第三章概率的进一步认识专题复习报告
- 格式:doc
- 大小:657.00 KB
- 文档页数:21
第三章概率的进一步认识单元整理一.单元目标整理1.了解一步实验与两步实验在概率求解方法上的区别,会运用列举法,树状图或表格列举所有可能事件的结果。
2.理解放回实验与不放回实验的区别,能分别运用树状图或表格列举出放回实验和不放回实验所出现的所有可能结果。
3.能够将不等可能性事件转化为等可能性事件,从而利于树状图或表格列举所有可能结果。
4.理解当实验次数足够大时,频率稳定与理论概念,并能够运用其解决实际问题。
二.基础知识过关练1.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.23B.12C.13D.192.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.14B.13C.12D.233.在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()A.14B.23C.13D.3164.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A. 13B.14C.16D.185.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.B.C.D.6.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.49B.29C.23D.137.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5 B.10C.12 D.158.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是___________.三.知识结构构建四.能力提升训练1.2020年10月,枣庄市举行“红色故事讲述大赛”活动,峄城区从在比赛中脱颖而出的小贤、小晴、小艺、小志四位同学随机挑选参加市里比赛。
第三章概率的进一步认识复习【教学目标】知识于技能目标:回顾本章的内容,梳理本章的知识结构,建立有关概率知识的框架图..用所学的概率知识去解决某些现实问题,再自我回忆和总结出实验频率与理论概率的关系过程与方法目标.初步形成评价与反思的意识..通过举例,进一步发展学生随机观念和统计观念..学会与人合作,并能与他人交流思维的过程和结果.形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力和创新精神情感与态度目标:积极参与回顾与思考的过程,对数学有好奇心和求知欲.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心..形成实事求是的态度.教学重、难点:教学重点:引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图.教学难点:结合实例,理解实验频率和理论概率的关系【导学过程】【创设情景,引入新课】一、知识链接:(一)、知识指导与梳理:(二)、知识回顾:1、事件发生的可能性也称为事件发生的。
在考察中,每个对象出现的次数称为,而每个对象出现的次数与总次数的比值称为。
2、当实验次数很大时,可以用一个事件发生的来估计这一事件发生的。
3、利用或可以清晰地表示出某个事件发生的所有可能出现的结果。
4、用实验的方法统计下列事件发生的概率:(1)、掷一枚均匀的硬币,正面朝上的概率为。
(2)、掷一枚均匀的正六面体骰子,3点朝上的概率为。
(3)、掷一枚均匀的正六面体骰子,每次实验掷两次,两次朝上的骰子点数之和为5的概率为。
(三)、例题解析:例1、袋中有4个红球、1个白球,它们除颜色外都相同。
(1)用试验的方法估计,从袋中任意摸出一个球它是白球的概率;(2)从袋中任意摸出一个球它是白球的概率理论上应等于多少?(3)试验估计的结果和理论计算的结果一致吗?为什么?你认为怎样才能得到更为准确的估计值?例2、图2是“配紫色”游戏的两个转盘,你能用树状图或列表的方法求出配成紫色的概率吗?图1例3、某校九年级的初中学生共796名,学生的出生月份统计如下,根据图5中数据回答以下问题:图2(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两个人生日在10月5日是不可能的,可能的,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月的概率最小?例4、小明和小亮用5张同样规格的硬纸片做拼图游戏,正如图3所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张,规则如下:当两张硬纸片上的图形可拼成电灯或小人时,小明得1分;当两张硬纸片上的图形可拼成房子或小山时,小亮得1分(如图4)该游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方都公平?图 3 图 41、甲、乙两队进行一场篮球赛,“甲队得分为奇数”是 事件,它的概率为 。
第3章概率的进一步认识整理与复习一、概率的基本概念回顾概率是数学中研究事件发生可能性的一门分支。
在初中数学中,我们已经学习了概率的基本概念,包括随机事件、样本空间和概率的计算方法等。
1. 随机事件:随机事件是指在一定条件下,无法预测结果的事件。
在数学中,我们用字母A、B、C等表示随机事件。
2. 样本空间:样本空间是指一个试验中可能出现的所有结果组成的集合,用S表示。
样本空间可以是有限个元素的集合,也可以是无限多个元素的集合。
3. 概率的计算方法:在概率的计算中,我们常使用频率概率和理论概率两种计算方法。
•频率概率是指通过大量重复试验,统计事件发生的次数与总试验次数之比来估计事件发生的可能性。
•理论概率是指根据事件在样本空间中的可能性来计算事件发生的可能性。
二、条件概率以及乘法定理1. 条件概率的概念条件概率是指在已知某一事件B发生的条件下,事件A发生的可能性。
用P(A|B)表示条件概率,读作“事件B发生的条件下,事件A发生的概率”。
条件概率的计算公式如下:$$ P(A|B) = \\frac{{P(A \\cap B)}}{{P(B)}} $$其中,P(A ∩ B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
2. 乘法定理乘法定理是指计算多个事件同时发生的概率的方法。
对于事件A、B、C,乘法定理可以表示为:$$ P(A \\cap B \\cap C) = P(A) \\cdot P(B|A) \\cdot P(C|A \\cap B) $$其中,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(C|A ∩ B)表示在事件A和事件B同时发生的条件下,事件C发生的概率。
三、事件的独立性1. 独立事件的概念如果事件A和事件B的发生与否互不影响,即事件A的发生与否不会改变事件B的发生概率,事件B的发生与否也不会改变事件A的发生概率,那么我们称事件A和事件B是独立事件。
第三章概率的进一步认识专题复习专题一知识要点汇总考点一、确定事件和随机事件 1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。
考点二、随机事件发生的可能性 对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
考点三、概率的意义与表示方法1、概率的意义:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
2、事件和概率的表示方法:一般,事件用英文大写字母ABC …,表示事件A 的概率p ,可记为P (A )=P考点四、确定事件和随机事件的概率之间的关系 1、确定事件概率(1)当A 是必然发生的事件时,P (A )=1 (2)当A 是不可能发生的事件时,P (A )=0 2、确定事件和随机事件的概率之间的关系 事件发生的可能性越来越小0 1概率的值 不可能发生 必然发生 事件发生的可能性越来越大 考点五、古典概型1、古典概型的定义:某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )=nm 考点六、列表法求概率1、列表法:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合:当一次试验要设计两个因素,且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
概率的进一步认识小结与复习基础盘点1.概率的理论计算:计算涉及两步或者两步以上试验的随机事件发生的概率一般采用画树状图的方式或列表法,用这两种方法求概率时,应注意各种情况出现的可能性务必 . 2.游戏公平与否问题.游戏是否公平的判断标准是看游戏双方获胜的概率 ,相等则公平,否则不公平.3.用频率估计概率利用概率可以预测不确定事件进行大数次试验后平稳的 ,反过来,利用平稳的 可以估计相应的概率,这是人们在反复试验中得到的规律.关键是要理解用频率估计概率时需要真正的动手操作、试验大数次后才能获得较好的估计值.考点在线考点1 用列表法或树状图法求概率例1(2013·恩施)一个不透明的袋子里装有编号分别为1,2,3的球(除编号以外其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为13. (1)求袋子里2号球的个数;(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x ,乙摸出球的编号记为y ,用列表法或树状图法求点A (x ,y )在直线y =x 下方的概率. 解析:(1)设袋子里2号球的个数为x 个.根据题意,得13xx ++=13.解得x =2.经检验,x =2是原分式方程的解,且符合题意. 所以袋子里2号球的个数为2个. (2)列表如下:由表格,知共有30种等可能的结果,点A (x ,y )在直线y=x 下方的有11种,所以点A (x ,y )在直线y =x 下方的概率为1120. 例2(2012·聊城)我市初中毕业男生体育测试成绩有四项,其中“立定跳远”“100米跑”“肺活量测试”为必测项目,另一项为“引体向上”和“推铅球”中选择一项测试.小亮、小明和大刚从“引体向上”和“推铅球”中选择同一个项目的概率是 . 解析:分别用A ,B 代表“引体向上”与“推铅球”,画树状图如下:由表格,行共有8种等可能的情况,小亮、小明和大刚选择同一个测试项目的有2种情况,所以小亮、小明和大刚选择同一个测试项目的概率是41. 考点2 游戏公平与否的判定例3 (2013·鞍山)小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数,则小亮胜.(1)用列表或画树状图的方法,列出小明和小亮抽得的数字之和所有可能出现的情况; (2)请判断该游戏对双方是否公平?并说明理由. 解析:(1)列表如下:从上面表中可看出小明和小亮抽得的数字之和所有可能出现的情况为:2,3,4,5,6. (2)不公平.理由如下:因为和为偶数的有5次,和为奇数的有4次,所以P (小明胜)=,P (小亮胜)=,所以此游戏对双方不公平. 考点3 用频率估计概率例4一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个解析:设口袋中有白球x 个,则口袋中共有球(x +8)个,根据概率与频率的关系,得88x =88400.解得x ≈28.故白球的个数为28个.故选A .小亮 小明 大刚第1张第2张 和误区点拨1.混淆两种不同的“抽取”方式例1(2013·淮安)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)错解:(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是23.(2)列表如下:由列表可以看出,所有可能出现的结果共有9种,而且每种结果出现的可能性都相同,其中所组成的两位数是5的倍数的结果共有3种,所以P(组成的两位数是5的倍数)=39=13.剖析:(2)小题中,虽然结果正确,但计算方法不正确.在连续两次摸球游戏或抽卡片的概率问题中,有两种方式:有放回和无放回.解题时要注意区分,以免发生混淆.本题为摸取后不放回,错解对此未加区分而致错.正确解法是:列表如下:由列表可以看出,所有可能出现的结果共有6种,而且每种结果出现的可能性都相同,其中所组成的两位数是5的倍数的结果共有2种,所以P(组成的两位数是5的倍数)=26=13.2.审题不清例2(2013·陕西)甲、乙两人用手指玩游戏,规则如下:i)每次游戏时,两人同时随机地各伸出一根手指;ii)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时:(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.错解:设用A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指,列表如下:由表格可知,共有25种等可能的结果.(1)由表格,知甲伸出小拇指取胜有5种可能的结果,所以P(甲伸出小拇指取胜)=5 25=15.(2)由表格知,乙取胜有10种可能的结果,所P(乙取胜)=1025=25.剖析:上述错解错在没弄明白要关注的结果是什么,没有审清题意. 正解:(1)由表格,知甲伸出小拇指取胜有1种可能的结果,所以P(甲伸出小拇指取胜)=1 25.(2)由表格知,乙取胜有5种可能的结果,所以P(乙取胜)=525=15.3.错误进行频率估计例3调2013-2014第二学期43期1版的误区点拨思想方法类比调2013-2014第二学期43期3版的类比(三)中考真题练调2013-2014第二学期43期3版真题演练,将2,4去掉。
第三章概率的进一步认识专题复习专题一知识要点汇总考点一、确定事件和随机事件 1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。
考点二、随机事件发生的可能性 对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
考点三、概率的意义与表示方法1、概率的意义:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
2、事件和概率的表示方法:一般,事件用英文大写字母ABC …,表示事件A 的概率p ,可记为P (A )=P考点四、确定事件和随机事件的概率之间的关系 1、确定事件概率(1)当A 是必然发生的事件时,P (A )=1 (2)当A 是不可能发生的事件时,P (A )=0 2、确定事件和随机事件的概率之间的关系 事件发生的可能性越来越小0 1概率的值 不可能发生 必然发生 事件发生的可能性越来越大 考点五、古典概型1、古典概型的定义:某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )=nm 考点六、列表法求概率1、列表法:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合:当一次试验要设计两个因素,且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
考点七、树状图法求概率 (10分)1、树状图法:就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
2、运用树状图法求概率的条件:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
考点八、利用频率估计概率(8分)1、利用频率估计概率:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数专题二频率与概率17、(2013•铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在=专题三求普通事件发生的概率1. (2014•安徽省,第21题12分)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出所有等可能的情况数,找出这三根绳子能连结成一根长绳的情况数,即可求出所求概率.解答:解:(1)三种等可能的情况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.2. (2014•福建泉州,第21题9分)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.个球,则取出红球的概率是:=.这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.行的情况,然后利用概率公式求解即可求得答案;)由汽车向右转、向左转、直行的概率分别为,即可求得答案.;;)∵汽车向右转、向左转、直行的概率分别为,×=27××=36专题四求几何知识相关的概率1. (杭州)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,( )A.14B.25C.23D.59【答案】B.【考点】概率;正六边形的性质.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,如答图,∵正六边形的顶点,连接任意两点可得15条线段,其中6条第第9题EA CD GF BAC 、AE 、BD 、BF 、CE 、DF ,∴所求概率为62155. 故选B.2.(福建龙岩)小明“六·一”去公园玩投掷飞镖的游戏,投中图中阴影部分有奖品(飞镖盘被平均分成8份),小明能获得奖品的概率是 .383. (呼和浩特)如图,四边形 ABCD 是菱形, E 、F 、G 、H 分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是__________.124.(2014•浙江宁波,第7题4分)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( ). . . .G HFA CBDE=,故选=.28、(2013•遵义)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()B∴使图中黑色部分的图形构成一个轴对称图形的概率是:=专题五概率的应用1.20.(2014•湖南张家界,第20题,8分)某校八年级一班进行为期5天的图案设计比赛,作品上交时限为周一至周五,班委会将参赛逐天进行统计,并绘制成如图所示的频数直方图.已知从左到右各矩形的高度比为2:3:4:6:.且已知周三组的频数是8.(1)本次比赛共收到40件作品.(2)若将各组所占百分比绘制成扇形统计图,那么第五组对应的扇形的圆心角是90度.(3)本次活动共评出1个一等奖和2个二等奖,若将这三件作品进行编号并制作成背面完全相同的卡片,并随机抽出两张,请你求出抽到的作品恰好一个一等奖,一个二等奖的概率.8÷=40×=90°2.(2014•十堰20.(9分))据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.××个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.专题六方法技巧总结 数形结合思想1.(孝感)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.小时54~小时10~小时32~小时21~%20 43小时~人频数/根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ☆ ;扇形统计图中的圆心角α等于 ☆ ;补全统计直方图;(4分=1分+1分+2分) (2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率. 解:(1)30;︒144;补全统计图如下:(2)根据题意列表如下:记小红和小花抽在相邻两道这个事件为A ,∴52208)(==A P .2.(2014•四川内江,第19题,9分)为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A :实心球.B :立定跳远,C :跳绳,D :跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.小时时间/人频数/123451(2,1)(3,1)(4,1)(5,1)2(1,2)(3,2)(4,2)(5,2)3(1,3)(2,3)(4,3)(5,3)4(1,4)(2,4)(3,4)(5,4)5(1,5)(2,5)(3,5)(4,5)所占百分比是:=3.(2014•孝感,第21题10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.=40×=54°3500×=.4.(2014•四川自贡,第20题10分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.)本次测试的优秀率是则小宇与小强两名男同学分在同一组的概率是方程思想1、(13年山东青岛、5)一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有()个A、45 B、48 C、50 D、55答案:A解析:摸到白球的概率为P=10110010=,设口袋里共有n个球,则5110n=,得n=50,所以,红球数为:50-5=45,选A。