立体几何证明简单例题
- 格式:doc
- 大小:282.00 KB
- 文档页数:4
2023年高考数学----两角相等(构造全等)的立体几何问题典型例题讲解【规律方法】 构造垂直的全等关系 【典型例题】例1.如图,已知三棱柱−111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交A B 于E ,交A C 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.【解析】(1)证明:M Q ,N 分别为BC ,11B C 的中点,底面为正三角形, ∴=1B N BM ,四边形1BB NM 为矩形,⊥111A N B C ,∴1//BB MN ,11//AA BB Q ,∴1//AA MN , ⊥11MN B C Q ,⊥111A N B C ,⋂=1MN A N N , ∴⊥11B C 平面1A AMN ,⊂11B C Q 平面11EB C F , ∴平面⊥1A AMN 平面11EB C F ,综上,1//AA MN ,且平面⊥1A AMN 平面11EB C F .(2)解:Q 三棱柱上下底面平行,平面11EB C F 与上下底面分别交于11B C ,EF ,∴11////EF B C BC ,//AO Q 面11EB C F ,⊂AO 面1A MNA ,面⋂1AMNA 面=11EB C F PN ,∴//AO PN ,四边形APNO 为平行四边形, O Q 是正三角形的中心,=AO AB ,∴=13A N ON ,=3AM AP ,===113PN BC B C EF ,由(1)知直线1B E 在平面1A AMN 内的投影为PN ,直线1B E 与平面1A AMN 所成角即为等腰梯形11EFC B 中1B E 与PN 所成角, 在等腰梯形11EFC B 中,令=1EF ,过E 作⊥11EH B C 于H , 则===113PN B C EH ,=11B H,=1B E∠==111sin B H B EH B E, ∴直线1B E 与平面1A AMN.例2.如图,在锥体−P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB,==PA PD =2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角−−P AD B 的余弦值.【解析】(1)取AD 的中点G ,连接PG ,BG ,在∆ABG 中,根据余弦定理可以算出==BG ,发现+=222AG BG AB ,可以得出⊥AD BG ,又//DE BG ∴⊥DE AD ,又=PA PD ,可以得出⊥AD PG ,而⋂=PG BG G , ∴⊥AD 平面PBG ,而⊂PB 平面PBG , ∴⊥AD PB ,又//PB EF , ∴⊥AD EF .又⋂=EF DE E , ∴⊥AD 平面DEF .(2)由(1)知,⊥AD 平面PBG ,所以∠PGB 为二面角−−P AD B 的平面角,在∆PBG 中,==PG ,=BG ,=2PB ,由余弦定理得+−∠==⋅222cos 2PG BG PB PGB PG BG ,因此二面角−−P AD B 的余弦值为.本课结束。
高中数学立体几何证明题汇总立体几何常考证明题1.已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点。
1)证明EFGH是平行四边形。
2)已知BD=23,AC=2,EG=2,求异面直线AC、BD所成的角和EG、BD所成的角。
2.如图,已知空间四边形ABCD中,BC=AC,AD=BD,E 是AB的中点。
1)证明AB垂直于平面CDE。
2)证明平面CDE垂直于平面ABC。
3.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
证明A1C平行于平面BDE。
4.已知三角形ABC中∠ACB=90,SA垂直于面ABC,AD垂直于SC。
证明AD垂直于面SBC。
5.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。
1)证明C1O平行于面AB1D1.2)证明AC1垂直于面AB1D1.6.正方体ABCD-A1B1C1D1中。
1)证明AC垂直于平面B1D1D。
2)证明BD1垂直于平面ACB1.7.正方体ABCD-A1B1C1D1中。
1)证明平面A1BD平行于平面B1DC。
2)已知E、F分别是AA1、CC1的中点,证明平面EB1D1平行于平面FBD。
8.四面体ABCD中,AC=BD,E、F分别为AD、BC的中点,且EF=AC/2,∠XXX。
证明BD垂直于平面ACD。
9.如图P是△ABC所在平面外一点,PA=PB,CB垂直于平面PAB,M是PC的中点,N是AB上的点,AN=3NB。
1)证明XXX垂直于AB。
2)当∠APB=90,AB=2BC=4时,求MN的长度。
10.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点。
证明平面D1EF平行于平面BDG。
11.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
1)证明A1C平行于平面BDE。
2)证明平面A1AC垂直于平面BDE。
12、已知矩形ABCD,PA垂直于平面ABCD,AB=2,PA=AD=4,E为BC的中点。
立体几何证明题精选1.在多面体中,矩形ABB1A1和ACC1A1,AC垂直于BC。
证明BC垂直于平面ACC1A1,同时在线XXX上存在一点M,使得DE与平面A1MC平行。
2.在三棱锥P-ABC中,D,E,F分别是棱PC,AC,AB 的中点。
已知PA垂直于AC,PA=6,BC=8,DF=5.证明PA 平行于平面DEF,同时平面BDE垂直于平面ABC。
3.在四棱锥P-ABCD中,AP垂直于平面PCD,AD平行于BC,AB和BC分别为线段AD和PC的中点。
证明AP平行于平面BEF,同时BE垂直于平面PAC。
4.在四棱锥P-ABCD中,底面ABCD是平行四边形,BA=BD=BC=1,AD=2,PA=PD=√5,E和F分别是棱AD和PC的中点。
证明EF平行于平面PAB,同时平面PBC垂直于平面ABCD。
5.在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB垂直于BC,AA1=AC=2,BC=1,E和F分别是A1C1和BC的中点。
证明平面ABE垂直于平面B1BCC1,C1F平行于平面ABE,同时求三棱锥E-ABC的体积。
6.在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,E为PD的中点。
证明PB平行于平面AEC,同时若AP=1,AD=3,则三棱锥P-ABD的体积为2/3,求A到平面PBC的距离。
7.在四棱锥中,平面ACD和平面ABD的交线为直线L,平面ABC和平面ACD的交线为直线M,平面ABC和平面ABD的交线为直线N,P为直线L上一点,Q为直线M上一点,R为直线N上一点,且PQR平行于平面ABCD,证明PR 平行于直线BD,同时求四面体PQRD的体积。
8.在长方体ABCD-A1B1C1D1中,底面A1B1C1D1为正方形,O为BD的中点,E为棱AA1上任意一点。
证明BD垂直于EC1,同时若AB=2,AE=2,OE垂直于EC1,则AA1的长度为2√2.。
高中数学第八章立体几何初步知识总结例题单选题1、如图,点N为正方形ABCD的中心,ΔECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案:B解析:利用垂直关系,再结合勾股定理进而解决问题.如图所示,作EO⊥CD于O,连接ON,过M作MF⊥OD于F.连BF,∵平面平面ABCD.EO⊥CD,EO⊂平面CDE,∴EO⊥平面ABCD,MF⊥平面ABCD,∴ΔMFB与ΔEON均为直角三角形.设正方形边长为2,易知EO=√3,ON =EN=2,MF=√32,BF=52,∴BM=√7.∴BM≠EN,故选B.CDE小提示:本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解. 由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则OʹAʹ=2√2,所以原图形中,OB=4,OA=4√2,故原平面图形的面积为1×4×4√2=8√2.2故选:A3、如图,用斜二测画法作水平放置的正三角形A1B1C1的直观图,则正确的图形是()A.B.C.D.分析:由斜二侧画法的规则分析判断即可先作出一个正三角形A1B1C1,然后以B1C1所在直线为x轴,以B1C1边上的高所在的直线为y轴建立平面直角坐标系,画对应的x′,y′轴,使夹角为45°,画直观图时与x轴平行的直线的线段长度保持不变,与y轴平行的线段长度变为原来的一半,得到的图形如图,然后去掉辅助线即可得到正三角形的直观图如图,故选:A4、下列空间图形画法错误的是()A.B.C.D.分析:根据空间图形画法:看得见的线画实线,看不见的线画虚线.即可判断出答案.D选项:遮挡部分应画成虚线.故选:D.5、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.6、已知三棱锥A−BCD的所有顶点都在球O的球面上,且AB⊥平面BCD,AB=2√3,AC=AD=4,CD= 2√2,则球O的表面积为()A.20πB.18πC.36πD.24π答案:A分析:根据AB⊥平面BCD,得到AB⊥BC,AB⊥BD,再由AB=2√3,AC=AD=4,CD=2√2,得到BC⊥BD,则三棱锥A−BCD截取于一个长方体,然后由长方体的外接球即为三棱锥的外接球求解.因为AB⊥平面BCD,所以AB⊥BC,AB⊥BD,∴BC=BD=√42−(2√3)2=2,在△BCD中,CD=2√2,∴CD2=BC2+BD2,∴BC⊥BD.如图所示:三棱锥A−BCD的外接球即为长方体AGFH-BCED的外接球,设球O的半径为R,则2R=√BA2+BC2+BD2=√(2√3)2+22+22=2√5,解得R=√5,所以球O的表面积为20π,故选:A.7、下列条件中,能得出直线m与平面α平行的是()A.直线m与平面α内的所有直线平行B.直线m与平面α内的无数条直线平行C.直线m与平面α没有公共点D.直线m与平面α内的一条直线平行答案:C分析:根据线面平行的判定,线面平行的性质逐个辨析即可.对A ,直线m 与平面α内的所有直线平行不可能,故A 错误;对B ,当直线m 在平面α内时,满足直线m 与平面α内的无数条直线平行,但m 与α不平行;对C ,能推出m 与α平行;对D ,当直线m 在平面α内时,m 与α不平行.故选:C.8、如图是长方体被一平面所截得到的几何体,四边形EFGH 为截面,长方形ABCD 为底面,则四边形EFGH 的形状为( )A .梯形B .平行四边形C .可能是梯形也可能是平行四边形D .矩形答案:B解析:利用面面平行的性质判断EF 与的平行、EH 与FG 平行.因为平面ABFE //平面CGHD ,且平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面CGHD =GH ,根据面面平行的性质可知EF //,同理可证明EH //FG .所以四边形EFGH 为平行四边形.故选:B.小提示:本题考查长方体截面形状判断,考查面面平行的性质应用,较简单.多选题9、(多选)一个几何体有6个顶点,则这个几何体可能是( )A .三棱柱B .三棱台C .五棱锥D .四面体答案:ABCGH GH分析:根据棱柱、棱台、棱锥及四面体的图形分析,即可得答案.对于A ,三棱柱是上下两个三角形,有6个顶点,满足题意;对于B ,三棱台是上下两个三角形,有6个顶点,满足题意;对于C ,五棱锥是底面为五边形及一个顶点,有6个顶点,满足题意;对于D ,四面体的顶点个数为4个,不满足题意.故选:ABC.10、我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( )A .半径是3B .体积为18πC .表面积为27πD .表面积为18π答案:ABC分析:作出正四棱锥的对角面,为半球的半个大圆的内接三角形,由图形可用球的半径表示出棱锥底面边长,高,由棱锥体积求得半球半径.然后计算半球体积,表面积,判断各选项.如图,是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,则正四棱锥底面边长为√2r ,棱锥体积为V =13×(√2r)2×r =23r 3=18,r =3, 半球体积为V =23πr 3=23π×33=18π,表面积为S =2π×32+π×32=27π,故选:ABC .11、如图,正方体ABCD −A 1B 1C 1D 1的棱长为1,则下列四个命题正确的是( )PAC △PAC△A.两条异面直线D1C和BC1所成的角为π4B.直线BC与平面ABC1D1所成的角等于π4C.点D到面ACD1的距离为√33D.三棱柱AA1D1−BB1C1外接球半径为√32答案:BCD分析:对于A:根据异面直线的求法易得:异面直线D1C和BC1所成的角为∠AD1C;对于B:可证B1C⊥平面ABC1D1,则直线BC与平面ABC1D1所成的角为∠CBC1;对于C:根据等体积转换V D−ACD1=V D1−ACD,求点D到面ACD1的距离;对于D:三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球,直接求正方体外接球的半径即可.连接AC、AD1∵AB∥C1D1且AB=C1D1,则四边形ABC1D1为平行四边形,∴异面直线D1C和BC1所成的角为∠AD1C∵AC=AD1=D1C,则△ACD1为正三角形,即∠AD1C=π3A不正确;连接B1C在正方形BB1C1C中,BC1⊥B1C∵AB⊥平面BB1C1C,B1C⊂平面BB1C1C∴AB⊥B1CAB∩BC1=B,则B1C⊥平面ABC1D1∴直线BC与平面ABC1D1所成的角为∠CBC1=π4 B正确;根据等体积转换可知:V D−ACD1=V D1−ACD即13×ℎ×12×√2×√2×√32=13×1×12×1×1,则ℎ=√33C正确;三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球则外接球的半径即为正方体ABCD−A1B1C1D1体对角线的一半,即R=√32D正确;故选:BCD.12、如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB,记三棱锥E−ACD,F−ABC,F−ACE的体积分别为V1,V2,V3,则()A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1答案:CD分析:直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=V A−EFM+V C−EFM计算出V3,依次判断选项即可.设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.13、正三棱锥底面边长为3,侧棱长为2√3,则下列叙述正确的是()A.正三棱锥高为3B.正三棱锥的斜高为√392C.正三棱锥的体积为27√34D.正三棱锥的侧面积为9√394答案:ABD分析:先求出正三棱锥的高和斜高,从而可判断AB的正误,再计算出体积和侧面积,从而可判断CD的正误.设E为等边三角形ADC的中心,F为CD的中点,连接PF,EF,PE,则PE为正三棱锥的高,PF为斜高,又PF=√12−94=√392,EF=32×√33=√32,故PE=√394−34=3,故AB正确.而正三棱锥的体积为13×3×√34×9=9√34,侧面积为3×12×3×√392=9√394,故C错误,D正确.故选:ABD.填空题14、如图,在棱长为2的正方体ABCD−A1B1C1D1中,P为线段A1B上的动点(不含端点),则下列结论正确的是____.①平面A 1D 1P ⊥平面BB 1P ;②DC 1⊥PC ;③∠APD 1的取值范围是[π2,π); ④三棱锥C 1−D 1PC 的体积为定值43.答案:①②④分析:由正方体的特征知A 1D 1⊥平面AA 1B 1B ,DC 1⊥对角面A 1BCD 1,由面面垂直的判定和线面垂直的性质可知①②正确;当点P 为线段A 1B 的一个四等分点且靠近点B 时,由长度关系可求得cos∠APD 1>0,知③错误;由体积桥和三棱锥体积公式可确定④正确.对于①,∵几何体是正方体,∴A 1D 1⊥平面AA 1B 1B ,又A 1D 1⊂平面A 1D 1P ,∴平面A 1D 1P ⊥平面BB 1P ,①正确;对于②,在正方体ABCD −A 1B 1C 1D 1中,DC 1⊥对角面A 1BCD 1,对角面A 1BCD 1,∴DC 1⊥PC ,②正确;对于③,当点P 为线段A 1B 的一个四等分点且靠近点B 时,可得:AP =√102,D 1P =√342,AD 1=2√2,由余弦定理得:cos∠APD 1=AP 2+D 1P 2−AD 122AP⋅D 1P =52+172−82×√102×√342=√85>0,此时∠APD 1<π2,③错误; 对于④,∵△D 1C 1C 的面积是定值S =12×2×2=2,点P 到面D 1C 1C 的距离为BC =2,∴三棱锥C 1−D 1PC的体积V =13×2×2=43,④正确. PC所以答案是:①②④.15、如图,在正方体中,A 、B 、C 、D 分别是顶点或所在棱的中点,则A 、B 、C 、D 四点共面的图形______(填上所有正确答案的序号).答案:①③④分析:四点共面主要通过证明两线平行说明,本题利用中位线、平行四边形的性质结合平行线的传递性进行说明,证明平行时绝不能凭直观感觉或无理论依据.图①:证明AB ∥EF ,CD ∥EF ,可得AB ∥CD ;图③:证明BD ∥EF ,AC ∥EF ,可得BD ∥AC ;图④:证明GH ∥EF ,AC ∥EF , BD ∥GH ,可得BD ∥AC .图①:取GD 的中点F ,连结BF 、EF ,∵B 、F 均为相应边的中点,则:BF ∥HG又∵HG ∥,则BF ∥即ABFE 为平行四边形∴AB ∥EF同理: CD ∥EF则AB ∥CD 即A 、B 、C 、D 四点共面,图①正确;图②:显然AB 与CD 异面,图②不正确;AEAE图③:连结AC,BD,EF,∵BE∥DF即BDFE为平行四边形∴BD∥EF又∵A、C分别为相应边的中点,则AC∥EF∴BD∥AC即A、B、C、D四点共面,图③正确;图④:连结AC,BD,EF,GH,∵GE∥HF即GEFH为平行四边形,则GH∥EF又∵A、C分别为相应边的中点,则AC∥EF同理:BD∥GH∴BD∥AC即A、B、C、D四点共面,图④正确.所以答案是:①③④.16、一个正四棱柱的底面边长为2,高为4,则该正四棱柱的体积为________.答案:16分析:根据棱柱的体积公式直接计算即可.由题可得该正四棱柱的体积为2×2×4=16.所以答案是:16.解答题17、在正方体ABCD—A1B1C1D1中,E是棱BB1的中点.(1)求证:B1D∥平面ACE.(2)若F是棱CC1的中点,求证:平面B1DF∥平面ACE.答案:(1)证明见解析(2)证明见解析分析:(1)连BD,使BD∩AC=G,连EG,由中位线定理以及线面平行判定定理证明即可;(2)证明B1F∥平面ACE,结合B1D∥平面ACE,利用面面平行判定定理证明即可.(1)连BD,使BD∩AC=G,连EG.∵ABCD是正方形,BD∩AC=G,∴DG=BG.又∵E是BB1中点,∴B1E=BE,∴DB1∥GE,又DB1⊄平面ACE,GE⊂平面ACE,∴B1D∥平面ACE.(2)∵E是棱BB1的中点,F是棱CC1的中点.∴B1E∥CF且B1E=CF,∴四边形B1ECF是平行四边形,∴B1F∥CE,又∴B1F⊄平面ACE,CE⊂平面ACE,∴B1F∥平面ACE,由(1)B1D∥平面ACE,又∵DB1∩B1F=B1,∴平面B1DF∥平面ACE.18、用符号表示下列语句,并画出图形.(1)平面α与β相交于直线l,直线a与α,β分别相交于点A,B;(2)点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB上.答案:(1)α∩β=l,a∩α=A,a∩β=B;图象见解析;(2)A∈α,B∈α,a∩α=C,C∉AB;图象见解析分析:由题意将自然语言转化为符号语言,根据点线面的关系,借用集合符号,表示即可.(1)用符号表示:α∩β=l,a∩α=A,a∩β=B,如图.(2)用符号表示:A∈α,B∈α,a∩α=C,C∉AB,如图.小提示:本题主要考查点、线、面的关系的符号表达,属于基础题.。
高中立体几何典型500题及解析(一)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C分别作两条与二面角的交线垂直的线,则∠1和∠2分别为直线AB 与平面,αβ所成的角。
根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共..面.的一个图是PPQQRSSPPPQQRR RSSSPP PQQQ R RS SS PP Q QR RRSS(A ) (B ) (C ) (D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。
3. 有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。
B 项:如正方体的一个角,三个平面互相垂直,却两两相交。
C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。
5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。
FEDCBA立体几何专题复习热点一:直线与平面所成的角例1.〔2021,广二模理 18〕 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,3AE =.〔1〕求证:AB ⊥平面BCF ;〔2〕求直线AE 与平面BDE 所成角的正切值.变式1:〔2021湖北8校联考〕如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC ===2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,︒如右图. (1)求证:AE ⊥平面;BDC(2)求直线AC 与平面ABD 所成角的余弦值.变式2:[2021·福建卷] 在平面四边形中,===1,⊥,⊥.将△沿折起,使得平面⊥平面,如图15所示.(1)求证:⊥;(2)假设M为中点,求直线与平面所成角的正弦值.热点二:二面角例2.[2021·广东卷] 如图14,四边形为正方形,⊥平面,∠=30°,⊥于点F,∥,交于点E.(1)证明:⊥平面;(2)求二面角DE的余弦值.变式3: [2021·浙江卷] 如图15,在四棱锥A中,平面⊥平面,∠=∠=90°,==2,==1,=.(1)证明:⊥平面;(2)求二面角BE的大小.变式4:[2021·全国19] 如图11所示,三棱柱A1B1C1中,点A1在平面内的射影D在上,∠=90°,=1,=1=2.(1)证明:1⊥A1B; (2)设直线1与平面1B1的距离为,求二面角A1的大小.热点三:无棱二面角例3.如图三角形与三角形都是边长为2的正三角形,平面⊥平面,⊥平面,3AB〔1〕求点A到平面的距离;〔2〕求平面与平面所成二面角的正弦值.变式5:在正方体1111ABCD A B C D -中,1K BB ∈,1M CC ∈,且,. 求:平面与所成角的余弦值.变式6:如图1111ABCD A B C D -是长方体,=2,11AA AD ==,求二平面1AB C 与1111A B C D 所成二面角的正切值.高考试题精选1.[2021·四川,18] 三棱锥A及其侧视图、俯视图如图14所示.设M,N分别为线段,的中点,P为线段上的点,且⊥.(1)证明:P是线段的中点;(2)求二面角A M的余弦值.2.[2021·湖南卷] 如下图,四棱柱A1B1C1D1的所有棱长都相等,∩=O,A1C1∩B1D1=O1,四边形1A1和四边形1B1均为矩形.(1)证明:O1O⊥底面;(2)假设∠=60°,求二面角C11D的余弦值.3.[2021·江西19] 如图16,四棱锥P中,为矩形,平面⊥平面.(1)求证:⊥.(2)假设∠=90°,=,=2,问为何值时,四棱锥P的体积最大?并求此时平面与平面夹角的余弦值.立体几何专题复习 答案例1.〔2021,广二模〕〔1〕证明:取AB 的中点M ,连接EM ,那么1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB .……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形.……………2分 ∴EM ∥FB ,EM FB =. 在△BFC 中,2224FB FC BC +==,又FB FC =,得FB = ∴EM =……………3分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥.……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形, ∴AB BC ⊥.……………5分∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF , ∴AB ⊥平面BCF .……………6分〔2〕证法1:连接AC ,AC 与BD 相交于点O ,那么点O 是AC 的中点,M OHFEDCBA取BC 的中点H ,连接,OH EO ,FH , 那么OH ∥AB ,. 由〔1〕知EF ∥AB ,且, ∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==.……………7分 由〔1〕知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥. ……………8分 ∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD , ∴EO ⊥AO .……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD .……………11分∴AEO ∠是直线AE 与平面BDE 所成的角.……………12分 在△AOE 中,.……………13分 ∴直线AE 与平面BDE (14)分证法2:连接AC ,AC 与BD 相交于点 取BC 的中点H ,连接,OH EO , 那么OH ∥AB ,.由〔1〕知EF ∥AB ,且, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==.……………7分 由〔1〕知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥. ∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD .……………8分以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴,建立空间直角坐标系H xyz -,那么()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -.∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--.……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,那么平面BDE 的一个法向量为=n ()1,1,0-.……………10分设直线AE 与平面BDE 所成角为θ, 那么sin θ=cos ,n AE.……………11分∴cos θ==,.……………13分∴直线AE 与平面BDE .……………14分变式1:〔2021湖北8校联考〕〔1〕取BD 中点F ,连结,EF AF ,那么11,,60,2AF EF AFE ==∠=……………2分由余弦定理知222360,2AE AF EF AE AE EF==+=∴⊥………4分又BD ⊥平面AEF ,,BD AE AE ∴⊥⊥平面BDC ………6分 〔2〕以E 为原点建立如图示的空间直角坐标系,那么,11(1,,0),(1,,0)22B D ---………8分 设平面ABD 的法向量为n (,,)x y z =, 由得,取z ,那么3,(0,y =-∴=-n .13(1,,),cos ,224||||AC AC AC AC =--∴<>==-n n n 11分故直线AC 与平面ABD . …………12分变式2:〔2021福建卷〕解:(1)证明:∵平面⊥平面,平面∩平面=,⊂平面,⊥,∴⊥平面.…………3分 又⊂平面,∴⊥.…………4分 (2)过点B 在平面内作⊥.由(1)知⊥平面,⊂平面,⊂平面,∴⊥,⊥.……6分以B 为坐标原点,分别以,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如下图).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),.那么=(1,1,0),=,=(0,1,-1).…………7分 设平面的法向量n =(x 0,y 0,z 0),那么即取z 0=1,得平面的一个法向量n =(1,-1,1).…………9分 设直线与平面所成角为θ, 那么θ===.…………11分即直线与平面所成角的正弦值为.…………12分例2.〔2021,广东卷〕:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CDDE CF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴⋅=====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠===12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DFCF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,4||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为变式3:〔2021浙江卷〕解:(1)证明:在直角梯形中,由==1,=2,得==, 由=,=2, 得2=2+2,即⊥.…………2分 又平面⊥平面,从而⊥平面,所以⊥.又⊥,从而⊥平面.…………4分 (2)方法一:过B 作⊥,与交于点F ,过点F 作∥,与交于点G ,连接.由(1)知⊥,那么⊥.所以∠是二面角B E 的平面角.…………6分在直角梯形中,由2=2+2,得⊥.又平面⊥平面,得⊥平面,从而⊥.由⊥平面,得⊥. 在△中,由=2,=,得=.在△中,由=1,=,得=.…………7分 在△中,由=,=2,=,得=,=.从而==.…………9分在△,△中,利用余弦定理分别可得∠=,=.…………11分 在△中,∠==.…………13分所以,∠=,即二面角B E 的大小是.14分方法二:以D 为原点,分别以射线,为x ,y 轴的正半轴,建立空间直角坐标系D ,如下图.由题意知各点坐标如下:D(0,0,0),E(1,0,0),C(0,2,0),A(0,2,),B(1,1,0).设平面的法向量为m=(x1,y1,z1),平面的法向量为n=(x2,y2,z2).可算得=(0,-2,-),=(1,-2,-),=(1,1,0).…………7分由即可取m=(0,1,-).…………9分由即可取n=(1,-1,).…………11分于是〈m,n〉|===.…………13分由题意可知,所求二面角是锐角,故二面角BE的大小是.…………14分变式4:〔2021全国卷〕19.解:方法一:(1)证明:因为A1D⊥平面,A1D⊂平面C,故平面1C1C⊥平面.又⊥,所以⊥平面1C1C.1C1连接A1C,因为侧面1C1C为菱形,故1⊥A1C.由三垂线定理得1⊥A1B.……4分〔注意:这个定理我们不能用〕(2)⊥平面1C1C,⊂平面1B1,故平面1C1C⊥平面1B1.作A1E⊥1,E为垂足,那么A1E⊥平面1B1.…………6分又直线1∥平面1B1,因而A1E为直线1与平面1B1的距离,即A1E=.因为A1C为∠1的平分线,所以A1D=A1E=.…………8分作⊥,F为垂足,连接A1F.由三垂线定理得A1F⊥,故∠A1为二面角A1C的平面角.…………10分由=-A1D2)=1,得D为中点,=,∠A1==,……12分所以∠A1=.…………13分所以二面角A1C的大小为.…………14分方法二:以C为坐标原点,射线为x轴的正半轴,以的长为单位长,建立如下图的空间直角坐标系C.由题设知A1D与z轴平行,z轴在平面1C1C内.(1)证明:设A1(a,0,c).由题设有a≤2,A(2,0,0),B(0,1,0),那么=(-2,1,0),=(-2,0,0),=(a-2,0,c=+=(a-4,0,c),=(a,-1,c).由|=2,得=2a2-4a+c2=0.①又·=a2-4a+c2=0,所以1⊥A1B.…………4分(2)设平面1B1的法向量m=(x,y,z),那么m⊥,m⊥,即m·=0,m·=(0,1,0),==(a-2,0,c),所以y=0且(a-2)x+=0.令x=c,那么z=2-a,所以m=(c,0,2-a),故点A到平面1B1的距离为|·〈m,〉|===c.…………6分又依题设,A到平面1B1的距离为,所以c=,代入①,解得a=3(舍去)或a=1,于是=(-1,0,).…………8分设平面1的法向量n=(p,q,r),那么n⊥,n⊥,即n·=0,n·=0,-p+r=0,且-2p+q=0.令p =,那么q =2,r =1,所以n =(,2,1).…………10分 又p =(0,0,1)为平面的法向量,…………11分 故〈n ,p 〉==.…………13分所以二面角A 1C 的大小为.…………14分例3. 无棱二面角〔2021年江西卷〕 解法一:〔1〕取中点O ,连,,那么⊥,⊥.又平面MCD ⊥平面BCD ,那么⊥平面BCD ,所以∥,A 、B 、O 、M 共面.延长、相交于E ,那么∠就是与平面3∥,面,M 、O到平面的距离相等,作⊥于H ,连,那么⊥,求得: 60315,利用体积相等得:215A MBC M ABC V V d --=⇒=。
高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。
解析1. 连接AC。
- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。
2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。
- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。
- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。
- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。
题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。
解析1. 连接BC_{1},交B_{1}C于点E。
- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。
2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。
- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。
- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。
二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。
解析1. 连接AC,BD交于点O,连接PO。
- 因为底面ABCD是正方形,所以O为AC,BD中点。
- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。
- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。
- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。
- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。
立体几何证明题简单全文共四篇示例,供读者参考第一篇示例:立体几何学是几何学的一个分支,主要研究三维空间的图形与性质。
在解决立体几何证明题时,我们需要运用一定的空间想象能力和逻辑推理能力。
下面我们将介绍一些简单的立体几何证明题,并给出详细的解答过程。
第一个题目:证明一个正方体的对角线可以长出来。
正方体是一个六个面都是正方形的立体图形,我们知道正方体的对角线是由相对的顶点连接而成的一条线段。
我们可以通过勾股定理来证明正方体的对角线可长出来。
解答:设正方体的边长为a,则正方体的对角线长度为√(a^2 + a^2) = √2a,而正方体的对角线长短并不相等,证明正方体的对角线可长出来。
第二个题目:证明一个棱台的棱台截面是一个梯形。
棱台是一个底面为多边形,顶面为一个平行于底面的多边形的立体图形,我们知道棱台截面是由截面平行于底面的直线与顶部多边形的边相交而成的。
解答:设底面为多边形ABCD,顶面为多边形EFGH,棱台的高为h,取一个截面平行于底面ABCD的平面,与顶部多边形的边EF相交于点I,与底面多边形的边BC相交于点J,则可以得到梯形ABFE。
通过勾股定理可以证明I到J的距离小于EF,即梯形ABFE的底边小于顶边,证明棱台的棱台截面是一个梯形。
通过以上两个例子,我们可以看到在解决立体几何证明题时,我们需要灵活运用几何相关知识,尤其是勾股定理、相似三角形等几何常识。
细心观察图形的结构和特点也是解决立体几何证明题的关键。
希望通过这些简单的例子,能够帮助读者更加深入地理解立体几何的相关知识。
第二篇示例:立体几何学是数学中的一个重要分支,主要研究空间内图形的性质、相互关系和计算方法。
在立体几何学中,经常需要进行证明题,通过证明来说明一些规律和性质。
本文将介绍一些关于立体几何证明题的简单例题,帮助读者更深入理解立体几何学的知识。
1.证明空间内一条直线与一个平面的交点不唯一证明:假设在空间内有一条直线l和一个平面P,直线l与平面P 有两个交点A和B。
1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F 。
求证:EF ∥平面ABCD 。
证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN 。
∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN .又∵B 1E =C 1F ,∴EM =FN ,故四边形MNFE 是平行四边形,∴EF ∥MN 。
又MN ⊂平面ABCD ,EF ⊄平面ABCD , 所以EF ∥平面ABCD 。
方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则BB G B AB E B 1111=,∵B 1E =C 1F ,B 1A =C 1B , ∴BB G B BC E C 1111=,∴FG ∥B 1C 1∥BC ,又EG ∩FG =G ,AB ∩BC =B ,∴平面EFG ∥平面ABCD ,而EF ⊂平面EFG , ∴EF ∥平面ABCD .2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心。
(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △321G G G ∶S △ABC .(1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F ,连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内,∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC 。
又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC 。
(2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE 。
1.空间角与空间距离在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。
2.立体几体的探索性问题立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。
近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。
对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。
对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。
(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1.线线、线面、面面平行关系的转化:面面平行性质α//βαI γ=a ,βI γ⎫⎬⇒a =b ⎭//baa //b⎫⎬ba ⊄α,b ⊂α⎭α⇒a //αa ⊂α,b ⊂αAb a I b =Aαaa //β,b //ββ⎫⎪⎬⎪⎭(a//b,b//c线线∥⇒a //c)公理4线面平行判定线面平行性质线面∥⇒α//β面面平行判定1面面∥面面平行性质面面平行性质1α//γ⎫β//γ⎭⎫⎪a ⊂β⎬αI β=b ⎪⎭a //α⇒a //bα//β⎫a ⊂α⎭⎬⎬⇒α//β⇒a //β2.线线、线面、面面垂直关系的转化:⎫⎪a Ib =O ⎬l ⊥a ,l ⊥b ⎪⎭a ,b ⊂α⇒l ⊥α⎫⎬⇒α⊥βa ⊂β⎭a ⊥α面面⊥三垂线定理、逆定理线线⊥PA ⊥α,AO 为PO 在α内射影a ⊂α则a ⊥OA ⇒a ⊥PO a ⊥PO ⇒a ⊥AOl ⊥α线面垂直判定1线面垂直定义线面⊥α⊥β面面垂直判定面面垂直性质,推论2⎫⎬a ⊂α⎭⇒l ⊥a⎫⎪αI β=b ⎬⇒a ⊥αa ⊂β,a ⊥b ⎪⎭α⊥γβ⊥γαI β⎫⎪⎬⇒a ⊥γ=a ⎪⎭面面垂直定义αI β=l ,且二面角α-l -β⎫成直二面角⎬⇒α⊥β⎭3.平行与垂直关系的转化:a //b ⎫a ⊥αa ⊥α⎫⇒b ⊥αa⎬⎭⎬⇒αa ⊥β⎭//β线线∥线面垂直判定2线面垂直性质2a ⊥α⎫线面⊥面面平行判定2面面平行性质3面面∥⎬⇒a //b b ⊥α⎭α//β⎫a ⊥α⎬a ⊥β⎭4.应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
考点:线面垂直,面面垂直的判定
2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
求证:(1)⊥AB 平面CDE;
(2)平面CDE ⊥平面ABC 。
考点:线面平行的判定
3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。
考点:线面垂直的判定
4、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .
考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.
求证:(1) C 1O ∥面11AB D ;(2)1
AC ⊥面11AB D .
考点:线面垂直的判定
A
E
D 1
C
B 1
D
C
B
A
S
D
C
B
A
D 1O
D
B A
C 1
B 1
A 1
C
N
M
P
C
B
A
6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面.
考点:线面平行的判定(利用平行四边形)
7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .
考点:线面垂直的判定,三角形中位线,构造直角三角形
8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2
2
EF AC =
, 90BDC ∠=,求证:BD ⊥平面ACD
考点:三垂线定理
9、如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,
3AN NB = 求证:MN AB ⊥;(2)当90APB ∠=,24AB BC ==时,求MN 的长。
考点:线面平行的判定(利用三角形中位线)
10、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、
AD
、
A 1
A
B 1
C 1
C D 1
D G E
F
11C D 的中点.求证:平面1D EF ∥平面BDG .
考点:线面平行的判定(利用三角形中位线),面面垂直的判定 11、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE .
考点:线面垂直的判定,构造直角三角形
12、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.
(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.
考点:线面垂直的判定,运用勾股定理寻求线线垂直
14、在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,
求证:1
AO 平面MBD .
考点:线面垂直的判定
15、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H. 求证:AH ⊥平面BCD .
考点:线面垂直的判定,三垂线定理
16、证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1D
考点:面面垂直的判定(证二面角是直二面角) 17、如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC .
D 1 C 1
A 1
B 1 D
C A B。