悬臂式支护结构
- 格式:pptx
- 大小:361.20 KB
- 文档页数:33
悬臂支护结构设计计算书计算依据:1《建筑基坑支护技术规程》JGJ120-20122、《建筑施工计算手册》江正荣编著3、《实用土木工程手册》第三版杨文渊编著4、《施工现场设施安全设计计算手册》谢建民编著5、《土力学与地基基础》、参数信息1基本参数2、土层参数3、荷载参数4、计算系数、土压力计算土压力分布示意图P ak3下 2) 土压力、地下水产生的水平荷载第 1 层土: 0-0.8mH 1'=[ Z 0Y +Xq / i =[0+3]/19=0.158mP ak1 上=Y 1H 1'K a1-2c 1K a10.5=19X).158 &656-2 WX).6560'5=-14.229kN/m 2P ak1 下=¥(h 1+HT)K a1-2c 1K a10.5=19X(0.8+0.158) 0.656-2 WX).656D '5=-4.258kN/m 2 第2层土: 0.8-2mH 2'=[ Z3h 1+Xq / sati =[15.2+3]/20=0.91mP ak2上 = Y sat2H 2'K a2-2c 2K a20.5=20X).91 6.656-2 6 >0.6560.5=-4.26kN/m 2P ak2下 = Y sat2(h 2+H 2')K a2-2c 2K a20.5=2061.2+0.91) 0656-2 10>0.6560.5=11.484kN/m 2 第 3层土: 2-4mH 3'=[ E 2 陀+刀列/ sati =[39.2+3]/22=1.918mP ak3 上=[sat3H 3'- Y W ( Eh -h a )]K a3-2c 3K a30.5+ 佩 Eh -h a )=[22 6.918-10 6-0.8)] 0628-2 >».5280.5+ 10>2-0.8)=6.144kN/m 21) 主动土压力系数K ai =tan 2(45 ° 如/2) K a2=tan 2(45 ° 他/2) K a3=tan 2(45 ° 招/2) K a4=tan 2(45 ° 松/2) =tan 2(45-12/2)=0.656;=tan 2(45-12/2)=0.656;=tan 2(45-18/2)=0.528;=tan 2(45-18/2)=0.528;附加荷载布置图1主动土压力计算=[Y at3(H3'+h3)- Y( Xh-h a)]K a~2c3K a3°.5+Y(Xh-h a)=[22 ^1.918+2)-10 (4-0.8)] 0.^528-215 >0.5280.5+10 -4-0.8)=38.816kN/m2第4层土:4-5.5mH4'=[ 2h s+Xq+Xq1b1/(b1+2a1)]/ s Y=[83.2+3+1.167]/22=3.971mP ak4 上=[Y at4H4'-Y(Xh-h a)]K a4-2c4K a40.5+Y(Eh-h a)=[22 -.971-10 (4-0.8)] 0-28-2 -5 X}.5280.5+10 -(4-0.8)=39.432kN/m2P ak4下=[Y at4(H4'+h4)- Y( Xh-h a)]K a牛2c4K a40.5+Y( IEi3-h a)=[22 -3.971+1.5)-10 (5--0.8)] 0.528-2 - 15-0.5280.5+10-(5.5-0.8)=63.936kN/m23) 水平荷载临界深度:Z0=P ak2下h2/(P ak2上+ P ak2下)=11.484 -2/(4.26+11.484)=0.875m;第1层土E ak1=0kN ;第2层土E ak2=0.5P ak2下Z0b a=0.5 -1.484 -.875 2.5=2.512kN;a a2=Z0/3+Xh=0.875/3+3.5=3.792m;第3层土E ak3=h3(P a3上+P a3下)b a/2=2 -(6.144+38.816) 0.5/2=22.48kN;a a3=h 3(2P a3上+P a3 下)/(3P a3 上+3P a3Xh=2-(2 -6.144+38.816)/(3 6.144+3 38.816)+1.5=2.258m;下)+第4层土E ak4=h4(P a4上+P a4下)b a/2=1.5 (39.432+63.936) 0.5/2=38.763kN;a a4=h4(2P a4上+P a4 下)/(3P a4 上+3P a4;下)=1.5 (2 39.432+63.936)/(3 39.432+3 63.936)=0.691m土压力合力:E ak=艺E ki=0+2.512+22.48+38.763=63.755kN;合力作用点:a a=艺0E aki)/E ak=(0 -0+3.792 2.512+2.258 22.48+0.691 38.763)/63.755=1.366m;2、被动土压力计算1)被动土压力系数K pi=tan2(45 ° +i/2) = tan2(45+18/2)=1.894;K p2=tan2(45 ° +2/2)= tan2(45+18/2)=1.894;2) 土压力、地下水产生的水平荷载第1层土: 2.5-3.7mH i'=[ UY" i=[0]/2仁OmP pki上=¥H I'K PI+2C I K PI0.5=21 >0X1.894+2 X5X1.8940.5=41.287kN/m2P pki下=Y(h什H1')K p1+2c1K p10.5=21X(1.2+O) >894+2 X5X.8940.5=89.O16kN/m2 第2层土:3.7-5.5mH2'=[刃Y]/ Y i=[25.2]/22=1.145mP pk2上=[Y t2H2'-Y(Xh h p)]K p2+2c2K p20.5+Y(E h-h p)=[22 X.145-10 >.2-1.2)] 1.894+2 >5X1.8940.5+10X(1.2-1.2)=88.997kN/m2P pk2下=[Y t2(H2'+h2)- Y( Xh h p)]K p2+2c2K p20.5+Y( E h-h p)=[22 >.145+1.8)-10 (3X.2)] 1 .X94+2 X15 %.8940.5+10 X:3-1.2)=147.907kN/m23) 水平荷载第1层土E pk1=b a h1(P p1 上+P p1 下)/2=0.5 1 左辎1.287+89.016)/2=39.091kN;a p1=h1(2P p1上+P p1下)/(3P p1 上+3P p1Xh=1.2 >(2 >41.287+89.016)/(3 41.287+3 89.016)+1.8=2.327m;下)+第2层土E pk2=b a h2(P p2上+P p2下)/2=0.5 1出忍8.997+147.907)/2=106.607kN;a p2=h2(2P p2上+P p2下)/(3P p2 上+3P p2;下)=1.8 (2 >88.997+147.907)/(3 8X997+3 >147.907)=0.825m土压力合力:E pk=2Epki=39.091+106.607=145.698kN;合力作用点:印=艺(aE pki)/E pk=(2.327 39.091+0.825 1%6.607)/145.698=1.228m3、基坑内侧土反力计算1 )主动土压力系数K ai=tan2(45 ° 曲/2) = tan2(45-18/2)=0.528;K a2=tan2(45 ° 竝/2) = tan2(45-18/2)=0.528;2)土压力、地下水产生的水平荷载第1层土: 2.5-3.7mH1'=[ Z0Y]/ i=[0]/2仁0mP sk1 上=(0.2 #-©1+c1) X0(1-Xh/|d) u b+u1H1'K a1=(0.2 W2-18+15) ^1-0/3) 0.012/0.012+21 0X 0.528=0kN/m2P sk1 下=(0.2 #-©1+C1)E1(1-Eh1/l d) u b+Y(h1+H1')K a1=(0.2 182-18+15) *2 (1-1.2/3) 0.012/0.01 2+21X(0+1.2) X28=57.802kN/m2第2层土: 3.7-5.5mH2'=[ Z3Y]/ Y i=[25.2]/22=1.145mP sk2上=(0.2 彳-竝+C2)E1(1-Eh1/l d) u b+u Y at2H2'- Y( X1-h p)]K p2+Y(E h-h p)=(0.2 X2-18+15) X2 X(1-1.2/3) 12/12+[22 X145-10 (1.2-1.2)] 0.528+10 (1.2-1.2)=57.796kN/m2 P sk2下=(0.2 #-^2+C2)X2(1-Xh l d) u b+[ Y at2(H2'+h2)- Y( Xh h p)]K p2+Y(Xh-h p)=(0.2 182-18+15)2X3X(1-3/3) 1X2/12+[22 X(1.145+1.8)-10 (3X-1.2)] 0.X528+10 X(3-1 .2)=42.705kN/m23)水平荷载第1层土P sk1=b0h1(P s1上+P s1 下)/2=0.5 1疋X0+57.802)/2=17.341kN;a s仁h1(2P s1上+P s1 下)/(3P s1 上+3P s1 下)+ El?=1.2 X2 X+57.802)/(3 0+3X)7.802)+1.8=2.2m;第2层土P sk2=b0h2(P s2上+P s2下)/2=0.5 1 左隹7.796+42.705)/2=45.225kN;a s2=h2(2P s2上+P s2 下)/(3P S2上+3P S2X796+3 >42.705)=0.945m;下)=1.8 (2 >57.796+42.705)/(3 5土压力合力:P pk=艺Ppki=17.341+45.225=62.566kN;合力作用点:a s= 2a Si P ski)/P pk=(2.2 17.341+0.945 45.225)/62.566=1.293m;P sk=62.566kN <p=145.698kN满足要求!三、稳定性验算1、嵌固稳定性验算E pk a pl/(E ak a al)=145.698 X 1.228/(63.755 X 1.366)=2.0542 >K满足要求!K si =E{cl j+[(q j b j+AG)cos 诃讪]tan j}/ 刀(b+AG j)sin 0c j、审一第j土条滑弧面处土的粘聚力(kPa)、内摩擦角(° b j―第j 土条的宽度(m); 0—第j土条滑弧面中点处的法线与垂直面的夹角();l j—第j土条的滑弧段长度(m),取l j = b j/cos j0q j―用在第j土条上的附加分布荷载标准值(kPa);△ G—第j 土条的自重(kN),按天然重度计算;u j―^第j 土条在滑弧面上的孔隙水压力(kPa),采用落底式截水帷幕时,对地下水位以下的砂土、碎石土、粉土,在基坑外侧,可取U j = Y h waj,在基坑内侧,可取U j = Y h wpj ;滑弧面在地下水位以上或对地下水位以下的粘性土,取U j = 0;Y~下水重度(kN/m3);h waj 坑外侧第j 土条滑弧面中点的压力水头(m);h wpj― 坑内侧第j土条滑弧面中点的压力水头(m);min{ K si ,K s2 ,.... ,K si, .... }=1.741 >K1.3满足要求!3、渗透稳定性验算渗透稳定性简图承压水作用下的坑底突涌稳定性验算:D T g) = Xh/(h w Y)=(3.5 21)/(6 10)=1.22502D 丫 /(h Y ) =1.225 为K .1满足要求!四、结构计算1、材料参数 钢桩类型槽钢 钢桩型号 20a 号槽钢 钢材的惯性矩l(cm 4)1780.4 钢材的截面抵抗矩W(cm 3) 178 钢材的弹性模量E(N/mm 2) 20600 钢材的抗弯强度设计值f(N/mm 2)205 钢材的抗剪强度设计值 T (N/mn ?)125 材料截面塑性发展系数 Y 1.052、支护桩的受力简图38.7 EkN22.48kN 251kN“ ⑴4&23kN17.34kN 550CL计算简图14.917弯矩图(kN m)M k =14.917kN.m224 993 49 749 R- 戈剪力图(kN)V k=37.58kN3、强度设计值确定M=Y O Y M k=ixi.25 X4.917=18.646kN mV=Y O Y V k=ixi.25 87.58=46.975kN4、材料的强度计算omax=M/( Y W)=18.646 X610.O5 1>78 X03)=99.765N/mm2< [f]=205N/mm2满足要求!b'=(hb2-(b-t w)2(h-2t))/(2(hb-(b-t w)(h-2t))=(200 73*(73-7)2(200-2 *1))/(2(200 73-(73-7)(200 -2 >11))=51mmS=t(b-b')2=11 ><73-51)2=5324mm3,T ax=VS/lt=46.975 5824X03/(1780.4 104^1)=1.277N/mm2< [f]=125N/mm?满足要求!02。
深基坑支护措施的六种分类一、基坑支护体系的可以选择原则基坑掘进体系一般包括其余部分两部分;指十体系和止水降水体系。
基坑支护结构一般要承受上和水压力,起到挡土和挡水的催化作用。
一般情况下支护结构和止水帷幕共同形成止水体系,但还有两种情况;一种是止水帷幕自成止水体系,另一种是支护本身也起拉开帷幕止水帷幕的作用。
要合理选择基坑支护的类型,一方而要深刻了解各种支护型式的切身感受类型,包括其合理性、优点和缺点,另—方面要结合地质条件利周边的环境及工程造价讲行综合考虑。
二、常用支护结构特性及适用范围常见的基坑支护结构型式主要可以分为放坡开挖、土钉支护结构、悬臂式支护结构、水泥土重力式围护结构、内撑式支护结构、拉锚式支护结构等。
(一)放坡开挖特性及使用范围放坡压挖是选择合理的基坑边坡以保证在开挖投资过程中边坡的稳定性,包括坡面的自立性和路基整体稳定性。
放坡取土费用较低,但挖土及回填土方量较大。
放坡明订于场地开阔,地基土质较好,开挖深度不深的工程。
为了增加基坑边坡的整体稳定性,减少开挖及回填的正下方量,在放坡过程中,常采用简单的简支梁形式。
(二)土钉支护结构物理性质及使用范围上钉支护的机制可理解为通过在基坑边坡中设置土钉,已经形成加筋重力式挡墙,起到挡土作用。
土钉支护开销较低,适应性强,随挖随支,土方开挖完毕即支护完毕,工期短。
上所钉土结构适用于地下水位以上或者人工降水后的黏性支护、粉土、杂填土及非松散性砂士、卵石土等,不适用于淤泥质土及未经降水取证地下水位以下的上层。
上钉支护简图如图1-1所示,实体照片如图1-2所示。
(三)悬臂式支护结构特性及悬臂换用范围悬臂式支护结构常采用脚手架混凝土桩排桩境墙、钢板桩、木板桩、钢筋混凝土板桩,地下连续墙等形式。
根据理论分析和工程经验,拱顶式支护桩的桩身弯矩别土压力,基坑深度、起伏柱径以及配筋的变化而变化,但最大弯矩往往发生在基底平面i以下不远区域。
悬臂式结构对开挖深度很敏感,容易产生较大的变形,对相邻建(构)筑物触发不良影响。
悬臂支点式支护结构计算方法悬臂支点式支护结构是一种常用的土木工程结构,用于在施工过程中保护和支撑土方或挖方的边坡。
本文将介绍悬臂支点式支护结构的计算方法。
一、悬臂支点式支护结构的概述悬臂支点式支护结构是一种常用的土木工程结构,用于在土方开挖或填方过程中保护和支撑边坡。
其基本原理是通过设置支护桩和锚杆来固定边坡,以防止其坍塌或滑动。
二、悬臂支点式支护结构的设计步骤1. 确定边坡的几何形状和土质参数。
这包括边坡的坡度、高度、土质类型、内摩擦角等。
根据这些参数,可以计算出边坡的稳定性分析结果。
2. 选择合适的支护桩。
支护桩的选择应根据边坡的高度、土质的强度和稳定性要求来确定。
常见的支护桩类型包括钢筋混凝土桩、钢管桩等。
3. 设计锚杆。
锚杆用于固定支护桩和边坡,以增加整体的稳定性。
锚杆的数量和布置应根据边坡的高度和土质的强度来确定。
4. 进行结构计算。
根据支护桩和锚杆的尺寸和布置,进行结构计算,包括强度和稳定性的验算。
计算结果应满足相关规范和设计要求。
5. 编制施工图纸。
根据计算结果,编制悬臂支点式支护结构的施工图纸,包括支护桩和锚杆的布置图、尺寸图等。
三、悬臂支点式支护结构的计算方法1. 支护桩的计算。
支护桩的计算主要包括受力分析和强度验算。
受力分析时,需要考虑桩身的自重、土压力、水压力、地震力等。
根据这些受力情况,可以计算出桩身的弯矩、剪力和轴力。
强度验算时,需要根据钢筋混凝土的强度和断面形状,计算出桩身的抗弯强度和抗剪强度。
2. 锚杆的计算。
锚杆的计算主要包括受力分析和抗拉强度验算。
受力分析时,需要考虑锚杆的自重、土压力、水压力等。
根据这些受力情况,可以计算出锚杆的拉力和应力分布。
抗拉强度验算时,需要根据锚杆的材料强度和断面形状,计算出锚杆的抗拉强度。
3. 边坡的稳定性分析。
对于悬臂支点式支护结构,边坡的稳定性分析是非常重要的。
稳定性分析时,需要考虑边坡的自重、土压力、水压力、地震力等。
根据这些受力情况,可以计算出边坡的倾覆稳定性和滑动稳定性。
模块三基坑工程单元四悬臂式支护施工教案首页钢板桩施工1 编制依据行业尺度《建筑桩基技术尺度》(JGJ94);行业尺度《建筑基坑支护技术规程》(JGJ 120,);国家尺度《钢结构工程施工质量验收尺度》(GB50205);基坑工程手册(第二版) 中国建筑工业出版社;****污水处理水池施工图纸。
2 工程概况本工程污水处理生物池为地下构筑物,顶板面标高2.5m,换填底标高-5.4m,长度尺寸67.77m,宽度尺寸44.35m,底板厚0.8m(局部0.4m),垫层厚0.6m(其中碎石垫层0.5m,C15混凝土垫层0.1m),地下局部池壁厚0.65m,地上局部池壁厚0.4m。
由总图可知现场自然土面标高约为+0.6m,那么开挖深度为5.7m;开挖平面尺寸在生物池结构尺寸的根底上每边加1.5m,即基坑长度70.77m,基坑宽度47.35m。
基坑开挖边线距周边其他拟建构筑物最近距离为7m。
3 工程地质水文情况3.1 地质条件依据钻探揭露深度范围内的地层结构及成因类型说明,该场地内地基土类型中等复杂,地层结构属多层型。
除场地地表局部为人类近期活动形成的地层外,其下均为第四系冲湖积相地层并出现多轮回沉积韵律的特点,将其划分为2、3、4、5等四个亚层。
依据上述单元层的划分原那么,看各土层分布情况。
4 基坑支护结构设计生物池基坑较深,依据地质资料不宜采用自然放坡开挖,且考虑到基坑完成后将对周围建筑物有不利阻碍,基坑必须采用支护措施,先支护、后开挖。
拟采用拉森型悬臂钢板桩作为基坑围护体系,桩长12米,嵌入基坑底土体6.5m。
在基坑顶部适当位置设置排水沟,用以拦截地表水,并排出场外,基坑底部沿支护桩侧用砌块砌筑临时排水沟,基坑底部各拐角点设置集水井,用以排除基坑内积水。
5 基坑支护结构的要紧技术参数及技术要求5.1 钢板桩(1) 资料要求钢板桩选用拉森型,截面抵抗矩W=2270cm3;进场钢板桩需进行外观检验及桩身缺陷矫正;施打前板桩咬口处宜涂抹黄油以保障施打的顺利和提高防水效果。
悬臂支护结构设计计算书悬臂支护结构设计计算书悬臂支护结构设计计算书1、《建筑基坑支护技术规程》JGJ120-20212、《建筑施工计算手册》江正荣编著3、《实用土木工程手册》第三版杨文渊编著4、《施工现场设施安全设计计算手册》谢建民编著 5、《土力学与地基基础》二、土压力计算土压力分布示意图附加荷载布置图1、主动土压力计算 1)主动土压力系数K a1=tan2(45°- φ1/2)= tan2(45-18/2)=0.528;Ka2=tan2(45°- φ2/2)=tan2(45-18/2)=0.528;Ka3=tan2(45°- φ3/2)= tan2(45-18/2)=0.528; 2)土压力、地下水产生的水平荷载第1层土:0-0m H1'=[∑γ0h 0+∑q 1]/γ Pak1上=γ Pak1下=γ=[0+3]/20=0.15mH 1'K a1-2c 1K a10.5=20×0.15×0.528-2×10×0.5280.5=-12.949kN/m2(h1+H1')K a1-2c 1K a10.5=20×(0+0.15)×0.528-2×10×0.5280.5=-12.949kN/m2 第2层土:0-2m H2'=[∑γ1h 1+∑q 1]/γ Pak2上=γPak2下=γsati 0.5=[0+3]/20=0.15mH 2'K a2-2c 2K a2=20×0.15×0.528-2×10×0.528=-12.949kN/m(h2+H2')K a2-2c2K a20.5=20×(2+0.15)×0.528-2×10×0.5280.5=8.171kN/m2 第3层土:2-6.1mH3'=[∑γ2h 2+∑q 1+∑q 1b 1/(b1+2a1)]/γ Pak3上=γ=[40+3+1.167]/20=2.208mH 3'K a3-2c 3K a30.5=20×2.208×0.528-2×10×0.5280.5=8.784kN/m2ak3下sat333a33a30.5280.5=52.08kN/m2 3)水平荷载临界深度:Z 0=Pak2下h 2/(Pak2上+ Pak2下)=8.171×2/(12.949+8.171)=0.774m;第1层土 Eak1=0kN;第2层土Eak2=0.5Pak2下Z 0b a =0.5×8.171×0.774×1.75=5.534kN;aa2=Z0/3+∑h3=0.774/3+4.1=4.358m;第3层土Eak3=h3(Pa3上+Pa3下)b a /2=4.1×(8.784+52.08)×1.75/2=218.35kN;aa3=h3(2Pa3上+Pa3下)/(3Pa3上+3Pa3下)=4.1×(2×8.784+52.08)/(3×8.784+3×52.08)=1.564m;土压力合力:Eak =ΣE aki =0+5.534+218.35=223.884kN;合力作用点:aa = Σ(aai E aki )/Eak =(0×0+4.358×5.534+1.564×218.35)/223.884=1.633m;2、被动土压力计算 1)被动土压力系数Kp1=tan2(45°+ φ1/2)= tan2(45+18/2)=1.894;Kp2=tan2(45°+ φ2/2)=tan2(45+18/2)=1.894; 2)土压力、地下水产生的水平荷载第1层土:2-2mH1'=[∑γ0h 0]/γ Ppk1上=γ Ppk1下=γ=[0]/20=0mH 1'K p1+2c1K p10.5=20×0×1.894+2×10×1.8940.5=27.525kN/m2 (h1+H1')Kp1+2c1K p10.5=20×(0+0)×1.894+2×10×1.8940.5=27.525kN/m2 第2层土:2-6.1m211 Ppk2上=γ Ppk2下=γH 2'K p2+2c2K p20.5=20×0×1.894+2×10×1.8940.5=27.525kN/m2 (h2+H2')Kp2+2c2K p20.5=20×(4.1+0)×1.894+2×10×1.8940.5=182.833kN/m2 3)水平荷载第1层土Epk1=ba h 1(Pp1上+Pp1下)/2=1.75×0×(27.525+27.525)/2=0kN;ap1=h1(2Pp1上+Pp1下)/(3Pp1上+3Pp1下)+∑h2=0×(2×27.525+27.525)/(3×27.525+3×27.525)+4.1=4.1m;第2层土Epk2=ba h 2(Pp2上+Pp2下)/2=1.75×4.1×(27.525+182.833)/2=754.659kN;ap2=h2(2Pp2上+Pp2下)/(3Pp2上+3Pp2下)=4.1×(2×27.525+182.833)/(3×27.525+3×182.833)=1.545m;土压力合力:Epk =ΣE pki =0+754.659=754.659kN;合力作用点:ap = Σ(api E pki )/Epk =(4.1×0+1.545×754.659)/754.659=1.545m; 3、基坑内侧土反力计算 1)主动土压力系数Ka1=tan2(45°-φ1/2)= tan2(45-18/2)=0.528;Ka2=tan2(45°-φ2/2)=tan2(45-18/2)=0.528; 2)土压力、地下水产生的水平荷载第1层土:2-2mH1'=[∑γ0h 0]/γ=[0]/20=0mPsk1上=(0.2φ12-φ1+c1) ∑h 0(1-∑h 0/ld ) υ/υb +γ×(1-0/4.1)×0.012/0.012+20×0×0.528=0kN/m2 Psk1下=(0.2φ12-φ1+c1) ∑h 1(1-∑h 1/ld ) υ/υb +γH 1'K a1=(0.2×182-18+10)×0(h1+H1')K a1=(0.2×182-18+10)×0×(1-0/4.1)×0.012/0.012+20×(0+0)×0.528=0kN/m2第2层土:2-6.1m H2'=[∑γ1h 1]/γ=[0]/20=0mPsk2上=(0.2φ22-φ2+c2) ∑h 1(1-∑h 1/ld ) υ/υb +γ×(1-0/4.1)×0.012/0.012+20×0×0.528=0kN/m2 Psk2下=(0.2φ22-φ2+c2) ∑h 2(1-∑h 2/ld ) υ/υb +γH 2'K a2=(0.2×182-18+10)×0(h2+H2')K a2=(0.2×182-18+10)×4.1×(1-4.1/4.1)×0.012/0.012+20×(0+4.1)×0.528=43.296kN/m2 3)水平荷载第1层土Psk1=b0h 1(Ps1上+Ps1下)/2=1.75×0×(0+0)/2=0kN;as1=h1(2Ps1上+Ps1下)/(3Ps1上+3Ps1下)+∑h 2=0×(2×0+0)/(3×0+3×0)+4.1=-9.[1**********]478E15m;第2层土Psk2=b0h 2(Ps2上+Ps2下)/2=1.75×4.1×(0+43.296)/2=155.324kN; as2=h2(2Ps2上+Ps2下)/(3Ps2上+3Ps2下)=4.1×(2×0+43.296)/(3×0+3×43.296)=1.367m;土压力合力:Ppk =ΣP pki =0+155.324=155.324kN;合力作用点:as = Σ(asi P ski )/Ppk =(-9.[1**********]478E15×0+1.367×155.324)/155.324=1.367m;Psk =155.324kN≤E p =754.659kN 满足要求!三、稳定性验算1、嵌固稳定性验算Epk a pl /(Eak a al )=754.659×1.545/(223.884×1.633)=3.189≥K e =1.2 满足要求!2、整体滑动稳定性验算圆弧滑动条分法示意图K si =∑{cj l j +[(qj b j +ΔG j )cos θj -μj l j ]tanφj }/∑(qj b j+ΔG j )sin θ c j 、φj ──第j 土条滑弧面处土的粘聚力(kPa)、内摩擦角(°) ;bj ──第j 土条的宽度(m);θj ──第j 土条滑弧面中点处的法线与垂直面的夹角(°) ;lj ──第j 土条的滑弧段长度(m),取l j =b j /cosθj ;qj ──作用在第j 土条上的附加分布荷载标准值(kPa) ;ΔG j ──第j 土条的自重(kN),按天然重度计算;uj ──第j 土条在滑弧面上的孔隙水压力(kPa),采用落底式截水帷幕时,对地下水位以下的砂土、碎石土、粉土,在基坑外侧,可取u j =γw h waj ,在基坑内侧,可取u j =γw h wpj ;滑弧面在地下水位以上或对地下水位以下的粘性土,取u j =0;γ3w ──地下水重度(kN/m) ;hwaj ──基坑外侧第j 土条滑弧面中点的压力水头(m);hwpj ──基坑内侧第j 土条滑弧面中点的压力水头(m); min{ Ks1 ,K s2 ,……,K si ,……}=1.752≥K s =1.3 满足要求!2、支护桩的受力简图弯矩图(kN·m)Mk =161.813kN.m剪力图(kN)Vk =223.88kN 3、强度设计值确定M=γ0 γF Mk =1×1.25×161.813=202.266kN·m V=γ0 γF Vk=1×1.25×223.88=279.85kN 4、材料的强度计算 1)正截面受弯承载力验算钢筋混凝土桩截面计算简图确定受压混凝土截面范围:根据建筑基坑支护规程(JGJ120-2021)附录B.0.1 αf c A (1-sin2πα/(2πα))+(α-αt )f y As =0 αt =1.25-2α求得α=0.256,αt =1.25-2α=0.7382fc Ar(sinπα) /(3π)+fy A s r s(sinπα+sinπαt )/π=2×14.3×π×1250/4×625×(sin(0.256π)3/(3π))+360×20×π×252/4×542.5×(sin(0.256π)+sin(0.738π))/π=1756.973kN ·m ≥M =202.266kN·m 满足要求!2)斜截面承载力验算将圆形截面等效成矩形截面计算中煤陕西榆林能源化工有限公司铁路专用线工程榆靖高速立交大桥0#台悬臂支护结构计算书h=1.6D/2=1.6×1250/2=1000mmh0=h-δ-d/2=1000-70-25/2=917.5mmb=1.76D/2=1.76×1250/2=1100mmh0/b=917.5/1100=0.834≤40.25βc f c bh 0=0.25×1×14.3×1100×917.5/1000=3608.069kN≥V =279.85kNVcs=αsv f t bh 0+fyv A sv h0/s=(0.7×1.43×1100×917.5+360×2×3.14×122/4×917.5/20)/1000=4745.87kN≥V =279.85kN3)最小配筋率验算ρ=As /(πD 2/4)=0.738×20×π×252/4/(12502×π/4)=0.59%≥ρmin =max[0.002,0.45f t /fy ]=max[0.002,0.45×1.43/360]=0.2%。
基坑支护类型简介及选型要点——悬臂式支护结构悬臂式支护结构——抗悬臂式支挡结构顶部位移较大,内力分布不理想,但可省去锚杆和承托,当基坑较浅且基坑周边环境对支护结构位移的限制不严格,可采用悬臂式支挡结构。
悬臂结构设计式支护结构一般用于坑深7m以下。
悬臂式支护结构可以采用不同的挡土多种不同结构,主要有排桩、钢板桩、SMW工法桩等。
1)排桩——一字长蛇阵排桩支护结构是将桩体按照一定的距离或者咬合排序形成的支护挡土结构。
根据成桩工艺的不同,可以将排桩分为:钻孔灌注桩、挖孔桩、压浆桩、预制钢板桩和钢管桩等。
悬臂钢管渔庄科鞭适用于坑深小于5m的情况,抗弯刚度相对较小,优势是施工速度快,成本比铸铁排桩低。
混凝土排桩适用于悬臂高度大于5m,抗弯刚度相对较大,但施工速度慢,成本也相对较高。
排桩桩体根据实际矩形需要可以有多种不同的平面排列形式。
其中分离式排列形式适用于没有地下水或者地下水位比较低的土质好的基坑工程;如果地下水位需要防水要求并不高时,可采用连续排列;如果基坑工程要求增加支护结构的整体刚度,可以将桩交错排列;要求更大的整体刚度时可以用双排桩形式。
排桩钻孔灌注桩是最常见的支护结构形式。
采用混凝土桩基时,悬臂式排桩反嘴的桩径宜大于或等于600mm。
排桩的切忌中心西南方不宜大于桩直径的2.0倍,桩间土防护措施宜采用钢筋网或钢丝网的喷射混凝土面层。
围护桩上部往往结合砖挡土墙或者天然放坡或土钉墙,以降低围护结构造价。
钻孔灌注桩的长处:施工工艺简单,施工噪音低、振动小、对环境影响小,成本低(与地底连续墙相比),平面布置灵活,自身刚度和强度不小。
缺点是施工速度慢,需处理泥浆,自防水差、需要结合防水措施,整体刚度较差。
悬臂式钻孔延展排桩适用于软土式地层,一般开挖深度5~7m;在砂砾层三层和卵石中施工慎用。
2)钢板桩——八门金锁阵钢板桩两条道路是一种带锁口的热轧玻璃钢,靠锁口连接点咬合,已经形成连续的钢板桩墙,用来挡土和挡水。