三、解答题14.(2020·上海虹口区·高三一模)如图在三棱锥P ABC -中,棱AB 、AC 、AP 两两垂直,3AB AC AP ===,点M 在AP 上,且1AM =.(1)求异面直线BM 和PC 所成的角的大小;(2)求三棱锥P BMC -的体积.【答案】(1)5(2)3. 【分析】(1)以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,利用空间向量法可求得异面直线BM 和PC 所成的角的大小;(2)计算出PMC △的面积,并推导出AB ⊥平面PMC ,利用锥体的体积公式可求得三棱锥P BMC -的体积.【详解】(1)由于AB 、AC 、AP 两两垂直,以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,如下图所示:则()3,0,0B 、()0,0,0A 、()0,3,0C 、()0,0,3P 、()0,0,1M ,()3,0,1BM =-,()0,3,3PC =-,5cos ,101032BM PC BM PC BM PC⋅<>===-⨯⋅,因此,异面直线BM 和PC 所成的角的大小为5arccos 10; (2)AB AC ⊥,AB AP ⊥,AC AP A =,AB ∴⊥平面APC ,AC AP ⊥,1AM =,2PM AP AM ∴=-=,132PMC S PM AC ∴=⋅=△, 1133333B PMC PMC V S AB -=⋅=⨯⨯=△.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.15.(2020·上海青浦区·高三一模)如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面P AC ;(2)求异面直线1BD 与AP 所成角的大小. 【答案】(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点. 连结PO ,又因为P 是1DD 的中点,所以1//PO BD . 又因为PO ⊂平面P AC ,1BD ⊄平面P AC 所以直线1//BD 平面P AC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==,2122AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒ 故异面直线1BD 与AP 所成角的大小为30. 【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m nα=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.16.(2020·上海长宁区·高三一模)如图,已知圆锥的顶点为P ,底面圆心为O ,高为23,底面半径为2.(1)求该圆锥的侧面积;(2)设OA 、OB 为该圆锥的底面半径,且90AOB ∠=︒,M 为线段AB 的中点,求直线PM 与直线OB 所成的角的正切值.【答案】(1)8π;(213【分析】(1)利用圆锥侧面积公式即可;(2)通过中点作辅助线即可. 【详解】解:(1)OP ⊥底面OAB 由题意高3h =2r ,所以母线4l圆锥的侧面积S =12lr 12242π=⨯⨯⨯8π= (2)取OA 的中点为N ,因为M 为AB 的中点所以//MN OB ,PMN ∠就是直线PM 与直线OB 所成的角. 因为OB OA ⊥,OB OP ⊥,所以OB ⊥平面POA ,MN ⊥平面POA ,MN PN ⊥ 在Rt △PNM 中,22()132rPN h =+=,112MN OB ==.所以PMN ∠的正切值为13.即直线PM 与直线OB 所成的角正切值为13.17.(2020·上海徐汇区·高三一模)如图:在直三棱柱111ABC A B C -中,2AC BC ==,14CC =,90ACB ∠=,E 、F 分别为棱1AA 、AB 的中点.(1)求异面直线1A C 与EF 所成的角的大小(结果用反三角函数值表示); (2)求五棱锥11C EFBB A -的体积11C EFBB A V -. 【答案】(1)5arctan (2)143.【分析】(1)连接1A B ,利用中位线的性质可得出1//A B EF ,由此可得出1BA C ∠(或其补角)就是异面直线1A C 与EF 所成的角,利用解三角形的知识求出1BA C ∠的正切值,即可得解;(2)计算出五边形1EFBB A 的面积,并推导出CF ⊥平面11AA B B ,再利用锥体的体积公式可计算出五棱锥11C EFBB A -的体积11C EFBB A V -. 【详解】 (1)连接1A B ,E 、F 分别为1AA 、AB 的中点,所以,1//A B EF ,于是1BA C ∠(或其补角)就是异面直线1A C 与EF 所成的角, 在1A BC 中,2BC =,221125AC AA AC =+=,221126A B AA AB =+=,22211A C BC A B ∴+=,所以1BC A C ⊥,所以,1125tan 525BC BAC AC ∠===. 所以,异面直线1A C 与EF 所成角的大小为5arctan5;(2)由于111111822722AEFEFBB A ABB A S S S AB AA AE AF =-=⋅-⋅==五边形矩形 连接CF ,2AC BC ==,F 为AB 的中点,90ACB ∠=,CF AB ∴⊥,且122CF AB == 1AA ⊥平面ABC ,CF ⊂平面ABC ,1CF AA ∴⊥,1AB AA A ⋂=,CF ∴⊥平面11AA B B ,所以11111114722333C EFBB A EFBB A V S CF -=⋅=⨯⨯=五边形. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.18.(2020·上海大学附属中学高三三模)如图,正四棱锥P ABCD -中.(1)求证:BD ⊥平面PAC ; (2)若2AB =,423P ABCD V -=,求二面角A PB C --的余弦值. 【答案】(1)证明见解析;(2)1arccos 3⎛⎫- ⎪⎝⎭【分析】(1)先证明PO BD ⊥,结合,BD AC ⊥利用线面垂直的判定定理可得结论;(2)由423P ABCD V -=求出棱锥的高,可求得侧棱长,判定侧面的形状后可得二面角的平面角,利用余弦定理可得答案. 【详解】(1)因为P ABCD -是正棱锥,P ∴在面ABCD 内射影是AC 与BD 的交点O ,即PO ⊥面ABCD ,PO BD ∴⊥,又,BD AC PO ⊥与AC 在面PAC 内相交,BD ∴⊥面PAC ;(2)2142233P ABCD V PO -=⨯⨯=, 2PO ∴=,222PB =+=,则PAB △与PBC 为边长是2的正三角形,取PB 的中点E ,连,AE CE , 则AE PB ⊥,CE PB ⊥,AEC ∠是二面角的平面角,3381cos 3233AEC +-∠==-⨯⨯,1cos 3AEC arc ⎛⎫∠=- ⎪⎝⎭【点睛】本题主要考查线面垂直的证明以及二面角的求解,考查了正四棱锥的性质,属于中档题.19.(2019·上海市建平中学高三月考)如图:四面体ABCD 的底面ABC 是直角三角形,AC BC ⊥,3AC =,4BC =,DA ⊥平面ABC ,5DA =,E 是BD 上的动点(不包括端点).(1)求证:AE 与BC 不垂直;(2)当AE DC ⊥时,求DEEB的值. 【答案】(1)证明见解析;(2)259.【分析】(1)利用反证法,先假设AE 与BC 垂直,然后根据条件推出与题设矛盾的结论,即可证明出AE与BC 不垂直;(2)先作辅助线//EF BC ,利用AE DC ⊥以及BC ⊥平面DAC 得到DC ⊥平面AEF ,由此得到AF DC ⊥,从而确定出F 点位置,再由DE DFEB FC=得到结果. 【详解】(1)假设AE BC ⊥,因为DA ⊥平面ABC ,所以DA BC ⊥,且DA AE A =,所以BC ⊥平面DAE ,又因为AB平面DAE ,所以BC AB ⊥,又因为由条件可知BC AC ⊥,所以BC AB ⊥不成立, 故假设不成立,所以AE 与BC 不垂直;(2)过E 作//EF BC ,交DC 于F ,连接AF ,因为AC BC ⊥,DA BC ⊥且DA AC A =,所以BC ⊥平面DAC ,因为//EF BC ,所以EF ⊥平面DAC ,所以EF DC ⊥, 又因为AE DC ⊥,EF DC ⊥,EF AE E =,所以DC ⊥平面AEF ,所以DC AF ⊥,又cos 25934AD ADC DC ∠===+,所以cos cos 34DF ADF ADC AD ∠=∠==, 所以34DF =,所以34FC =,所以259DF FC =,所以由相似可知259DE DF EB FC ==. 【点睛】本题考查空间中的垂直关系的判断与证明,难度一般.空间中的不平行、不垂直关系的证明,如果正面证明比较麻烦,可采用反证法去证明.20.(2020·上海市七宝中学高三其他模拟)如图,四边形11ABB A 是圆柱1OO 的轴载面,4AB =,12OO =,以圆柱上底面为底面作高为2的圆锥1PO ,C 、1C 分别在AB 、11A B 上,2AOC π∠=,1113AO C π∠=.(1)求这个几何体的表面积和体积; (2)求二面角111O AC C --的余弦值. 【答案】(1)表面积为(1242π+,体积为323π;(23823-. 【分析】(1)计算出圆锥的母线长,利用圆锥的侧面积公式和圆柱的侧面积、底面积公式可计算出几何体的表面积,结合柱体和锥体的体积公式可求得几何体的体积;(2)以点O 为坐标原点,OA 、OC 、OP 所在直线分别为x 、y 、z 轴建立空间直角坐标系O xyz -,利用空间向量法可求得二面角111O AC C --的余弦值. 【详解】(1)由题意可知,圆柱的底面半径为22ABr ==, 因为1PO 为圆锥的高,且12PO =,所以,圆锥的母线长为221122PA PO r =+=,又12OO =,因此,该几何体的表面积为(22+2222221242S ππππ=⨯⨯⨯+⨯=+.该几何体的体积为22132222233V πππ=⨯⨯+⨯⨯⨯=; (2)以点O 为坐标原点,OA 、OC 、OP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则点()10,0,2O ,()12,0,2A ,()13,2C ,()0,2,0C ,设平面11A CC 的一个法向量为(),,m x y z =,()113,0AC =-,()12,2,2AC =--, 由11100m AC m AC ⎧⋅=⎪⎨⋅=⎪⎩,得302220x x y z ⎧-=⎪⎨-+-=⎪⎩,令3x =1y =,13z =所以,平面11A CC 的一个法向量为(3,1,13m =,易知平面111O AC 的一个法向量为()0,0,1n =,()()22233cos ,82331131m n m n m n⋅<>===⋅-++-⨯,由图象可知,二面角111O AC C --31823--【点睛】本题考查组合体的表面积与体积的计算,同时也考查了利用空间向量法计算二面角的余弦值,考查计算能力,属于中等题.21.(2020·上海高三其他模拟)如图,已知⊙O 的直径AB=3,点C 为⊙O 上异于A ,B 的一点,VC ⊥平面ABC ,且VC=2,点M 为线段VB 的中点.(1)求证:BC ⊥平面VAC ;(2)若直线AM 与平面V AC 所成角为4π.求三棱锥B-ACM 的体积. 【答案】(1))祥见解析;(2)试题分析:(1)由线面垂直得VC ⊥BC ,由直径性质得AC ⊥BC ,由此能证明BC ⊥平面V AC .(2)首先由(1)作出直线AM 与平面V AC 所成的角:取VC 的中点N ,连接MN ,AN ,则MN ∥BC ,由(I )得BC ⊥平面VAC ,所以MN ⊥平面V AC ,则∠MAN 为直线AM 与平面V AC 所成的角.即∠MAN=4π,所以MN=AN ;这样就可求出AC 的长,且而求得体积.试题解析:(1)证明:因为VC ⊥平面ABC ,BC ABC ⊂平面,所以VC ⊥BC ,又因为点C 为圆O 上一点,且AB 为直径,所以AC ⊥BC ,又因为VC ,AC ⊂平面V AC ,VC∩AC=C ,所以BC ⊥平面V AC.(2)如图,取VC 的中点N ,连接MN ,AN ,则MN ∥BC ,由(I )得BC ⊥平面V AC ,所以MN ⊥平面V AC ,则∠MAN 为直线AM 与平面V AC 所成的角.即∠MAN=4π,所以MN=AN ;令AC=a,则29-a ,MN=292a -;因为VC=2,M 为VC 中点,所以21a + 所以,292a -=21a +,解得a=1 因为MN ∥BC,所以考点:1.直线与平面垂直的判定;2. 棱柱、棱锥、棱台的体积;3. 直线与平面所成的角.22.(2020·上海高三其他模拟)已知正方体1111ABCD A B C D -,12AA =,E 为棱1CC 的中点.(1)求异面直线AE 与1DD 所成角的大小(结果用反三角表示);(2)求C 点到平面ABE 的距离,并求出三锥C ADE -的体积.【答案】(1)1arccos 3;(2)C 点到平面ABE 25,三锥C ADE -的体积为23. 【分析】(1)由已知得AEC ∠(或补角)是异面直线AE 与1DD 所成角,求解AEC 可得答案;(2)利用等体积E ABC C ABE V V --=,可求得设C 点到平面ABE 的距离,利用C ADE A CDE V V --=,可求得三锥C ADE -的体积.【详解】解:(1)连接AC ,因为11//CC DD ,所以AEC ∠(或补角)是异面直线AE 与1DD 所成角, 在AEC 中,()22221cos 3221EC AEC AE AC EC ∠====++, 所以异面直线AE 与1DD 所成角是1arccos 3;(2)设C 点到平面ABE 的距离为h ,因为E ABC C ABE V V --=,即1133ABC ABE S EC S h ⋅=⋅△△, 又正方体1111ABCD A B C D -中,AB ⊥面11BB C C ,所以ABE △是Rt ABE △,又2222215BE BC EC =+=+=, 所以1111221253232h ⨯⨯⨯⨯=⨯⨯⨯⋅,解得255h =, 所以C ADE A CDE V V --=111212332DCE S AD ⎛⎫=⋅=⨯⨯⨯⨯ ⎪⎝⎭△23=.【点睛】本题考查空间中异面直线所成的角,运用等体积法求点到面的距离以及三棱锥的体积,属于中档题.。
高中数学几何题一、立体几何部分题1:已知正方体 ABCD - A_{1}B_{1}C_{1}D_{1} 的棱长为 a。
(1)求异面直线 A_{1}B 与 B_{1}C 所成角的大小;(2)求三棱锥 A - BCD_{1} 的体积。
解析:(1)1. 正方体 ABCD - A_{1}B_{1}C_{1}D_{1} 中,A_{1}D∥ B_{1}C。
2. 所以∠ BA_{1}D就是异面直线 A_{1}B 与 B_{1}C 所成的角(或其补角)。
3. 因为正方体棱长为a,A_{1}B = A_{1}D=BD=√(2)a。
4. 所以 A_{1}BD是等边三角形,∠ BA_{1}D = 60^∘,即异面直线 A_{1}B 与B_{1}C 所成角为60^∘。
(2)1. 正方体棱长为a,三棱锥 A - BCD_{1} 的体积V=(1)/(3)S_{ BCD_{1}}× h。
2. 其中S_{ BCD_{1}}=(1)/(2)× a×√(2)a=(√(2))/(2)a^2,h = a(A到平面BCD_{1}的距离就是棱长a)。
3. 所以V=(1)/(3)×(√(2))/(2)a^2× a=(√(2))/(6)a^3题2:在三棱柱ABC - A_{1}B_{1}C_{1}中,侧棱垂直于底面,AB = BC = 2,AC = 2√(2),AA_{1}=3。
(1)求证:AB⊥ BC;(2)求三棱柱ABC - A_{1}B_{1}C_{1}的表面积。
解析:(1)1. 已知AB = BC = 2,AC = 2√(2)。
2. 根据勾股定理的逆定理,AB^2+BC^2=AC^2,即2^2+2^2=(2√(2))^2。
3. 所以∠ ABC = 90^∘,AB⊥ BC。
(2)1. 三棱柱的表面积S=S_{侧}+S_{底}。
2. 侧面积S_{侧}=(AB + BC+AC)× AA_{1}=(2 + 2+2√(2))×3=(12 + 6√(2))。
高中立体几何典型500题及解析(二)(51~100题)51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。
求:AM 及CN 所成的角的余弦值;解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。
∵N 为AD 的中点, NE∥AM 省 ∴NE=21AM 且E 为MD 的中点。
设正四面体的棱长为1, 则NC=21·23= 43且ME=21MD=43 在Rt△MEC 中,CE 2=ME 2+CM 2=163+41=167∴cos ∠CNE=3243432167)43()43(222222-=⋅⋅-+=⋅⋅-+NECN CE NE CN ,又∵∠CNE ∈(0, 2π)∴异面直线AM 及CN 所成角的余弦值为32.注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。
2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。
最后作答时,这个角的余弦值必须为正。
52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 。
求异面直线AB 及CD 所成的角。
解析:在BD 上取一点G ,使得,连结EG 、FG 在ΔBCD 中,,故EG//CD ,并且, 所以,EG=5;类似地,可证FG//AB ,且, 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠FGE=215327532222222-=⋅⋅-+=⋅⋅-+GF EG EF GF EG ,故∠FGE=120°。
另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。
【考点梳理】一、考试内容1.平面。
平面的基本性质。
平面图形直观图的画法。
2.两条直线的位置关系。
平行于同一条直线的两条直线互相平行。
对应边分别平行的角。
异面直线所成的角。
两条异面直线互相垂直的概念。
异面直线的公垂线及距离。
3.直线和平面的位置关系。
直线和平面平行的判定与性质。
直线和平面垂直的判定与性质。
点到平面的距离。
斜线在平面上的射影。
直线和平面所成的角。
三垂线定理及其逆定理。
4.两个平面的位置关系。
平面平行的判定与性质。
平行平面间的距离。
二面角及其平面角。
两个平面垂直的判定与性质。
二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。
对于异面直线的距离,只要求会计算已给出公垂线时的距离。
2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。
对于异面直线上两点的距离公式不要求记忆。
3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。
能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。
三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。
(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。
高中立体几何典型500题及解析(一)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C分别作两条与二面角的交线垂直的线,则∠1和∠2分别为直线AB 与平面,αβ所成的角。
根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共..面.的一个图是PPQQRSSPPPQQRR RSSSPP PQQQ R RS SS PP Q QR RRSS(A ) (B ) (C ) (D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。
3. 有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。
B 项:如正方体的一个角,三个平面互相垂直,却两两相交。
C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。
5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。
立体几何试卷五一、选择题1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1B C 成60角 5、若直线l 平面α,直线a α⊂,则l 与a 的位置关系是A 、l aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4 二、填空题1、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).2、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为3、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .4、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1. 5.正三棱锥P -ABC 中,三条侧棱两两垂直,且侧棱长为a ,则P 点到面ABC 的距离是6.三个平面两两垂直,它们的三条交线交于一点O ,P 到三个面的距离分别是6,8,10,则OP 的长为 。
(理科)已长方体的全面积是8,则其对角线长的最小值是 认为正确的一种条件即可,不必考虑所有可能的情形.) 三、解答题1、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.(10分) 2、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.求证:EH ∥BD . (12分)3、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)4、一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,H G FE DB A CSD CB A四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域. (12分)5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)1C O 面11AB D ;(2 )1AC ⊥面11AB D . (14分)6、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AFAC AD λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)7、如图3所示,一个圆锥形的空杯子上面放着一个半球形冰淇淋,如果冰淇淋融化了,会溢出杯子吗?8、矩形ABCD 中,1,(0)AB BC a a ==>,PA ⊥平面AC ,BC 边上存在点Q ,使得PQ QD ⊥,求a 的取值范围.参考答案选择ACDDDB填空1、小于2、平行3、菱形4、1111AC B D 对角线与互相垂直5、设P 点到面ABC 的距离为h ,由体积公式可得:()3261231a h a =⋅,故a h 332=。
高中几何体试题及答案试题一:正方体的体积和表面积计算某正方体的边长为a,求该正方体的体积和表面积。
解答:正方体的体积 V = a³正方体的表面积 S = 6a²试题二:圆柱的体积和表面积计算已知圆柱的底面半径为r,高为h,求圆柱的体积和表面积。
解答:圆柱的体积V = πr²h圆柱的表面积S = 2πrh + 2πr²试题三:圆锥的体积和表面积计算已知圆锥的底面半径为r,高为h,求圆锥的体积和表面积。
解答:圆锥的体积V = (1/3)πr²h圆锥的表面积 S = πr(r + l),其中l是圆锥的斜高,可通过勾股定理计算:l = √(r² + h²)试题四:球的体积和表面积计算已知球的半径为R,求球的体积和表面积。
解答:球的体积V = (4/3)πR³球的表面积S = 4πR²试题五:棱锥的体积计算已知一个正四棱锥的底面边长为a,高为h,求棱锥的体积。
解答:正四棱锥的体积 V = (1/3)ah²试题六:棱柱的体积和表面积计算已知一个正六棱柱的底面边长为a,高为h,求棱柱的体积和表面积。
解答:正六棱柱的体积 V = 6a²h正六棱柱的表面积S = 6a(a + √3h)试题七:椭圆的面积计算已知椭圆的长轴为2a,短轴为2b,求椭圆的面积。
解答:椭圆的面积A = πab试题八:双曲线的面积计算已知双曲线的实轴为2a,虚轴为2b,求双曲线的面积。
解答:双曲线的面积A = πa(b + a)结束语:以上试题涵盖了高中几何体的常见体积和面积计算问题,希望同学们能够熟练掌握这些基本公式,并能够灵活运用到实际问题中去。
通过不断的练习和思考,相信你们能够在几何学领域取得优异的成绩。
高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
2. 简单几何体知识网络简单几何体结构简图画龙点晴 概念棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体称为棱柱。
两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点.不在同一个平面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高.棱柱的分类: 按侧棱与底面的关系,棱柱可分为: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱. 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱. 正棱柱:底面是正多边形的直棱柱叫做正棱柱.按底面的多边形的边数可分为: 底面是三角形、四边形、五边形……我们把这些棱柱分别叫做三棱柱、四棱柱、五棱柱……棱柱的表示法: 棱柱用表示底面各顶点的字母表示,或者用棱柱对角线的两个端点的字母表示,如五棱柱可表示为:棱柱ABCDE-A /B /C /D /E /,或棱柱AC /. 棱柱的性质:(1)侧棱都相等,侧面都是平行四边形;(2)两个底面与平行于底面的截面都是全等的多边形; (3)过不相邻的两条侧棱的截面(对角面)是平行四边形;直棱柱的性质: 直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。
平行六面体: 底面是平行四边形的四棱柱叫做平行六面体.长方体: 底面是矩形的直平行六面体叫做长方体, 长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方和.正方体: 棱长都相等的长方体叫做正方体.公式棱柱的侧面积和全面积: 直棱柱的侧面积等于它的底面周长C 与高h 的乘积, 即Ch S =直棱柱, 斜棱柱的侧面积等于它的直截面(垂直于侧棱并与每条侧棱都相交的截面)的周长C 1与侧棱长l 的乘积, 即l C S ⋅=1斜棱柱侧, 棱柱的全面积等于侧面积与两底面积的和.[活用实例][例1] 如图,在平行六面体ABCD-A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π, (1)求证:顶点A1在底面ABCD 的射影O 在∠BAD 的平分线上;(2)求这个平行六面体的表面积. [题解](1) 如图,连结A 1O,则A 1O ⊥底面ABCD.作OM ⊥AB 交AB 于M,作ON ⊥AD 交AD 于N,连结A 1M,A 1N. 由三垂线定理得A 1M ⊥AB,A 1N ⊥AD.∵ ∠A 1AM=∠A 1AN,∴ Rt △A 1NA ≌Rt △A 1MA.∴ A 1M=A 1N.∴ OM=ON. ∴ 点O 在∠BAD 的平分线上.(2),232133cos1=⨯==πAA AM 23=∴AN , ∴侧面AB 1和侧面DC 1的面积都等于423⨯=6,侧面AD 1和侧面BC 1的面积都等于523⨯=7.5, 又AB ⊥AD ,∴两底面面积都等于45⨯=20,∴平行六面体的表面积为2(6+7.5)+20=47. [例2] 如图,A 1B 1C 1-ABC 是直三棱柱,过点A 1、B 、C 1的平面和平面ABC 的交线记作l . (1)判定直线A 1C 1和l 的位置关系,并加以证明;(2)若A 1A=1,AB=4,BC=3,∠ABC=90°,求顶点A 1到直线l 的距离.[题解](1)根据棱柱的定义知平面A 1B 1C 1和平面ABC 平行.由题设知直线A 1C 1=平面A 1B 1C 1∩平面A 1BC 1,直线l =平面A 1BC 1∩平面ABC. 根据两平面平行的性质定理有l ∥A 1C 1.(2)解法一:过点A 1作A 1E ⊥l 于E,则A 1E 的长为点A 1到l 的距离. 连结AE.由直棱柱的定义知A 1A ⊥平面ABC. ∴ 直线AE 是直线A 1E 在平面ABC 上的射影.又 l 在平面ABC 上,根据三垂线定理的逆定理有AE ⊥l . 由棱柱的定义知A 1C 1∥AC,又l ∥A 1C 1,∴ l ∥AC. 作BD ⊥AC 于D,则BD 是Rt △ABC 斜边AC 上的高,且BD=AE, 从而AE=BD=.512534=⨯=⨯AC BC AB在Rt △A 1AE 中,∵ A 1A=1,∠A1AE=90°,.5131)512(22121=+=+=∴A A AE E A 故点A 1到直线l 的距离为513. 解法二:同解法一得l ∥AC.由平行直线的性质定理知∠CAB=∠ABE,从而有Rt △ABC ∽Rt △BEA,AE:BC=AB:AC, ACABBC AE ⨯=∴ , 以下同解法一.[例3] 如图,已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC1;(2)假设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角α的度数.[题解](1)∵A 1B 1C 1-ABC 是正三棱柱, ∴四边形B 1BCC 1是矩形. 连结B 1C 交BC 1于E,则B 1E=EC.连结DE. 在△AB1C 中,∵AD=DC,∴DE ∥AB 1.又⊄1AB 平面DBC 1, DE ⊂平面DBC 1, ∴AB 1∥平面DBC 1.(2)作DF ⊥BC,垂足为F,则DF ⊥面B 1BCC 1,连结EF,则EF 是ED 在平面B 1BCC 1上的射影.∵AB 1⊥BC 1,由(1)知AB 1∥DE,∴DE ⊥BC 1,则BC 1⊥EF,∴∠DEF 是二面角α的平面角. 设AC=1, 则DC=.21∵△ABC 是正三角形,∴在Rt △DCF 中, ,43sin =⋅=C DC DF CF=.41cos =⋅C DC 取BC 中点G.∵EB=EC,∴EG ⊥BC. 在Rt △BEF 中,AC=1, ,2GF BF EF ⋅= 又BF=BC-FC=43, GF=41, 16341432=⋅=∴EF , 即EF=43..14343tan ===∠∴EF DF DEF ∴∠DEF=45°. 故二面角α为45°.概念棱锥:有一个面是多边形、其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.棱锥的分类: 按底面多边形的边数,棱锥可分为三棱锥、四棱锥、五棱锥……棱锥的表示法: 棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示.例如,棱锥S-ABCDE,或棱锥S-AC.正棱锥:底面是正多边形,并且顶点在底面上的射影是底面中心,这样的棱锥叫做正棱锥. 正棱锥的性质:(1)各侧棱相等,各侧面是全等的等腰三角形;(2)棱锥的高、斜高及斜高在底面上的射影(底面的边心距)组成一个直角三角形,这个直角角三角形的一个锐角是侧面与底面的夹角;(3)棱锥的高、侧棱和侧棱在底面上的射影(底面正多边形外接圆半径)也组成一个直角三角形,这个直角三角形的一个锐角是侧棱与底面的夹角。
一般棱锥的性质: 如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们的面积比等于等于截得的棱锥的高和已知棱锥的高的平方比;截得棱锥与已知棱锥的侧面积之比也等于它们相应的高的平方比。
棱锥的中截面: 过棱锥的高的中点并且平行于底面的截面叫做棱锥的中截面.公式正棱锥的侧面积和全面积: 正棱锥的侧面积等于底面周长C 与斜高/h 乘积的一半. 即/21h C S ⋅=正棱锥侧. [活用实例][例4] 如图,在三棱锥S-ABC 中,S 在底面上的射影N 位于底面的高CD 上;M 是侧棱SC 上的一点,使截面MAB 与底面所成的角等于∠NSC. 求证:SC 垂直于截面MAB.[题解1]因为SN 是底面的垂线,NC 是斜线SC 在底面上的射影,AB ⊥NC,所以AB ⊥SC(据三垂线定理). 连结DM.因为AB ⊥DC,AB ⊥SC,所以AB 垂直于DC 和SC 所决定的平面. 又因DM 在这平面内,所以AB ⊥DM.∴∠MDC 是截面与底面所成二面角的平面角,∠MDC=∠NSC.在△MDC 和△NSC 中,因为∠MDC=∠NSC,∠DCS 是公共角,所以∠DMC=∠SNC=90°从而DM ⊥SC. 从AB ⊥SC,DM ⊥SC,可知SC ⊥截面MAB.[题解2]连结DS,DM ,因为SN 是底面的垂线,AB ⊥DN,所以AB ⊥DS(据三垂线定理).从而AB ⊥平面SDC. 因SC,DM 都在平面SDC 内,故AB ⊥SC,AB ⊥DM.由AB ⊥DM,AB ⊥DC,可知∠MDC 是截面与底面所成二面角的平面角,∠MDC=∠NSC. 以下同证法一,故SC ⊥截面MAB.[题解3]连结DM,DS. 因为M,N 分别在△SDC 的两边上,所以SN 和DM 都在平面内,且相交于一点P. 又因PN 是底面的垂线,AB ⊥DN,所以AB ⊥DM(据三垂线定理). ∴∠MDC 是截面与底面所成二面角的平面角,∠MDC=∠NSC.又∠MDC=∠NSC,∠DCS 是△DCM 和△SCN 的公共角,故∠DMC=∠SNC=90°.从而DM ⊥SC. 从AB ⊥DM,AB ⊥DC,可知AB ⊥平面MDC.因为SC 是平面MDC 内的直线,所以AB ⊥SC. 从AB ⊥SC,DM ⊥SC,可知SC ⊥截面MAB.[例5] 如图,正四棱锥的棱长和底面边长均为a,求:(1)侧面与底面所成角α的余弦; (2)相邻两个侧面所成二面角β的余弦。
[题解](1)作SO ⊥面ABCD 于O ,作SE ⊥BC 于E ,连接OE ,则BC ⊥OE ,∠∴SEO=α, .33cos ,21,23==∴==SE OE a OE a SE α (2)设SA 的中点为F ,连接BF 、DF ,∆ SAB 和∆SAD 都是正三角形, .,,β=∠∴⊥⊥∴BFD SA DF SA BF.312cos ,2,23222-=⋅⋅-+=∴===BF DF BD BF DF a BD a DF BF β 概念多面体:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.两个面的公共边叫做多面体的棱.若干个面的公共顶点叫做多面体的顶点.凸多面体: 把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体.正多面体:每个面都是有相同边数的正多边形,且以每个顶点这其一端都有相同数目的棱的凸多面体叫做正多面体.正多面体的种类: 正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体,其中正四面体、正八面体、正二十面体的面是正三角形,正六面体的面是正方形,正十二面体的面是正五边形。