2017 考研真题 数学一 仅题目
- 格式:pdf
- 大小:709.41 KB
- 文档页数:5
...(1)若函数f(x)=⎨⎩1-cos x1【解析】lim=lim=,Q f(x)在x=0处连续∴x→0+ax【解析】Q f(x)f'(x)>0,∴⎨⎧f(x)>0={4,1,0}⇒∂f2017考研数学一真题及答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.⎧1-cos x ⎪ax ⎪b,x≤0,x>0在x=0处连续,则()(A)ab=12(B)ab=-12(C)ab=0【答案】A(D)ab=21x2x→0+ax2a(2)设函数f(x)可导,且f(x)f'(x)>0,则()11=b⇒ab=.选A. 2a2(A)f(1)>f(-1) (C)f(1)>f(-1)(B)f(1)<f(-1) (D)f(1)<f(-1)【答案】C⎧f(x)<0(1)或⎨(2),只有C选项满足(1)且满足⎩f'(x)>0⎩f'(x)<0(2),所以选C。
(3)函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量u=(1,2,2)的方向导数为()(A)12【答案】D【解析】(B)6(C)4(D)2gradf={2xy,x2,2z},⇒gradf(1,2,0)u122 =gradf⋅={4,1,0}⋅{,,}=2.∂u|u|333(6)设矩阵 A = ⎢0 2 1⎥⎥ , B = ⎢⎢0 2 0⎥⎥ , C = ⎢⎢0 2 0⎥⎥ ,则( )T ⎣ ⎣ ⎣选 D.(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位:m )处,图中实线表示甲的速度曲线 v = v (t ) (单位:m / s ),虚线表示乙的速度曲线 v = v (t ) ,三块阴影部分面积的数值12依次为 10,20,3,计时开始后乙追上甲的时刻记为t (单位:s ),则()v(m / s)1020( A )t = 10【答案】B0 5 10 15 20 25 30 t(s)( B )15 < t < 20 (C )t = 25 ( D )t > 250 0 0【解析】从 0 到 t 这段时间内甲乙的位移分别为⎰t 0v (t)dt , ⎰ t 0v (t)dt , 则乙要追上甲,则1 2⎰ t 0v2(t) - v (t)dt = 10 ,当 t = 25 时满足,故选 C.1 0(5)设 α 是 n 维单位列向量, E 为 n 阶单位矩阵,则()( A) E - αα T 不可逆(C ) E + 2αα T 不可逆(B )E + αα T 不可逆 (D )E - 2αα T 不可逆【答案】A【解析】选项 A,由 ( E - αα T )α = α - α = 0 得 ( E - αα T ) x = 0 有非零解,故 E - αα T = 0 。
2017全国研究生入学考试考研数学一真题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩,在0x =处连续,则( ) (A )12ab =(B )12ab =-(C )0ab =(D )2ab =(2)若函数()f x 可导,且()()0f x f x '>,则( ) (A )(1)(1)f f >-(B )(1)(1)f f <-(C )(1)(1)f f >-(D )(1)(1)f f <-(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量n =(1,2,2)的方向导数为() (A )12(B )6(C )4(D )2(4)甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:m/s ),虚线表示乙的速度2()v v t =,三块阴影部分面积的数值依次为10203、、,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )(A )010t =(B )01520t << (C )025t =(D )025t >(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则 (A )T E αα-不可逆 (B )T E αα+不可逆(C )2T E αα+不可逆(D )2T E αα-不可逆(6)设矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,100020002C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 (A )A 与C 相似,B 与C 相似(B )A 与C 相似,B 与C 不相似 (C )A 与C 不相似,B 与C 相似(D )A 与C 不相似,B 与C 不相似(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则()()P A B P A B >的充要条件是(A )()(B )P B A P A >(B )()(B )P B A P A <(C )()(B )P B A P A >(D )()(B )P B A P A <(8)设12,(2)n X X X n ≥为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论中不正确的是 (A )21()nii Xμ=-∑服从2χ分布(B )212()n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布(D )2()n X μ-服从2χ分布二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)已知函数21()1f x x=+,则(3)(0)f =_______。
12017年考研数学一真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→== 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩ 或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s0000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=T E x 有非零解,故0αα-=T E 。
2017年考研数学一真题及答案解析一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在 .答题纸..指定位置上. (1)若函数1,0(),0x f x axb x ì->ï=íï£î在0x =处连续,则( )()()11()22()02A abB abC abD ab ==-==【答案】A【解析】001112lim lim ,()2x x x f x ax ax a++®®-==!在0x =处连续11.22b ab a \=Þ=选A. (2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >ì>\í>î!或()0(2)'()0f x f x <ìí<î,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D 【答案】D【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradf gradf u ¶=Þ=Þ=×=×=¶选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s 0000()10()1520()25()25A tB tC tD t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt òò则乙要追上甲,则210(t)v (t)10t v dt -=ò,当025t =时满足,故选C.(5)设a 是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T T T A E B E C E D E aa aa aa aa -++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0aa a a a -=-=T E 得()0aa -=T E x 有非零解,故0aa -=T E 。
2017年考研数学1真题2017年考研数学1真题一、选择题(1)若函数在x=0处连续,则(1)。
A.B.C.D.(2)设函数可导,且,则(2)。
A.与B.与C.与D.与(3)函数在点(1,2,0)处沿向量u=(1,2,2)的方向导数为(3)。
A.12B. 6C. 4D. 2(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线(单位:m/s),虚线表示的速度曲线,三块部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(3)。
A.B.C.D.(5)设是n维单位列向量,E为n阶单位矩阵,则(5)。
A.不可逆B.不可逆C.不可逆D.不可逆(6)设矩阵,,,则(6)。
A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似(7)设A、B为随机概率,若,则的充分必要条件是(7)。
A.B.C.D.(8)设X1,X2,…Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记,则下列结论中不正确的是(8)。
A.μ服从分布B.服从分布C.服从分布D.μ服从分布二、填空题(9)已知函数,则(9)。
(10)微分方程的通解为(10)。
(11)若曲线积分在区域内与路径无关,则(11)。
(12)幂级数在区间(-1,1)内的和函数(12)。
(13)设矩阵,为线性无关的3维列向量组,则向量组的秩为(13)。
(14)设随机变量X的分布函数为,其中为标准正态分布函数,则(14)。
三、解答题(15)设函数具有2阶连续偏导数,,求|,|。
(16)求。
(17)已知函数由方程确定,求的极值。
(18)设函数在区间[0,1]上具有2阶导数,且,证明。
1.方程在区间(0,1)至少存在一个实根;2.方程在区间(0,1)内至少存在两个不同实根。
(19)设薄片型物体S是圆锥面被柱面割下的有限部分,其上任一点的密度为μ。
记圆锥面与柱面的交线为C。