LM170E01-TLB3[1]
- 格式:ppt
- 大小:1.12 MB
- 文档页数:28
EthernetMODEL 17011KEY FEATURESHigh precision output and measurement up to 0.015% of full scaleFast current response up to <100 µS High sampling rate up to 10 mS Flexible sampling recording ( t, V , I, Q, E)Channel parallel output function with maximum 1200A outputHigh efficiency charge and discharge with low heatingEnergy recycling during discharge (AC/DC bi-directional regenerative series) Waveform simulation function (current/power mode) Built-in DCIR test functionBuilt-in EDLC capacitance and DCR test functionOperating modes: CC / CP / CV / CR / CC-CV / CP-CV / Rest / SD test Multi-level safety protection mechanism Integrable data logger and chamberAPPLICATIONSElectric vehicle Electric scooter/bike Energy storage system Power toolsQuality inspection agency The Chroma 17011 Battery Cell Charge and D ischarge Test System is a high precision system designed specifically for testing lithium-ion battery (LIB) cells, electrical double layer capacitors (ED LC), and lithium-ion capacitors (LIC). It is suitable for product development, quality control, and is helpful program editing and test results analysis much easier.The Chroma 17011 test system has flexible software editing functions embedded that can create basic charging/discharging or complex cycle tests for each channel to run BATTERY CELL CHARGE & DISCHARGETEST SYSTEM MODEL 17011P r o vided b vided by y : com (800)40404-A -ATE TEC CAd Advanced vanced T Test estE quipment Rentals®High precision – improving product qualityVoltage / current measurement accuracy: 0.015 of F.S. / 0.02 of F.S.Wide range of voltage output: Equipped with a 0V to 6V output range, and specific models allow to switch between three built-in voltage output modes. Voltage measurements distinguished up to 0.1mV.Multiple range measurement design: Providing various current or voltage ranges (depending on the model) to greatly improve measurement accuracy and resolution. The current range switches automatically and at the constant voltage mode there is no current output interruption.Fast current response – suitable for a variety of high-speed transient test applicationsCurrent response time (10% to 90%) < 100 µS *1Support dynamic waveform to simulate the rapid changing current and power states*1: The current response time <100 µS applies to model 17216M-10-6, the impedance of other UUTswill slightly differ.Rise Time<100 µS (17216M-10-6)Rise Time<250 µS (17208M-6-30)Model 17216M-10-6Model 17216M-6-12Model 17208M-6-30Model 17208M-6-60Multi-Voltage Range (17216M-10-6)Multi-Current RangeLoading waveform currentDynamic waveform simulation Dynamic waveform simulationCurrent and power dynamic charge/discharge waveform, simulate the actual battery usage of car driving or other real life applicationsImport the current and power waveforms from Excel fileSave 1,440,000 points in each channel for long hour dynamic testingMinimalize time interval for data output: 10 mS*1: 17216M-10-6 has three built-in voltage output modes that can be switched through the software settings.*2: 17208M-6-60 has to be paired with an external power supply and placed into a rack; other models contain an integrated power module and can beused either stand-alone or in a rack.Rise time < 5 mSEnergy recycling – optimal utilization of electricityDirect recycling: Automatically transfer the discharging energy to the battery cells to be charged with recycling efficiency >80% Grid recycling: Recycle the excessiveenergy to the grid with recyclingefficiency >60%Low carbon emissions for green energy,preventing waste heat from generatingduring dischargeSaving electricity costs with highefficiency power charge and dischargeSaving air conditioning costs on coolingequipmentCurrent harmonic distortion <5%for feedback to grid currentPower factor >0.98 at rated powerHigh precision – improving product qualityVoltage accuracy: (0.02% of Reading + 0.02% of F.S.)Current accuracy: 0.05% of F.S.Fast current response – waveform modeCurrent response speed (10% to 90%) < 5 mS applicablefor all kinds of testsSupport dynamic waveform to simulate the current and power stateof actual car driving with NEDC, FUDS and DST test standardsAC/DCChroma 17212M-6-100Chroma A691104Direct RegenerationAC/DC* A fitting AC/DC bi-directional converter is chosen according to the power input and placed into a rack.Flexible paralleling channels for outputT h e t e s t s y s t e m s a l l o w f l e x i b l e s e t t i n g f o for various UUTs.which supports full range of productsSuitable for high ratio charge and discharge test or diversified battery test applicationsData protection and recoveryPower loss data restoring mechanism: After a power loss, the PC will automatically recover the data status of the testingdata that already was written into the database. The user can choose to resume or restart testing.High frequency sampling measurement technology – improving measurement accuracyV / I sampling rate: 50 KHz (∆t 20 µS)Generally, battery testers use software to read current values for calculating power; however, limited data sampling rates could result in large errors when calculating the dynamic current capacity. By increasing the sampling rate and using a double integration method, Chroma 17011 is able to provide a capacity calculation with much higher accuracy. When the current changes, the data is not lost and the transmission speed is not affected.* Note: The current response time <100 µS applies to model 17216M-10-6, the impedance of other UUTs will slightly differ.General charger/discharger sampling rateChroma charge & discharge tester sampling rateHPPC TestHPPC test applicationHPPC is a test procedure developed by the USABC (U.S. Advanced Battery Consortium) for the battery power performance of hybrid and electric vehicles. Within the batteries operation voltage range, the procedure mainly establishes the function of the relationship between the depth of discharge and power and, secondarily, establishes the depth of discharge, conductive resistance and polarization resistance function via the voltage and current response curve from discharging, standing to charging. The measured resistance can be used to assess the battery's power recession during later life tests and its equivalent circuit model development. Chroma 17011 has a flexible editing program that allows HPPC testing.DCIR test (2)DCIR test (1)Lumped parameter model circuit diagram Battery capacity test applicationT h e c a p a c i t y c a n b e o b t a i n e d a s t h e i n t e g r a l o f t h e c u r re n t integrating the current versus time from the start of charging/discharging until the cut-off condition is reached. The comparison results are useful to analyze performance differences between products, and the common test items include current ratio and temperature characteristics tests. Higher accuracy of current, voltage measurement and faster sampling enable to distinguish more accurately the differences in battery cell capacity.Battery cycle life test applicationCycle life is one of the most important test items for batteries. In accordance with the experimental purpose, it tests the same battery through repeated charge and discharge conditions until the capacity falls to 80%, and calculates the cycle numbers. The cycle life test can be used to evaluate the battery performance or define the applicable conditions of use.Battery DCIR test applicationThe internal resistance value is related to the charge/discharge ratio of a battery. The larger the internal resistance value, the lower the efficiency when temperature rises. According to the lithium-ion battery equivalent circuit model, the ACIR measurement of traditional 1KHz LCR meters can only evaluate the conductive resistance (Ro) of the battery that affects the instantaneous power output, but is unable to evaluate the polarization resistance (Rp) produced during electrochemical reaction. The D CIR evaluation includes the ACIR that is closer to the actual polarization effect of battery under continuous power applications.The Chroma 17011 includes two types of D CIR test modes: DCIR test (1) calculates the DCIR value using the voltage difference caused by the change of one-step current, DCIR test (2) calculates the DCIR value using the voltage difference caused by the change of two-step current. Users can select the desired test mode and automatically, without any manual calculation, get the results that comply with IEC 61960 standards.CapacitydQ/dV vs voltageCoulombic efficiency test Incremental capacity analysis applicationThe high precision voltage measurement and V sampling function can draw dQ/dV versus voltage curve diagrams to analyze battery cell characteristics and capacity degradation.Coulombic efficiency test applicationCoulombic efficiency (CE) is calculated by the charge/discharge capacity ratio when the battery is fully charged and then fully discharged. Good batteries have higher coulombic efficiency, and need high precision and stable equipment to distinguish differences. An accurate coulombic efficiency test can estimate the batterylifespan with only a few cycles.EDLC capacitance (C) test applicationIn accordance with the Straight Line Approximation Method of the IEC 62391 testing standard, before measuring the capacitance (C) value, the ED LC first needs to be fully charged through a CC-CV charging mode. The capacity test is to discharge CC via the above discharge current. Then, the electric potential difference ( V) of two reference points on the discharge curve are taken against the time difference ( t) and the discharge current (I) to calculate the capacitance value of the EDLC.EDLC combined DCR and C test applicationChroma 17011 also has a direct current resistance (D CR) and capacitance (C) combined test application. Under the same CC-CV charged and CC discharged conditions, the user can use the electric potential in the chosen reference points to simultaneously calculate the DCR and C values of the EDLC to save testing time.The equivalent circuit model development of the classical EDLC includes an equivalent series resistance (ESR), a capacitance (C), and an equivalent parallel resistance (EPR). The ESR is used to evaluate the internal loss and heat of the EDLC during charging/discharging; the EPR to evaluate the leakage effect in the EDLC's long-term storage; the C to evaluate the EDLC cycle life.These parameters are not easily directly measured in a laboratory; researchers need data analysis and complex calculations to determine these important indicators. Chroma 17011 is equipped with the IEC 62391 testing standards and the user can use charge/discharge tests to obtain the ED LC parameters values, in order to evaluate the EDLC characteristics and cycle life.ED LC direct current resistance (D CR) and equivalent series resistance (ESR) test applicationChroma 17011 offers ED LC direct current resistance testing function compliant with test standard IEC 62391. Before testing, the ED LC has to be CV charged. The capacity test is to discharge CC via the above discharge current. When the discharge is completed, get the linear section on the discharge curve and extend it to discharge time and then get the voltage difference of rated voltage and discharge current to calculate the DCR value.EDLC equivalent circuit model developmentVoltage Characteristic Between EDLC TerminalsVoltage Characteristic Between EDLC TerminalsVoltage Characteristic Between EDLC TerminalsCharge/discharge performance and cycle life test applicationThe built-in direct current resistance (D CR) and capacitance (C) test modes can be combined with cycle function and variable set testing conditions to test the EDLC load endurance and reliability. After testing, the user can directly export DCR vs Cycle No. and Capacity vs Cycle No. reports to analyze the EDLC failure and deterioration mechanisms.Self-discharge test modeCoulombic efficiency testAutomatically change current range in CC-CV modeCharge-Discharge Rate Test Charge-Discharge Cycle TestingCoulombic efficiency test applicationChroma 17011 is equipped with low noise, automatically switching current range, and cut-off report as to quickly output accurate c u r re n t c h a rg e /d i s c h a rg e. T h e c o u l o m b i c e ff i c i e n c y (C E ) i s calculated by the charge/discharge capacity ratio, which indicates the ED LC internal capacity conversion as available capacity. A highly accurate CE is an important marker to distinguish differences between products.Leakage current test applicationED LC leakage current measurements generally need to CC-CV charging until a specific time and then it measures this tiny charging current, which is seen as leakage current. The Chroma 17011 CC-CV mode can automatically change current range without output interruption. Under stable voltage, the current range can be as small as 200µA.Current (A)Self-discharge test applicationChroma 17011 also has a built-in self-discharge test mode, when the ED LC is fully charged it can test the charge/discharge for a set time period. When this mode starts, the system will cut off the measuring circuit to provide the ideal open circuit and solely measure the starting potential (V1) and cut-off potential (V2). The software can automatically calculate the electric potential difference ( V).CE=Q Discharge / Q ChargeThe Chroma 17011 test systems are controlled by computer software with diverse functions for testing energy storage products. The safe, stable and friendly operation interface allows users to perform setting and testing rapidly.Support English, Traditional Chinese, and Simplified Chinese languages interfaces Real time multi-channel DUT status monitoringSecurity management: set user authority for safe managementFailure record tracking: independently record abnormalities for each channel, the charge and discharge protection will abort the testwhen an abnormal condition is detectedRecipe editing500 steps per recipeDouble loop (Cycle & Loop) with 999,999 repeat counts per loop Sub-recipe function: Call existing recipesTest steps : CC / CV / CP / CC-CV / CP-CV / CR / Rest / Waveform / DCIR / C / DCR, etc. Cut-off conditions : Time / Current / Capacity / Power / Variable, etc. Logical operations : Next / End / Jump / If-Then Recipe executingOperating modes: Start / Stop / Pause / Resume / Jump / Reserve Pause / Modify during test Display interfaces: Graphic display / Table display Instant monitoring windowStatistics reportAble to define report formats and export them as PDF, CSV, and XLS filesGraphical report analysis functions allow custom reports such as cycle life reports, Q-V reports, V / I / T time reports, etc.Real time monitoring Charge/Discharge test program editor Test diagram Test reportBattery Pro main panelWaveform current editorIntegrate with an environmental chamber through software to synchronize the settings conditions for charge/discharge testingIntegrate with a multifunctional data logger through software to read and set multiple temperature records during thecharge/discharge process. Change these conditions to protection or cut-off conditions17011 SystemData LoggerLinear circuit modelsThe tester can be used stand-alone to take up little space, which fits a handful of tests performed on the desktop. When the tester is configured with more test channels, it can be integrated into a standard 19-inch rack for use. The system can be configured as demanded by the user as the channel numbers are expandable, and up to 64 channels can be controlled by one PC at the same time.60A 36U rackModel 17208M-6-306A/12A/30A 36U rackModel 17216M-10-625U rackRegenerative modelsA charge/discharge tester and an AC/D C bi-direction converter can be integrated into a standard 19-inch rack for use. The system can be configured as demanded by the user as the channel numbers are expandable, and up to 48 channels can be controlled by one PC at the same time.Chroma 17011 system power consumption * Available space for data logger60A / 41U system100A / 41U systemORDERING INFORMATION17011 : Battery Cell Charge & Discharge Test System17216M-10-6 : Programmable Charge/Discharge Tester, 10V / 6A, 16CH 17216M-6-12 : Programmable Charge/Discharge Tester, 6V / 12A, 16CH 17208M-6-30 : Programmable Charge/Discharge Tester, 6V / 30A, 8CH 17208M-6-60 : Programmable Charge/Discharge Tester, 6V / 60A, 8CH 17212R-5-60 : Programmable Charge/Discharge Tester, 5V / 60A, 12CH 17212R-5-100 : Programmable Charge/Discharge Tester, 5V / 100A, 12CH 17212M-6-100 : Programmable Charge/Discharge Tester, 6V / 100A, 12CH A691103 : DC/AC Bi-direction Converter, AC 220V to DC 45V A691104 : DC/AC Bi-direction Converter, AC 380V to DC 45V* All specifications are subject to change without notice.* Continued on next pageNote*1: The maximum discharge current will derate at low voltage 17011-E-201908-PDFJAPANCHROMA JAPAN CORP .888 Nippa-cho, Kouhoku-ku,Yokohama-shi,Kanagawa,223-0057 Japan T +81-45-542-1118F +81-45-542-1080www.chroma.co.jp**************.jp U.S.A.CHROMA ATE INC.(U.S.A.)7 Chrysler, Irvine,CA 92618T +1-949-421-0355F + *****************CHROMA SYSTEMS SOLUTIONS, INC.19772 Pauling, Foothill Ranch, CA 92610 T +1-949-600-6400F + *******************EUROPECHROMA ATE EUROPE B.V .Morsestraat 32, 6716 AH Ede,The Netherlands T +31-318-648282F + ******************CHROMA GERMANY GMBH Südtiroler Str. 9, 86165,Augsburg, Germany T +49-821-790967-0F + ******************CHINA CHROMA ELECTRONICS (SHENZHEN) CO., LTD.8F , No.4, Nanyou Tian An Industrial Estate,Shenzhen, China T +86-755-2664-4598F +86-755-2641-9620 ******************SOUTHEAST ASIA QUANTEL PTE LTD.(A company of Chroma Group)46 Lorong 17 Geylang # 05-02 Enterprise Industrial Building,Singapore 388568T +65-6745-3200F + ************************HEADQUARTERS CHROMA ATE INC.66 Huaya 1st Road,Guishan, Taoyuan 33383, TaiwanT +886-3-327-9999F + ******************KOREA CHROMA ATE KOREA BRANCH 3F Richtogether Center, 14,Pangyoyeok-ro 192,Bundang-gu,Seongnam-si,Gyeonggi-do13524, Korea T +82-31-781-1025F +82-31-8017-6614www.chromaate.co.kr ******************17011。
ESD5V3U1U02LSE6327XTSA1ESD5V3U1U02LRHE6327XTSA1TVS DiodesTransient Voltage Suppressor DiodesESD5V3U1U SeriesUni-directional Ultra-Low Capacitance ESD / Transient Protection Diode ESD5V3U1U-02LSESD5V3U1U-02LRHData SheetRevision 1.0, 2011-05-27FinalEdition 2011-05-27Published byInfineon Technologies AG81726 Munich, Germany© 2011Infineon Technologies AGAll Rights Reserved.Legal DisclaimerThe information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.InformationFor further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office ().WarningsDue to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.ESD5V3U1U SeriesRevision HistoryPage or Item Subjects (major changes since previous revision)Revision 1.0, 2011-05-27Trademarks of Infineon Technologies AGAURIX™, BlueMoon™, COMNEON™, C166™, CROSSAVE™, CanPAK™, CIPOS™, CoolMOS™, CoolSET™, CORECONTROL™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, EUPEC™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, I²RF™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PROFET™, PRO-SIL™, PRIMARION™, PrimePACK™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SMARTi™, SmartLEWIS™, TEMPFET™, thinQ!™, TriCore™, TRENCHSTOP™, X-GOLD™, XMM™, X-PMU™, XPOSYS™.Other TrademarksAdvance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, PRIMECELL™, REALVIEW™, THUMB™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Sattelite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.Last Trademarks Update 2010-06-09ESD5V3U1U SeriesTable of Contents Table of ContentsTable of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1Uni-directional Ultra-Low Capacitance ESD / Transient Protection Diode . . . . . . . . . . . . . . . . . . 7 1.1Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2Product Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1Electrical Characteristics at T A = 25 °C, unless otherwise specified . . . . . . . . . . . . . . . . . . . . . . . . . . 83.2Typical Characteristics at T A=25°C, unless otherwise specified . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4Application Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5Ordering Information Scheme (Examples) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1PG-TSSLP-2-1 (mm)[3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2PG-TSLP-2-7 (mm)[3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20ESD5V3U1U SeriesList of Figures List of FiguresFigure 1Pin Configuration and Schematic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 2Definitions of Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 3Reverse current I R = f(T A) , V R = 5.3 V, from pin 1 to pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 4Line capacitance C L = f(V R), f = 1MHz, from pin 1 to pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 5Line capacitance C L = f(f), from pin 1 to pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 6Line capacitance C L = f(T A), from pin 1 to pin 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 7Clamping voltage V TLP = f(I TLP), from pin 1 to pin 2[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 8Forward clamping voltage V TLP = f(I TLP), from pin 2 to pin 1[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 9IEC61000-4-2: V CL = f(t), 8 kV positive pulse from pin 1 to pin 2. . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 10IEC61000-4-2: V CL = f(t), 8 kV negative pulse from pin 1 to pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 11IEC61000-4-2: V CL = f(t), 15 kV positive pulse from pin 1 to pin 2. . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 12IEC61000-4-2: V CL = f(t), 15 kV negative pulse from pin 1 to pin 2 . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 13Single line, uni-directional ESD / Transient protection[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 14Ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 15PG-TSSLP-2-1: Package overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Figure 16PG-TSSLP-2-1: Footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 17PG-TSSLP-2-1: Packing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 18PG-TSSLP-2-1: Marking (example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Figure 19PG-TSLP-2-7: Package Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Figure 20PG-TSLP-2-7: Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 21PG-TSLP-2-7: Packing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 22PG-TSLP-2-7: Marking (example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18ESD5V3U1U SeriesList of Tables List of TablesTable 1Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2Maximum Rating at T A = 25 °C, unless otherwise specified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 3DC Characteristics at T A = 25 °C, unless otherwise specified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 4RF Characteristics at T A = 25 °C, unless otherwise specified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 5ESD Characteristics at T A = 25 °C, unless otherwise specified . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9ESD5V3U1U SeriesUni-directional Ultra-Low Capacitance ESD / Transient Protection Diode1Uni-directional Ultra-Low Capacitance ESD / Transient Protection Diode1.1Features•ESD / Transient protection of high speed data lines exceeding –IEC61000-4-2 (ESD): ±20 kV (air / contact)–IEC61000-4-4 (EFT): 2.5 kV / 50 A (5/50 ns)–IEC61000-4-5 (surge): 3 A (8/20 μs)•Maximum working voltage: V RWM = 5.3 V •Ultra low capacitance: C L = 0.4 pF (typical)•Low clamping voltage, low dynamic resistance R DYN = 0.6 Ω (typical)•Very small form factor down to 0.62 x 0.32 x 0.31 mm 3•Pb-free (RoHS compliant) and halogen free package1.2Application Examples•USB 2.0, Mobile HDMI Link, MDDI, MIPI, etc.•HDMI, DisplayPort, DVI, Ethernet, Firewire, S-ATA2Product DescriptionTable 1Ordering InformationTypePackage Configuration Marking codeESD5V3U1U-02LSPG-TSSLP-2-11 line, uni-directional L ESD5V3U1U--02LRH PG-TSLP-2-7 1 line, uni-directionalE5ESD5V3U1U SeriesCharacteristics3Characteristics3.1Electrical Characteristics at T A = 25 °C, unless otherwise specifiedTable 2Maximum Rating at T A = 25 °C, unless otherwise specifiedParameterSymbolValues UnitMin.Typ.Max.ESD (air / contact) discharge 1)1)V ESD according to IEC61000-4-2V ESD ––20kV Peak pulse current (t p = 8/20 μs)2)2)I PP according to IEC61000-4-5I PP ––3A Operating temperature range T OP -55–125°C Storage temperatureT stg-65–150°CTable 3DC Characteristics at T A = 25 °C, unless otherwise specifiedParameterSymbolValues UnitNote /Test Condition Min.Typ.Max.Reverse working voltage V RWM –– 5.3V Pin 1 to Pin 2Breakdown voltage V BR 6––V I BR = 1 mA, from Pin 1to Pin 2Reverse currentI R–<10100nA V R = 5.3 V, from Pin 1to Pin 2ESD5V3U1U SeriesCharacteristicsTable 4RF Characteristics at T A = 25 °C, unless otherwise specifiedParameterSymbolValues UnitNote /Test ConditionMin.Typ.Max.Line capacitance 1)1)Total capacitance line to groundC L –0.40.6pF V R = 0 V, f = 1 MHzSerie inductanceL S–0.2–nH ESD5V3U1U-02LS –0.4–nHESD5V3U1U-02LRHTable 5ESD Characteristics at T A = 25 °C, unless otherwise specifiedParameterSymbolValues UnitNote /Test ConditionMin.Typ.Max.Clamping voltageV CL –19–V I PP = 16 A,from Pin 1 to Pin 2–28–V I PP = 30 A,from Pin 1 to Pin 2Forward clamping voltage V FC–10–V I PP = 16 A,from Pin 2 to Pin 1–17–V I PP = 30 A,from Pin 2 to Pin 1Dynamic resistance 1)1)Please refer to Application Note AN210[1]. TLP parameter: Z 0 = 50 Ω , t p = 100ns, t r = 300ps, averaging window: t 1 = 30 ns to t 2 = 60 ns, extraction of dynamic resistance using least squares fit of TLP charactertistics between I PP1 = 10 A and I PP2 = 40 A.R DYN–0.6–VPin 1 to Pin 2–0.5–V Pin 2 to Pin 13.2Typical Characteristics at T A=25°C, unless otherwise specifiedR A RL RLL ATLP TLPTLP TLPCLCLCLCLApplication Information 4Application InformationApplication_ESD5V3U1U-02xxx.vsdFigure 13Single line, uni-directional ESD / Transient protection[2]Ordering Information Scheme (Examples)5Ordering Information Scheme (Examples)Figure 14Ordering information schemeESDXX = Pin number (i.e.: 02 = 2 pins; 03 = 3 pins)YY = Package family:LS = TSSLP LRH = TSLP S = SOT363U = SC74XX = Application family :LC = Low Clamp HDMIni-/ B i-directional or R ail to R ail protection V RWM in V: (i.e.: 5V3 = 5.3V)ESD XX = Pin number (i.e.: 02 = 2 pins; 03 = 3 pins)YY = Package family:LS = TSSLP LRH = TSLPR adio F requency ApplicationsC L in pF: (i.e.: 0P1 = 0.1pF)umber of protected lines (i.e.: 1 = 1 line ; 4 = 4 lines)S tandard (>10pF), L ow (<10pF), U ltra-low (<1pF)6Package Information6.1PG-TSSLP-2-1 (mm)[3]Figure 15PG-TSSLP-2-1: Package overviewFigure 16PG-TSSLP-2-1: FootprintFigure 17PG-TSSLP-2-1: PackingFigure 18PG-TSSLP-2-1: Marking (example)TSSLP-2-1,-2-PO V05+0.010.311) Dimension applies to plated terminalmarkingBottom viewTop viewCopper Solder maskStencil aperturesTSSLP-2-1,-2-FP V026.2PG-TSLP-2-7 (mm)[3]Figure 19PG-TSLP-2-7: Package OverviewFigure 20PG-TSLP-2-7: FootprintFigure 21PG-TSLP-2-7: PackingFigure 22PG-TSLP-2-7: Marking (example)TSLP 27PO V02+0.01markingBottom view Top viewTSLP-2-7-FP V01CopperSolder mask Stencil aperturesTSLP-2-7-TP V03ESD5V3U1U SeriesTerminology TerminologyCLine capacitanceLDVI Digital Visual InterfaceEFT Electrical Fast TransientESD Electrostatic DischargeHDMI High Definition Multimedia InterfaceIEC International Electrotechnical CommissionIPeak pulse currentPPIReverse currentRIMaximum Reverse working CurrentRWMLSerial inductanceSMDDI Mobile Display Digital InterfaceMIPI Mobile Industrial Processor InterfaceRoHS Restriction of Hazardous Substances DirectiveS-ATA Serial Advanced Technology AttachmentTAmbient temperatureATOperation temperatureOPtPulse durationpTStorage temperaturestgUSB Universal Serial BusVBreakdown VoltageBRVReverse clamping voltageCLVElectrostatic discharge voltageESDVForward Clamping VoltageFCVReverse voltageRVMaximum Reverse Working VoltageRWMESD5V3U1U SeriesReferencesReferences[1]Infineon AG - Application Note AN210: Effective ESD Protection Design at System Level Using VF-TLP[2]Infineon AG - Application Note AN140: ESD Protection for Digital High-Speed Interfaces (HDMI, FireWire,...) using ESD5V3U1U)[3]Infineon AG - Recommendations for PCB Assembly of Infineon TSLP and TSSLP PackageFinal Data Sheet20Revision 1.0, 2011-05-27w w w.i n f i n e o n.c o m Published by Infineon Technologies AGESD5V3U1U02LSE6327XTSA1ESD5V3U1U02LRHE6327XTSA1。
目 录01 智能测控与保护M200系列电动机保护控制器M500系列电动机保护控制器M400系列智能电力测控仪表02无功补偿与谐波治理MJKW系列无功功率自动补偿控制器MG系列无功补偿滤波装置03智能数显仪表MI系列数显单相电流表MU系列数显单相电压表MI系列数显三相电流表MU系列数显三相电压表MDC系列数显直流表MC系列数显组合表04多功能监控仪表MD系列多功能电力仪表MFD系列多费率电能表MHD系列谐波多功能表MSD系列综合电力监控仪MPD系列电能质量分析仪05电量变送器MBI系列单相电流变送器MBU系列单相电压变送器MBI系列三相电流变送器MBU系列三相电压变送器MBC系列组合变送器MBD系列多功能变送器06电力计量MDL系列导轨式电能表MJD系列简易计量仪表07电气安全MFAS系列电气火灾监控器MFA系列电气火灾监控探测器08开关柜智能操控装置MSC系列开关柜智能操控装置MSC-N系列开关状态显示器09电流互感器过电压保护器MCTB系列电流互感器过电压保护器10微机保护测控装置M300系列数字式保护测控装置M300N系列数字式保护测控装置(经济型)11电力监控系统M8000电力综合监控系统M8100电气火灾监控系统M8200建筑能效管理系统01 智能测控与保护M200系列电动机保护控制器M500系列电动机保护控制器M400系列智能电力测控仪表02无功补偿与谐波治理03智能数显仪表MU系列数显单相电压表MI系列数显三相电流表MU系列数显三相电压表MC系列数显组合表04多功能监控仪表MFD系列多费率电能表05电量变送器06电力计量07电气安全MFAS系列电气火灾监控器MFA系列电气火灾监控探测器08开关柜智能操控装置MSC-N系列开关状态显示器09电流互感器过电压保护器MCTB系列电流互感器过电压保护器10微机保护测控装置M300系列数字式保护测控装置。
EKM1010 x 38 mm EV fuseProduct features• 10 x 38 mm fuse• Current rating: 10 A to 30 A • 1000 Vdc rating•High breaking capacity for high energy applications•Designed to JASO D622, ISO8820-8, GB/T31465•Produced in a factory with ISO9001 & IATF16949 certification•Minimum breaking capacity 300% In at rated DC voltage•Bolt-down and PCB terminal options availableApplications•Automotive and commercial vehicle on-board chargers• Uninterruptible power supplies (UPS) • 3-phase EVSE and charging infrastructure • Motor protection • Rectifiers and inverters • Energy storage systems•On-board electric vehicle powertrain and distri-butionEnvironmental complianceHALOGENHF FREEEKM10-30-SCTFamily codeAmpere rating (30 = 30 A)Option codeOrdering part numberPbOption code1P = 1 pin PCB terminal 2P = 2 pin PCB terminalSCT = Bolt down single cap tag AT = Bolt down axial tag2Technical Data ELX1301Effective May 2023EKM1010 x 38 mm EV fuse/electronicsElectrical characteristicsAmps (A)Minimum (seconds)Maximum (seconds)1.0 In 14400-2.0 ln 1.03003.0 ln 0.2305.0 ln0.110Product specificationsRated current Typical cold resistance 1Typical voltage drop Part numberRated voltage(A)Breaking capacity(mΩ)(mV)EKM10-101000 Vdc 101000 Vdc/50 kA 12.5180EKM10-151000 Vdc 151000 Vdc/50 kA 7.2160EKM10-201000 Vdc 201000 Vdc/50 kA 5.2150EKM10-251000 Vdc 251000 Vdc/50 kA 4.0160EKM10-301000 Vdc301000 Vdc/50 kA3.11601. Cold resistance is measured at <10% In and +25 °C ambient temperatureDimensions- mmTolerances unless otherwise specified One place x.x = ± 0.3 mmTwo places x.xx = ± 0.13 mm 1P: 1 pin PCB terminalSCT : Bolt-down single cap tagAT: Bolt down axial tag2P: 2 pin PCB terminalPCB layout 1P: 1 pin PCB terminalNote: recommend tightening torque is 4.5 ±1.0 Nm for M5 Screw PCB layout 2P: 2 pin PCB terminalPart markingNote: recommend tightening torque is 4.5 ±1.0 Nm for M5 Screw3Technical Data ELX1301Effective May 2023EKM1010 x 38 mm EV fuse /electronics Packaging informationGeneral specificationsOperating temperature: -40 °C to +125 °C with proper derating factor applied Strength of terminals: JASO D622 6.3.9, mounting torque 4.5 +/-1 Nm, 3 timesTemperature humidity cycling: JASO D622 6.3.4.1,a) maintain the samples at standard conditions for 4 hours b) increase T to 55 +/-2 °C at 95% to 99% RH within 0.5 hours c) maintain T at 55 +/-2 °C at 95% to 99% RH for 10 hoursd) decrease T to -40 +/-2 °C within 2.5 hours; the humidity is uncontrolled e) maintain T at -40 +/-2 °C for 2 hours; the humidity is uncontrolledf) increase T to 120 +/-2 °C within 1.5 hours from -40 +/-2 °C; the humidity is uncontrolled g) maintain T at 120 +/-2 °C for 2 hours; the humidity is uncontrolledh) allow to return to RT within 1.5 hours; the humidity is uncontrolled 10 cycles.Thermal shock: ISO8820-8 GB/T31465.6, 48 cycles; -40 °C to 100 °C, each cycle 60 minutes Vibration: JASO D622 6.3.3, 10-55 Hz, 3 directions, 2 hours each directionTransient current cycling: JASO D622 6.3.2 (reference), The transient current start from 2.0 In for 0.25 seconds, then drop to 0.5 In and keep this current to 15 seconds to finish one cycle, total 50000 cyclesLubricant & fuel oil resistance: GB/T31465.1-5.4, Wipe the marking with lubricant or oil 30 secondsTerminalsInner packageShip packageSCT 40 pieces/tray 400 pieces/box AT 20 pieces/box 540 pieces/box 1P 20 pieces/bag 540 pieces/box 2P20 pieces/box640 pieces/box4Technical Data ELX1301Effective May 2023EKM1010 x 38 mm EV fuse/electronics0.40.50.60.70.80.911.11.21.31.4-50-40-30-20-10102030405060708090100110120130T emperature derating curveCurrent vs. time curve 0.010.1110100101,000T i m e (s )10A20A 30A100Current (A)15A 25AD e r a t i n g f a c t o rT emperature (°C)I 2T vs. time curve1001,00010,000100,0001,000,00010,000,0000.010.11101001000I 2t (A 2s )10ATime (s)20A 30A 15A 25A5Technical Data ELX1301Effective May 2023EKM1010 x 38 mm EV fuse /electronics I 2t vs. current curve101001,00010,000100,000101,000I 2t (A 2s )15A25A30A100Current (A)20A 10AEatonElectronics Division 1000 Eaton Boulevard Cleveland, OH 44122United States/electronics© 2023 EatonAll Rights Reserved Printed in USAPublication No. ELX1301 BU-ELX22164May 2023EKM1010 x 38 mm EV fuseTechnical Data ELX1301Effective May 2023Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express writtenapproval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.T e m p e r a t u r eTimeT T T T Wave solder profile--PCB version onlyReference EN 61760-1:2006Profile featureStandard SnPb solderLead (Pb) free solderPreheat • Temperature min. (T smin )100 °C 100 °C • Temperature typ. (T styp )120 °C 120 °C • Temperature max. (T smax )130 °C 130 °C • Time (T smin to T smax ) (t s )70 seconds 70 seconds ∆ preheat to max Temperature150 °C max.150 °C max.Peak temperature (T P )*235 °C – 260 °C 250 °C – 260 °C Time at peak temperature (t p )10 seconds max5 seconds max each wave 10 seconds max5 seconds max each wave Ramp-down rate~ 2 K/s min ~3.5 K/s typ ~5 K/s max ~ 2 K/s min ~3.5 K/s typ~5 K/s max Time 25 °C to 25 °C4 minutes4 minutesManual solder+350 °C (4-5 seconds by soldering iron), generally manual/hand soldering is not recommended.Eaton is a registered trademark.All other trademarks are property of their respective owners.Follow us on social media to get the latest product and support information.。
飞利浦液晶电视维修常见故障及排查1、显示器整机无电???????(1)电源故障:这是一个应该说是非常简单的故障,一般的液晶显示器分机内电源和机外电源两种,机外的常见一些。
不论那种电源,它的结构比crt显示器的电源简单多了,易损的一般是一些小元件,象保险管、整流桥.300V滤波电容、电源开关管、电源管理IC,整流输出二极管,滤波电容等。
电源板常用ic:6841203d06,这些常用的pmw芯片在我这样的专业液晶配件店里都能买到。
???????(2)驱动板故障:?驱动板烧保险或者是稳压芯片出现故障,有部分机器是把开关电源内置,输出两组电源,其中一组是5V,供信号处理用,另外一组是12V提供高压板点背光用,如果开关电源部分电路出现了故障会有可能导致两组电源均没输出.先查12V电压正常否,跟着查5V电压正常否,因为A/D驱动板的MCU芯片的工作电压是5V,所以查找开不了机的故障时,先用万用表测量5V电压,如果没有5V电压或者5V电压变得很低,那么一种可能是电源电路输入级出现了问题,也就是说12V转换到5V的电源部分出了问题,这种故障很常见,检查5端稳压块(常见型号8050SD-LM2596-AIC15-01等).?另一种可能就是5V的负载加重了,把5V电压拉得很低,换一种说法就是说,后级的信号处理电路出了问题,有部分电路损坏,引起负载加重,把5V电压拉得很低,逐一排查后级出现问题的元件,替换掉出现故障的元件后,5V能恢复正常,故障一般就此解决,也经常遇到5V电压恢复正常后还不能正常开机的,这种情况也有多种原因,一方面是MCU的程序被冲掉可能会导致不开机,还有就是MCU本身损坏,比如说MCU的I/O口损坏,使MCU扫描不了按键,遇到这种由MCU引起的故障,找硬件的问题是没有用的,就算你换了MCU也解决不了问题,因为MCU是需要编程和写码的,在没办法找到原厂的AD驱动板替换的情况下,我们只能用通用A/D驱动板代换如:151D或161B等.?2、显示屏亮一下就不亮了,但是电源指示灯绿灯常亮???????这种问题一般是高压异常造成的,是保护电路动作了,在这种情况下,一般液晶屏上是有显示的,看的方法是"斜视"。
RT5070Single Output LNB Supply and Control Voltage RegulatorGeneral DescriptionThe RT5070 is a highly integrated voltage regulator and interface IC, specifically design for supplying power and control signals from advanced satellite set-top box (STB) modules to the LNB down-converter in the antenna dish or to the multi-switch box.The device is consists of the independent current-mode boost controller and low dropout linear regulator for the LNB power.The RT5070 has fault protection (over-current, over-temperature and under-voltage lockout). The RT5070 are available in a SOP-8 (Exposed Pad) package to achieve optimized solution for thermal dissipation.Ordering InformationG : Green (Halogen Free and Pb Free)Note :Richtek products are :④ RoHScompliant and compatible with the currentrequirements of IPC/JEDEC J-STD-020.④ Suitablefor use in SnPb or Pb-free solderingprocesses.Features● Wide Input Supply Voltage Range : 8V to 16V ● Output Current Limit of 550mA with 45ms Timer ●Low Noise LNB Output Voltage (13.3V and 18.3V by SEL Pin)●±3% High Accuracy for 0mA to 500mA Current Output●Push-Pull Output Stage Minimizes 13.3V to 18.3V and 18.3V to 13.3V Output Transition Time ● Output Short Circuit Protection ●Over-Temperature ProtectionApplications●LNB Power Supply and Control for Satellite Set-Top Box●Analog and Digital Satellite Receivers/Satellite TV, Satellite PC cardsPin Configurations(TOP VIEW)LNB BOOSTLX VINGND FAULT ENSELSOP-8 (Exposed Pad)Simplified Application CircuitVINLNBRT5070Marking InformationRT5070GSP : Product NumberYMDNN : Date Code Functional Pin DescriptionFunction Block DiagramRT5070OperationThe RT5070 integrates a current mode boost converter and linear regulator. Use the SEL pin to control the LNB voltage and the boost converter track is at least greater 850mV than LNB voltage. The boost converter is the high efficiency PWM architecture with 700kHz operation frequency. The linear regulator has the capability to source current up to 550mA during continuous operation. All the loop compensation, current sensing, and slope compensation functions are provided internally.OCPBoth the boost converter and the linear regulator have independent current limit. In the boost converter (OCP1), this is achieved through cycle-by-cycle internal current limit (typ. 3A). In the linear regulator (OCP2), when the linear regulator exceeds OCP more than 48ms, the LNB output will be disabled and re-start after 1.8s. OTPWhen the junction temperature reaches the critical temperature (typically 150 C), the boost converter and the linear regulator are immediately disabled.UVLOThe UVLO circuit compares the VIN with the UVLO threshold (7.7V rising typically) to ensure that the input voltage is high enough for reliable operation. The 350mV (typ.) hysteresis prevents supply transients from causing a shutdown.PWM ControllerThe loop compensation, current sensing, and slope compensation functions are provided internally.RT5070Absolute Maximum Ratings(Note 1)●Supply Input Voltage, VIN ------------------------------------------------------------------------------------------- -0.3V to28V ●Output Voltage LNB, LX and BOOST Pins --------------------------------------------------------------------- -0.3V to 30V ●Others Pin to GND ---------------------------------------------------------------------------------------------------- -0.3V to 6V●Power Dissipation, P D @ T A = 25︒CSOP-8 (Exposed pad) ------------------------------------------------------------------------------------------------ 3.44W●Package Thermal Resistance (Note 2)SOP-8 (Exposed pad), θJA------------------------------------------------------------------------------------------ 29︒C/WSOP-8 (Exposed pad), θJC------------------------------------------------------------------------------------------ 2︒C/W●Lead Temperature (Soldering, 10 sec.) -------------------------------------------------------------------------- 260︒C●Junction Temperature ------------------------------------------------------------------------------------------------ 150︒C●Storage Temperature Range --------------------------------------------------------------------------------------- -65︒C to 150︒C ●ESD Susceptibility (Note 3)HBM (Human Body Model) ----------------------------------------------------------------------------------------- 2kV Recommended Operating Conditions (Note 4)●Supply Input Voltage ------------------------------------------------------------------------------------------------- 8V to 16V●Ambient Temperature Range--------------------------------------------------------------------------------------- -40︒C to 85︒C ●Junction Temperature Range -------------------------------------------------------------------------------------- -40︒C to 125︒C Electrical Characteristics(V IN (typ.) = 12V, V IN = 8V to 16V, T A = 25︒C, unless otherwise specified)RT5070Note 1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.Note 2. θJA is measured at T A= 25︒C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is measured at the exposed pad of the package.Note 3. Devices are ESD sensitive. Handling precaution recommended.Note 4. The device is not guaranteed to function outside its operating conditions.Note 5. Operation at V IN = 16V may be limited by power loss in the linear regulator.RT5070Typical Application CircuitVINL1V LNB D1Note :(1) D2, D3, D4, D5 are used for surge protection.(2) The capacitor C3 should not be less than 1 F for the power stability.RT5070Typical Operating CharacteristicsBoost Efficiency vs. Output Current6065707580859095100E f f i c i e n c y (%)System Efficiency vs. Output Current6065707580859095100E f f i c i e n c y (%)1213141516171819-50-25255075100125Temperature (°C)O u t pu t V o l t a g e (V )12131415161718190.000.100.200.300.400.500.60Output Current (A)O u t p u t V o l t a g e (V )Over Current Protect vs. Temperature0.500.550.600.650.70-25255075100125Temperature (°C)C u r r e n t (A )Under Voltage Lockout vs. Temperature7.007.207.407.607.808.00-50-25255075100125Temperature (°C)U n d e r V o l t a g e L o c k o u t (V )RT5070V IN = 12V V SEL from 0V to 3.3V, C LNB = 0.1μF, V LNB from 13V to 18VV LNB (5V/Div)V SEL (2V/Div)Time (500μs/Div)Output Voltage Transition RisingV IN = 12V, V SEL from 3.3V to 0V, CLNB = 1μF, V LNB from 18V to 13VV LNB (5V/Div)V SEL (2V/Div)Time (500μs/Div)Output Voltage Transition FallingV IN = 12VV IN (10V/Div)V BOOST (10V/Div)V LNB (10V/Div)Time (5ms/Div)Power On SequenceV IN = 12VV BOOST (5V/Div)V LNB (5V/Div)I LNB(500mA/Div)Time (500ms/Div)Over Current ProtectionRT5070Application InformationBoost Converter/Linear RegulatorThe 5070 integrates a current-mode boost converter and linear regulator. Use the SEL pin to control the LNB voltage and the boost converter track is at least greater 800mV than the LNB voltage. The boost converter is high efficiency PWM architecture with 700kHz operation frequency. The linear regulator has the capability to source current up to 550mA during continuous operation. All the loop compensation, current sensing, and slope compensation functions are provided internally.The RT5070 has current limiting on the boost converter and the LNB output to protect the IC against short circuits. The internal MOSFET will turn off when the LX current is higher than 3A cycle-by-cycle. The LNB output will turn off when the output current higher than the 550mA and 45ms and turn-on after 1800ms automatically.Input Capacitor SelectionThe input capacitor reduces voltage spikes from the input supply and minimizes noise injection to the converter. A 30μF capacitance is sufficient for most applications. Nevertheless, a higher or lower value may be used depending on the noise level from the input supply and the input current to the converter. Note that the voltage rating of the input capacitor must be greater than the maximum input voltage. Inductor SelectionThe inductance depends on the maximum input current. As a general rule, the inductor ripple current range is 20% to 40% of the maximum input current. If 40% is selected as an example, the inductor ripple current can be calculated according to the following equations :OUT OUT(MAX)IN(MAX)INRIPPLE IN(MAX)V I I =V I = 0.4I η⨯⨯⨯where η is the efficiency of the converter, I IN(MAX) is the maximum input current, and IRIPPLE is the inductor ripple current. The input peak current can then be obtained by adding the maximum input currentwith half of the inductor ripple current as shown in the following equation : I PEAK = 1.2 x I IN(MAX)note that the saturated current of the inductor must be greater than I PEAK . The inductance can eventually be determined according to the following equation :()()()22IN OUT IN OUT OUT(MAX)OSCηV V V L 0.4V I f ⨯⨯-=⨯⨯⨯where f OSC is the switching frequency. For better system performance, a shielded inductor is preferred to avoid EMI problems.Boost Output Capacitor SelectionThe RT5070 boost regulator is internally compensated and relies on the inductor and output capacitor value for overall loop stability. The output capacitor is in the 30μF to 50μF range with a low ESR, as strongly recommended. The voltage rating on this capacitor should be in the 25V to 35V range since it is connected to the boost V OUT rail.The output ripple voltage is an important index for estimating chip performance. This portion consists of two parts. One is the product of the inductor current with the ESR of the output capacitor, while the other part is formed by the charging and discharging process of the output capacitor. As shown in Figure 1, ∆V OUT1 can be evaluated based on the ideal energy equalization. According to the definition of Q, the Q value can be calculated as the following equation : IN L OUT IN L OUT IN OUT OUT1OUT OSC111Q = I I I I I I 222V 1 = C V V f ⎡⎤⎛⎫⎛⎫⨯+∆-+-∆- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⨯⨯⨯∆where f OSC is the switching frequency and ∆I L is the inductor ripple current. Bring C OUT to the left side to estimate the value of ∆V OUT1 according to the following equation : OUTOUT1OUT OSCD I V =C f η⨯∆⨯⨯RT5070where D is the duty cycle and η is the boost converter efficiency. Finally, take ESR into consideration, the overall output ripple voltage can be determined by the following equation :OUTOUT IN OUT OSCD I V = I ESR C f η⨯∆⨯+⨯⨯The output capacitor, C OUT , should be selected accordingly.TimeFigure 1. The Output Ripple Voltage without theContribution of ESRSchottky Diode Selection Schottkydiodesarechosenfortheirlowforward-voltage drop and fast switching speed. However, when making a selection, important parameters such as power dissipation, reverse voltage rating, and pulsating peak current should all be taken into consideration. A suitable Schottky diode’s reverse voltage rating must be greater than the maximum output voltage and its average current rating must exceed the average output current. The chosen diode should also have a sufficiently low leakage current level, since it increases with temperature. Under-Voltage Lockout (UVLO)The UVLO circuit compares the input voltage at VIN with the UVLO threshold (7.7V rising typically) to ensure that the input voltage is high enough for reliable operation. The 350mV (typ.) hysteresis prevents supply transients from causing a shutdown. Once the input voltage exceeds the UVLO rising threshold, start-up begins. When the input voltage falls below the UVLO falling threshold, all IC internal functions will be turned off by the controller. Over-Current ProtectionThe RT5070 features an over-current protection function to prevent chip damage from high peak currents. Both the boost converter and the linear regulator have independent current limit. In the boost converter, this is achieved through cycle-by-cycle internal current limit. During the ON-period, the chip senses the inductor current that is flowing into the LX pin. The internal NMOS will be turned off if the peak inductor current reaches the current-limit value of 3A (typ.).When the linear regulator exceeds 550mA (typ.) more than 45ms, the LNB output will be disabled. During this period of time, if the current limit condition disappears, the OCP will be cleared and the part restarts. If the part is still in current limit after this time period, the linear regulator and boost converter will automatically disable to prevent the part from overheating.Short Circuit ProtectionIf the LNB output is shorted to ground, and more than 45ms, the RT5070 will be disabled 1.8s then enableautomatically.Over-Temperature ProtectionWhen the junction temperature reaches the critical temperature (typically 140 o C), the boost converter and the linear regulator are immediately disabled. When the junction temperature cools down to a lower temperature threshold specified, the RT5070 will be allowed to restart by normal start operation. LNB Output VoltageThe RT5070 has voltage control function on the LNB output. This function provides 4 levels for the common standards and compensation if the cable line has voltage drop. These voltage levels are defined in table 1. The rise time and fall time of the VLNB is 3mS (typ.).RT5070Pull-Down Rate ControlThe output linear stage provides approximately 40mA of pull-down capability. This ensures that the output volts are ramped from 18.3V to 13.3V in a reasonable amount of time.Over-Current Disable TimeIf the LNB output current exceeds 550mA, typical, for more than 45ms, then the LNB output will be disabled and device enters a TON = 45ms/TOFF = 1800ms routine. It will be returned to normal operation after a successful soft-start process.Inrush CurrentAt start-up or during a LNB reconfiguration event, a transient surge current above the normal DC operating level can be provided by the IC. This current increase can be as high as 550mA, typical, for as long as required, up to a maximum of 45ms. DC CurrentThe RT5070 can handle up to 500mA during continuous operation.Thermal ConsiderationsFor continuous operation, do not exceed absolutemaximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula : P D(MAX) = (T J(MAX) - T A ) / θJAwhere T J(MAX) is the maximum junction temperature, T A is the ambient temperature, and θJA is the junction to ambient thermal resistance.For recommended operating condition specifications, the maximum junction temperature is 125︒C. The junction to ambient thermal resistance, θJA , is layout dependent. For SOP-8 (Exposed Pad) package, the thermal resistance, θJA , is 29︒C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T A = 25︒C can be calculated by the following formula :P D(MAX) = (125︒C - 25︒C) / (29︒C/W) = 3.44W for SOP-8 (Exposed Pad) packageThe maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) andthermal resistance, θJA . The derating curve in Figure 2 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.Figure 2. Derating Curve of Maximum PowerDissipationIf loading is 1000mAIf LNB is shorted to GND0.00.51.01.52.02.53.03.54.04.55.00255075100125Ambient Temperature (°C)M a x i m u m P o w e r D i s s i p a t i o n (W )RT5070Layout ConsiderationFor high frequency switching power supplies, the PCB layout is important to get good regulation, high efficiency and stability. The following descriptions are the guidelines for better PCB layout.④ For good regulation, place the power components as close as possible. The traces should be wide and shortenough especially for the high-current loop.④ Minimize the size of the LX node and keep it wide and shorter.④ The exposed pad of the chip should be connected to a strong ground plane for maximum thermal consideration.D 3 and D 4 should be placed as closed as possible to V OUT for surge protection.The inductor should be placed as close as possible to the L X pin to minimize the noise coupling into other circuits.LX node copper area should be minimized for reducing EMIPlace the power components as close as possible. The traces should be wide and short especially for the high-current loop.The CIN, CBST and CLNB should be placed as closed as possible to RT5047 for The exposed pad of the chip s h o u l d b e c o n n e c t e d t o a n a l o g g r o u n d p l a n e f o r Figure 3. PCB Layout GuideRT5070 Outline Dimension8-Lead SOP (Exposed Pad) Plastic PackageRichtek Technology Corporation14F, No. 8, Tai Yuen 1st Street, Chupei CityHsinchu, Taiwan, R.O.C.Tel: (8863)5526789Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.。
单管型IGBT 模块Single Switch IGBT初版 Preliminary产品数据手册 Product Datasheet 版本 Ver.1906电路结构Circuit Configuration图1.电路结构 Fig. 1 Circuit configuration模块外形 Module Appearance图2. 模块外形Fig. 2 Module appearance3(C)9(C)7(C)5(C)4(E)6(E)8(E)1(E)2(G)Module Label Code Instruction单管型IGBT模块Single Switch IGBT产品数据手册 Product Datasheet 版本 Ver.1906初版Preliminary单管型IGBT模块Single Switch IGBT产品数据手册 Product Datasheet 版本 Ver.1906初版Preliminary单管型IGBT模块Single Switch IGBT产品数据手册 Product Datasheet 版本 Ver.1906初版Preliminary单管型IGBT模块Single Switch IGBT产品数据手册 Product Datasheet 版本 Ver.1906初版Preliminary单管型IGBT模块Single Switch IGBT产品数据手册 Product Datasheet 版本 Ver.1906初版Preliminary单管型IGBT 模块Single Switch IGBT初版 Preliminary产品数据手册 Product Datasheet 版本 Ver.1906+0.5+0.5+0.3+0.3重量 Weight :1100g 模块外观类型 Module outline code :E2图3. 模块外观尺寸 Fig. 3 Module outlines单管型IGBT模块Single Switch IGBT产品数据手册 Product Datasheet 版本 Ver.1906初版Preliminary使用条件和条款(1)数据手册中的产品信息是专门为技术人员提供的。
常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。
2单元大功率IGBT驱动片TX-2DE300M17/M33产品手册目录一、概述 (4)二、原理框图 (4)三、电气参数 (4)3.1 极限参数 (4)3.2 驱动特性 (5)3.3 工作条件 (6)3.4 短路保护特性 (6)3.5 对输入电源的要求 (6)四、波形图 (6)4.1 正常驱动波形图 (6)4.2 保护波形图 (7)4.3 说明 (7)五、尺寸结构 (7)5.1 外形尺寸 (7)5.2 引脚说明 (7)六、应用电路说明 (8)6.1 电源输入端Vdc的连接 (8)6.2 驱动器低压侧的设置和连接说明 (8)6.2.1 工作模式输入信号Mode (8)6.2.2 死区和短脉冲抑制示意图以及死区时间调整 (9)6.2.3 PWM输入信号INA和INB (9)6.2.4 故障输出信号Fault/ (9)6.2.5 复位信号Reset (9)6.2.6 自动复位功能 (9)6.3 驱动器高压侧输出的连接 (9)6.3.1 驱动功率的计算 (9)6.3.2 滤波电容 (9)6.3.3 IGBT的连接 (10)6.4 驱动保护 (10)6.4.1 过流保护阈值Vref (10)6.4.2 RC定时网络 (11)6.4.3 软关断 (11)6.4.4 欠压保护 (11)6.4.5 外部故障信号输入 (11)6.4.6 有源钳位 (11)6.5 典型应用图(以半桥电源为例) (12)七、相关产品信息 (12)7.1 TX-DE300M2 (12)八、常见问题 (12)九、其它说明 (12)TX-2DE300M17/33大功率IGBT 二单元驱动器一、概述∙ 完全兼容英飞凌2ED300V17-S 、ST 驱动器。
∙ 二单元隔离驱动器,M17、M33分别可驱动电压≤1700V 、3300V 的全系列IGBT 。
∙ 自带隔离的DC/DC 电源,使用方便,用户只需提供一个15V 电源。
∙ 驱动输出电流30A 。