摄影测量解析基础后方交会 前方交会
- 格式:pptx
- 大小:2.74 MB
- 文档页数:47
程序运行环境为Visual Studio2010.运行前请先将坐标数据放在debug下。
1.单像空间后方交会原始数据:C语言程序:#include <stdio.h>#include <math.h>#include <iostream>double *readdata();void savedata(int hang,double *data,double *xishuarray,double *faxishu,double *l,int i,double xs,double ys,double zs,double fai,double oumiga,double kapa);void transpose(double *m1,double *m2,int m,int n);void inverse(double *a,int n);void multi(double *mat1,double * mat2,double * result,int a,int b,int c); void inverse(double *a,int n)/*正定矩阵求逆*/{int i,j,k;for(k=0;k<n;k++){for(i=0;i<n;i++){if(i!=k)*(a+i*n+k)=-*(a+i*n+k)/(*(a+k*n+k));}*(a+k*n+k)=1/(*(a+k*n+k));for(i=0;i<n;i++){if(i!=k){for(j=0;j<n;j++){if(j!=k)*(a+i*n+j)+=*(a+k*n+j)* *(a+i*n+k);}}}for(j=0;j<n;j++){if(j!=k)*(a+k*n+j)*=*(a+k*n+k);}}}void transpose(double *m1,double *m2,int m,int n) //矩阵转置{ int i,j;for(i=0;i<m;i++)for(j=0;j<n;j++)m2[j*m+i]=m1[i*n+j];return;}void multi(double *mat1,double *mat2,double * result,int a,int b,int c) { int i,j,k;for(i=0;i<a;i++){for(j=0;j<c;j++){result[i*c+j]=0;for(k=0;k<b;k++)result[i*c+j]+=mat1[i*b+k]*mat2[k*c+j];}}return;}double *readdata()FILE *fp;int i,j;int number;char datacatolog[100];//scanf("%s",datacatolog);if ((fp=fopen("控制点坐标.txt","r"))==NULL) {printf("读取数据出错!\n");return false;}fscanf(fp,"%d",&number);double *cordata=new double[number*5];for (i=0;i<number;i++){for (j=0;j<5;j++){fscanf(fp,"%lf",cordata+i*5+j);}}printf("控制点坐标数据读取成功!\n");return cordata;void savedata(int hang,double *data,double *xishuarray,double *faxishu,double *l,int i,double xs,double ys,double zs,double fai,double oumiga,double kapa){FILE *fp;char *file1="结算数据.txt";fp=fopen(file1,"w");fprintf(fp,"---------原始坐标数据为--------:\n");for (int i=0;i<hang;i++){for (int j=0;j<5;j++){fprintf(fp,"%7.4lf ",data[i*5+j]);}fprintf(fp,"\n");}fprintf(fp,"--------------------------------\n");fprintf(fp,"---------误差方程系数阵为:--------:\n");for (int i=0;i<hang*2;i++){for (int j=0;j<6;j++){fprintf(fp,"%7.4lf ",xishuarray[i*5+j]);}fprintf(fp,"\n");}fprintf(fp,"--------------------------------\n"); fprintf(fp,"---------法方程系数阵为:--------:\n"); for (int i=0;i<6;i++){for (int j=0;j<6;j++){fprintf(fp,"%7.5lf ",faxishu[i*5+j]);}fprintf(fp,"\n");}fprintf(fp,"--------------------------------\n"); fprintf(fp,"---------误差方程常数项为:--------:\n"); for (int i=0;i<hang*2;i++){fprintf(fp,"%lf ",l[i]);fprintf(fp,"\n");}fprintf(fp,"--------------------------------\n");fprintf(fp,"---------迭代次数为:--------:\n");fprintf(fp,"%d\n",i);fprintf(fp,"--------------------------------\n");fprintf(fp,"-----------外方位元素为:---------\n");fprintf(fp," Xs= %lf, Ys=%lf, Zs=%lf\n",xs,ys,zs);fprintf(fp," fai= %lf, oumiga=%lf, kapa=%lf\n",fai,oumiga,kapa);fprintf(fp,"--------------------------------\n");fclose(fp);return;}void main(){int i,j;int ii,jj;int diedainumber=0;double x0=0.0,y0=0.0,f=0.0;double m=50000; //估算比例尺double fai=0,oumiga=0,kapa=0,Xs=0,Ys=0,Zs=0;double R[3][3]={0.0};double X=0.0,Y=0.0,Z=0.0,L[8][1]={0.0},A[8][6]={0.0};doublecorrect[6][1]={0.0},AT[6][8]={0.0},ATA[6][6]={0.0},ATL[6][1]={0.0};int row; //row用于存放坐标行数double *controlpoint;controlpoint=readdata();row=sizeof(controlpoint);for (i=0;i<row;i++){for (j=0;j<5;j++){printf("%3.3lf ",controlpoint[i*5+j]);}printf("\n");}/*----------内方位元素----------*/printf("请输入像片的内方位元素(mm):\n");printf("x0=");x0/=1000.0;scanf("%lf",&x0); //double类型数据要用%lfprintf("y0=");y0/=1000.0;scanf("%lf",&y0);printf("f=");scanf("%lf",&f);f=f/1000.0;/*------------------------------*///-------确定未知数初始值------for(int i=0;i<row;i++){Xs=Xs+controlpoint[i*5+2];Ys=Ys+controlpoint[i*5+3];Zs=Zs+controlpoint[i*5+4];}Xs/=row;Ys/=row;Zs=Zs/row+m*f;//-----------------------------do{diedainumber++;//---------组成旋转矩阵--------R[0][0]=cos(fai)*cos(kapa)-sin(fai)*sin(oumiga)*sin(kapa);R[0][1]=-cos(fai)*sin(kapa)-sin(fai)*sin(oumiga)*cos(kapa);R[0][2]=-sin(fai)*cos(oumiga);R[1][0]=cos(oumiga)*sin(kapa);R[1][1]=cos(oumiga)*cos(kapa);R[1][2]=-sin(oumiga);R[2][0]=sin(fai)*cos(kapa)+cos(fai)*sin(oumiga)*sin(kapa);R[2][1]=-sin(fai)*sin(kapa)+cos(fai)*sin(oumiga)*cos(kapa);R[2][2]=cos(fai)*cos(oumiga);//-----------------------------//计算系数阵和常数项for(int i=0,k=0,j=0;i<=3;i++,k++,j++){X=R[0][0]*(controlpoint[i*5+2]-Xs)+R[1][0]*(controlpoint[i*5+3]-Y s)+R[2][0]*(controlpoint[i*5+4]-Zs);Y=R[0][1]*(controlpoint[i*5+2]-Xs)+R[1][1]*(controlpoint[i*5+3]-Y s)+R[2][1]*(controlpoint[i*5+4]-Zs);Z=R[0][2]*(controlpoint[i*5+2]-Xs)+R[1][2]*(controlpoint[i*5+3]-Y s)+R[2][2]*(controlpoint[i*5+4]-Zs);L[j][0]=controlpoint[i*5+0]-(x0-f*X/Z);L[j+1][0]=controlpoint[i*5+1]-(y0-f*Y/Z);j++;A[k][0]=(R[0][0]*f+R[0][2]*(controlpoint[i*5+0]-x0))/Z;A[k][1]=(R[1][0]*f+R[1][2]*(controlpoint[i*5+0]-x0))/Z;A[k][2]=(R[2][0]*f+R[2][2]*(controlpoint[i*5+0]-x0))/Z;A[k][3]=(controlpoint[i*5+1]-y0)*sin(oumiga)-((controlpoint[i*5+0 ]-x0)*((controlpoint[i*5+0]-x0)*cos(kapa)-(controlpoint[i*5+1]-y0)*si n(kapa))/f+f*cos(kapa))*cos(oumiga);A[k][4]=-f*sin(kapa)-(controlpoint[i*5+0]-x0)*((controlpoint[i*5+ 0]-x0)*sin(kapa)+(controlpoint[i*5+1]-y0)*cos(kapa))/f;A[k][5]=controlpoint[i*5+1]-y0;A[k+1][0]=(R[0][1]*f+R[0][2]*(controlpoint[i*5+1]-y0))/Z;A[k+1][1]=(R[1][1]*f+R[1][2]*(controlpoint[i*5+1]-y0))/Z;A[k+1][2]=(R[2][1]*f+R[2][2]*(controlpoint[i*5+1]-y0))/Z;A[k+1][3]=-(controlpoint[i*5+0]-x0)*sin(oumiga)-((controlpoint[i* 5+1]-y0)*((controlpoint[i*5+0]-x0)*cos(kapa)-(controlpoint[i*5+1]-y0) *sin(kapa))/f-f*sin(kapa))*cos(oumiga);A[k+1][4]=-f*cos(kapa)-(controlpoint[i*5+1]-y0)*((controlpoint[i* 5+0]-x0)*sin(kapa)+(controlpoint[i*5+1]-y0)*cos(kapa))/f;A[k+1][5]=-(controlpoint[i*5+0]-x0);k++;}transpose(A[0],AT[0],8,6);multi(AT[0],A[0],ATA[0],6,8,6);inverse(ATA[0],6);multi(AT[0],L[0],ATL[0],6,8,1);multi(ATA[0],ATL[0],correct[0],6,6,1);Xs=Xs+correct[0][0];Ys=Ys+correct[1][0];Zs=Zs+correct[2][0];fai=fai+correct[3][0];oumiga=oumiga+correct[4][0];kapa=kapa+correct[5][0];}while(correct[3][0]>=6.0/206265.0||correct[4][0]>=6.0/206265.0||c orrect[5][0]>=6.0/206265.0);printf("迭代次数为:%d\n",diedainumber);printf("---------误差方程系数为:--------\n");for (i=0;i<8;i++){for (j=0;j<6;j++){printf("%4.4lf ",A[i][j]);}printf("\n");}printf("--------------------------------\n");printf("求解得到的外方位元素为:\n");printf(" Xs= %lf\n",Xs);printf(" Ys= %lf\n",Ys);printf(" Zs= %lf\n",Zs);printf(" fai= %lf\n",fai);printf(" oumiga= %lf\n",oumiga);printf(" kapa= %lf\n",kapa);savedata(row,controlpoint,A[0],ATA[0],L[0],diedainumber,Xs,Ys,Zs, fai,oumiga,kapa);printf("-----------------解算结束!--------------\n");system("pause");}解算结果:2.后方交会-前方交会求解地面点坐标已知左右像片外方位元素,给出像点坐标:左像点坐标:右像点坐标:x(/m)y(/m)x(/m)y(/m)0.0053 0.0069 0.00482 0.0027C语言代码:#include <stdio.h>#include <iostream>#include <math.h>double *readdata();void savedata(int hang,double *data);double *readdata(){FILE *fp;int i,j,k;int number;char datacatolog[100];char leftdata[300];//scanf("%s",datacatolog);if ((fp=fopen("像点坐标数据.txt","r"))==NULL) {printf("读取数据出错!\n");system("pause");exit(0);}fscanf(fp,"%d",&number);double *c=new double[number*4];for (k=0;k<2;k++){fread(&leftdata,14,1,fp);for (i=0;i<number;i++){for (j=0;j<2;j++){fscanf(fp,"%lf",c+k*2+i*4+j);}}}fclose(fp);return c;}void savedata(int hang,double *data){FILE *fp;char *file1="地面点坐标数据.txt";fp=fopen(file1,"w");fprintf(fp,"---------像点对应地面点坐标为--------:\n");fprintf(fp,"\n");for (int i=0;i<hang;i++){fprintf(fp,"第%d点: ",i+1);for (int j=0;j<3;j++){fprintf(fp,"%7.4lf ",data[i*3+j]);}fprintf(fp,"\n\n");}fprintf(fp,"-----------------------------------------");fclose(fp);return;}void main(){double *imagepoint;int row;int i,j;imagepoint=readdata();row=sizeof(imagepoint);//--------------------------------------------double f=24;f/=1000;doublefai1=-0.0061,oumiga1=0.0327,kapa1=0.1711,Ys1=397367.171,Xs1=3445820.098,Zs1=148 6.212;doublefai2=0.0063,oumiga2=0.0178,kapa2=0.1489,Ys2=397367.234,Xs2=3445959.266,Zs2=1490 .096;// printf("请输入左像片的外方位元素:\n");//printf("Xs1= ");//scanf("%lf",&Xs1);//printf("Ys1= ");//scanf("%lf",&Ys1);//printf("Zs1= ");//scanf("%lf",&Zs1);//printf("fai1= ");//scanf("%lf",&fai1);//printf("oumiga1= ");//scanf("%lf",&oumiga1);//printf("kapa1= ");//scanf("%lf",&kapa1);//printf("请输入右像片的外方位元素:\n");//printf("Xs2= ");//scanf("%lf",&Xs2);//printf("Ys2= ");//scanf("%lf",&Ys2);//printf("Zs2= ");//scanf("%lf",&Zs2);//printf("fai2= ");//scanf("%lf",&fai2);//printf("oumiga2= ");//scanf("%lf",&oumiga2);//printf("kapa2= ");//scanf("%lf",&kapa2);double Bx=Xs2-Xs1,By=Ys2-Ys1,Bz=Zs2-Zs1;double N1=0,N2=0;double X1=0,Y1=0,Z1=0,X2=0,Y2=0,Z2=0;double R1[3][3]={0.0};double R2[3][3]={0.0};double GEOdata[4][3]={0.0};for (i=0;i<row;i++){//---------组成左影像旋转矩阵--------R1[0][0]=cos(fai1)*cos(kapa1)-sin(fai1)*sin(oumiga1)*sin(kapa1);R1[0][1]=-cos(fai1)*sin(kapa1)-sin(fai1)*sin(oumiga1)*cos(kapa1);R1[0][2]=-sin(fai1)*cos(oumiga1);R1[1][0]=cos(oumiga1)*sin(kapa1);R1[1][1]=cos(oumiga1)*cos(kapa1);R1[1][2]=-sin(oumiga1);R1[2][0]=sin(fai1)*cos(kapa1)+cos(fai1)*sin(oumiga1)*sin(kapa1);R1[2][1]=-sin(fai1)*sin(kapa1)+cos(fai1)*sin(oumiga1)*cos(kapa1);R1[2][2]=cos(fai1)*cos(oumiga1);//-----------------------------------//---------组成右影像旋转矩阵--------R2[0][0]=cos(fai2)*cos(kapa2)-sin(fai2)*sin(oumiga2)*sin(kapa2);R2[0][1]=-cos(fai2)*sin(kapa2)-sin(fai2)*sin(oumiga2)*cos(kapa2);R2[0][2]=-sin(fai2)*cos(oumiga2);R2[1][0]=cos(oumiga2)*sin(kapa2);R2[1][1]=cos(oumiga2)*cos(kapa2);R2[1][2]=-sin(oumiga2);R2[2][0]=sin(fai2)*cos(kapa2)+cos(fai2)*sin(oumiga2)*sin(kapa2);R2[2][1]=-sin(fai2)*sin(kapa2)+cos(fai2)*sin(oumiga2)*cos(kapa2);R2[2][2]=cos(fai2)*cos(oumiga2);//-------------像空辅系坐标-------------X1=R1[0][0]*imagepoint[i*4+0]+R1[0][1]*imagepoint[i*4+1]-R1[0][2]*f;Y1=R1[1][0]*imagepoint[i*4+0]+R1[1][1]*imagepoint[i*4+1]-R1[1][2]*f;Z1=R1[2][0]*imagepoint[i*4+0]+R1[2][1]*imagepoint[i*4+1]-R1[2][2]*f;X2=R2[0][0]*imagepoint[i*4+2]+R2[0][1]*imagepoint[i*4+3]-R2[0][2]*f;Y2=R2[1][0]*imagepoint[i*4+2]+R2[1][1]*imagepoint[i*4+3]-R2[1][2]*f;Z2=R2[2][0]*imagepoint[i*4+2]+R2[2][1]*imagepoint[i*4+3]-R2[2][2]*f;//--------------------------------------//------------点投影系数-------------N1=(Bx*Z2-Bz*X2)/(X1*Z2-Z1*X2);N2=(Bx*Z1-Bz*X1)/(X1*Z2-Z1*X2);//-----------------------------------//------------计算地面点坐标------------GEOdata[i][0]=Xs1+N1*X1;GEOdata[i][1]=Ys1+By+N2*Y2;GEOdata[i][2]=Zs1+N1*Z1;//--------------------------------------}//--------------------------------------------for (i=0;i<4;i++){printf("第%d个地面点坐标: ",i+1);for (j=0;j<3;j++){printf("%lf ",GEOdata[i][j]);}printf("\n\n");}savedata(row,GEOdata[0]);system("pause");}测试结果:3.单模型光束法严密平差缺少已知数据进行验证,因此如果有已知数据请代入已知数据进行验证。
一、名词解释(4分每题,共20分)1、框标设置在摄影机焦平面(承影面)上位置固定的光学机械标志,用于在焦平面上(亦即像片上)建立像方坐标系。
2摄影航高以摄区内的平均高程面作为摄影基准面,摄影机的物镜中心至该面的距离。
1、数字摄影测量是以数字影像为基础,用计算机进行分析和处理,确定被摄物体的形状、大小、空间位置及性质的技术。
2、合面:过投影中心作一水平面平行于地面,这一个平面称为真水平面,也叫合面;核面:摄影基线与地面点所作平面。
3、摄影测量与非摄影测量观测值的联合平差指的是在摄影测量平差中使用了更一般的原始的非摄影测量观测值或条件。
4、有限元法把地面分成适当大小的有限单元,在单元内,用一个简单的函数来描述所求的曲面,并保证相邻单元之间有连续(或光滑)的过渡,这种内插方法称为有限元法。
5、数字微分纠正或数字纠正根据有关的参数与数字地面模型,利用相应的构像方程式,或按一定的数学模型用控制点解算,从原始非正摄投影的数字影像获取正射影像,这种过程是将影像化为很多微小的区域逐一进行纠正,且使用的是数字方式处理,1、相对定向:确定一个立体像对的相对位置称为相对定向。
2、核线:核面与像片面的交线称为核线,对于同一核面的左右像片的核线,称为同名核线。
3、数字高程模型:若地面点按一定格网形式排列,点的平面坐标X、Y可由起始原点推算而无需记录,地面形态只用点的高程Z来表达,这种数据列阵称为数字高程模型(DEM)4、立体像对:在两摄站点对同一地面景物摄取有一定影像重叠的两张像片5、前方交会:由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点在物方空间坐标系中坐标的方法1.摄影测量学:摄影测量是从非接触成像系统,通过记录、量测、分析与表达等处理,获取地球及其环境和其他物体的几何、属性等可靠信息工艺、科学与技术。
2.空间前方交会:通过立体像对像点坐标和提供的像片的内、外方位元素求地面控制点在摄影测量坐标系中的坐标。
空间后交—前交程序设计(实验报告)姓名:班级:学号:时间:空间后交-前交程序设计一、实验目的用 C 、VB或MATLAB语言编写空间后方交会-空间前方交会程序⑴提交实习报告:程序框图、程序源代码、计算结果、体会⑵计算结果:像点坐标、地面坐标、单位权中误差、外方位元素及其精度二、实验数据f=150。
000mm,x0=0,y0=0三、实验思路1。
利用空间后方交会求左右像片的外方位元素(1).获取m(于像片中选取两点,于地面摄影测量坐标系中选取同点,分别计算距离,距离比值即为m),x,y,f,X,Y,Z(2).确定未知数初始值Xs,Ys,Zs,q,w,k(3).计算旋转矩阵R(4).逐点计算像点坐标的近似值(x),(y)(5)。
组成误差方程式(6)。
组成法方程式(7).解求外方位元素(8)。
检查是否收敛,即将求得的外方位元素的改正数与规定限差比较,小于限差即终止;否则用新的近似值重复步骤(3)-(7)2。
利用求出的外方位元素进行空间前交,求出待定点地面坐标(1).用各自像片的角元素计算出左、右像片的方向余弦值,组成旋转矩阵R1,R2(2)。
根据左、右像片的外方位元素,计算摄影基线分量Bx,By,Bz(3)。
计算像点的像空间辅助坐标(X1,Y1,Z1)和(X2,Y2,Z2)(4).计算点投影系数N1和N2(5)。
计算未知点的地面摄影测量坐标四、实验过程⑴程序框图函数AandL%求间接平差时需要的系数%%%已知%a=像点坐标x,b=像点坐标y,f内方位元素主距%φ=q,ψ=w,κ=k%像空间坐标系X,Y,Z%地面摄影测量坐标系Xs,Ys,Zsfunction [A1,L1,A2,L2]=AandL(a,b,f,q,w,k,X,Y,Z,Xs,Ys,Zs) %%%%%%%%%%%选择矩阵元素a1=cos(q)*cos(k)—sin(q)*sin(w)*sin(k);a2=-cos(q)*sin(k)—sin(q)*sin(w)*cos(k);a3=-sin(q)*cos(w);b1=cos(w)*sin(k);b2=cos(w)*cos(k);b3=—sin(w);c1=sin(q)*cos(k)+cos(q)*sin(w)*sin(k);c2=—sin(q)*sin(k)+cos(q)*sin(w)*cos(k);c3=cos(q)*cos(w);%%%%%%%共线方程的分子分母X_=a1*(X—Xs)+b1*(Y-Ys)+c1*(Z-Zs);Y_=a2*(X-Xs)+b2*(Y—Ys)+c2*(Z-Zs);Z_=a3*(X—Xs)+b3*(Y—Ys)+c3*(Z-Zs);%%%%%%%近似值x=-f*X_/Z_;y=-f*Y_/Z_;%%%%%%%A组成L组成a11=1/Z_*(a1*f+a3*x);a12=1/Z_*(b1*f+b3*x);a13=1/Z_*(c1*f+c3*x);a21=1/Z_*(a2*f+a3*y);a22=1/Z_*(b2*f+b3*y);a23=1/Z_*(c2*f+c3*y);a14=y*sin(w)-(x/f*(x*cos(k)—y*sin(k))+f*cos(k))*cos(w);a15=-f*sin(k)—x/f*(x*sin(k)+y*cos(k));a16=y;a24=—x*sin(w)-(y/f*(x*cos(k)-y*sin(k))—f*sin(k))*cos(w);a25=-f*cos(k)-y/f*(x*sin(k)+y*cos(k));a26=-x;lx=a—x;ly=b-y;%%%%%%%%%组成一个矩阵,并返回A1=[a11,a12,a13,a14,a15,a16];A2=[a21,a22,a23,a24,a25,a26];L1=lx;L2=ly;函数deg2dms%%%%%%%%角度转度分秒function y=deg2dms(x)a=floor(x);b=floor((x-a)*60);c=(x-a—b/60)*3600;y=a+(b/100)+(c/10000);函数dms2deg%%%%%度分秒转度function y=dms2deg(x)a=floor(x);b=floor((x-a)*100);c=(x-a—b/100)*10000;y=a+b/60+c/3600;函数ok%%%%%%%%%%%%%%目的是为了保证各取的值的有效值%%xy为n*1,a为1*nfunction result=ok(xy,a)format short gi=size(xy,1);for n=1:io=xy(n)—floor(xy(n,1));o=round(o*(10^a(n)))/(10^a(n));xy(n,1)=floor(xy(n,1))+o;endformat long gresult=xy;函数rad2dmsxy%%%%求度分秒表现形式的三个外方位元素,三个角度function xydms=rad2dmsxy(xy)[a,b,c,d,e,f]=testvar(xy);d=deg2dms(rad2deg(d));e=deg2dms(rad2deg(e));f=deg2dms(rad2deg(f));xydms=[a,b,c,d,e,f]';函数spacehoujiao%%%%%%%空间后交%%% f%%输入p(2*n,1)%%像点坐标x,y,X,Y,Z,均为(n,1)function [xy,m,R]=spacehoujiao(p,x,y,f,X,Y,Z)format long;%%%%%权的矢量化,这是等精度时的,如果非,将函数参数改为PP=diag(p);%%求nj=size(X,2);%%初始化Xs=0;Ys=0;Zs=0;for n=1:jXs=Xs+X(n);Ys=Ys+Y(n);Zs=Zs+Z(n);endSx=sqrt((x(2)-x(1))^2+(y(2)—y(1))^2);%%%%两像点之间距离Sd=sqrt((X(2)-X(1))^2+(Y(2)-Y(1))^2);%%%%两地面控制点之间距离m=Sd/Sx; %%%%图像比例系数Xs=Xs/j;Ys=Ys/j;Zs=m*f+Zs/j;m0=0;q=0;w=0;k=0;i=0;a=rand(2*j,6);l=rand(2*j,1);%%%%for n=1:j[a(2*n—1,:),l(2*n—1,1),a(2*n,:),l(2*n,1)]=AandL(x(n),y(n),f,q,w,k,X(n),Y(n),Z(n),Xs,Ys,Zs);enddet=inv(a’*P*a)*transpose(a)*P*l;%%%%%%%%%循环体while 1%%%%%%%%%%%%%%%%[dXs,dYs,dZs,dq,dw,dk]=testvar(det);detXs=abs(dXs);detYs=abs(dYs);detZs=abs(dZs);detq=abs(dq);detw=abs(dw);detk=abs(dk);%%%%%%%%%if ((detXs<0。
摄影测量的基本原理和空间数据处理摄影测量是利用摄影机和相关的测量技术,通过对物体在投影面上的影像进行分析和解译,来获取和处理地理空间信息的一种方法。
它可以进行地形测量、建筑物测量、城市规划、资源调查等工作。
本文将介绍摄影测量的基本原理以及空间数据的处理方法。
摄影测量的基本原理摄影测量的基本原理可以概括为相对定向和绝对定向。
相对定向是指通过测量不同相机位置下的影像,以及相机姿态参数的测量,来确定影像间的几何关系。
常用的相对定向方法有前方交会和后方交会。
前方交会是利用物点在不同影像上的像点坐标和相机的内部参数,通过解析几何学的方法来确定物点的三维坐标。
这一方法的关键是准确测量影像上物点的像点坐标。
一般来说,需要使用特制的测量工具,如空间立体仪或者摄影测量仪。
当然,现在也有一些基于计算机视觉的影像匹配算法,可以通过对影像上的特征点进行匹配来进行前方交会,但是这种方法还非常依赖于影像的质量和特征点的提取质量。
后方交会是指通过已知的物点的三维坐标,以及物点在不同影像上的像点坐标,来确定相机的姿态参数。
这一方法的关键是要准确计算影像上物点的像点坐标,而且要有足够多的已知的物点坐标。
在实践中,一般先进行前方交会,再进行后方交会,以提高定向的精度。
绝对定向是指将影像与地理坐标系统进行关联。
在绝对定向中,需要确定相机的外部定位元素(比如相机在地面上的位置和姿态),以及相对于地面的比例尺。
常用的绝对定向方法有三点法和复合导航法。
三点法是利用已知地理坐标的三个点在影像上的像点坐标,通过解析几何学和调整算法,来确定相机的外部定位元素和比例尺。
这一方法的关键是提供足够多的已知地理坐标的点来进行计算,而且这些点要在影像上有很好的识别性。
在实际操作中,可以通过GPS或者全站仪等测量设备获取地理坐标。
复合导航法是指将GPS和惯性导航等多个传感器的测量结果融合在一起,来估计相机的姿态和轨迹。
这一方法的关键是要进行多源数据的协调和融合,以及精确的观测模型和数据处理方法。
一、名词解释1摄影测量学 2航向重叠3单像空间后方交会 4相对航高5解析空中三角测量 6外方位元素7核面 8绝对定向元素二、问答题1.写出中心投影的共线方程式并说明式中各参数的含义。
2.指出采用“后方交会+前方交会”和“相对定向+绝对定向”两种方法计算地面点坐标的基本步骤。
3.简述利用光束法(一步定向法)求解物点坐标的基本思想。
4.简述解析绝对定向的基本过程。
5.简述相对定向的基本过程。
6.试述航带网法解析空中三角测量的基本步骤。
二、填空1摄影测量的基本问题,就是将_________转换为__________。
2人眼产生天然立体视觉的原因是由于_________的存在。
3相对定向完成的标志是__________。
三、简答题1两种常用的相对定向元素系统的特点及相对定向元素。
2倾斜位移的特性。
3单航带法相对定向后,为何要进行比例尺归化?怎样进行?4独立模型法区域网平差基本思想。
5何谓正形变换?有何特点?四、论述题1空间后方交会的计算步骤。
2有三条航线,每条航线六张像片组成一个区域,采用光束法区域网平差。
(1)写出整体平差的误差方程式的一般式。
(2)将像片进行合理编号,并计算带宽,内存容量。
(3)请画出改化法方程系数阵结构简图。
参考答案:一、1是对研究的对象进行摄影,根据所获得的构想信息,从几何方面和物理方面加以分析研究,从而对所摄影的对象本质提供各种资料的一门学科。
2供测图用的航测相片沿飞行方向上相邻像片的重叠。
3知道像片的内方位元素,以及三个地面点坐标和量测出的相应像点的坐标,就可以根据共线方程求出六个外方位元素的方法。
4摄影瞬间航摄飞机相对于某一索取基准面的高度。
5将中心投影转换成正射投影时,经过投影变换来消除相片倾斜所引起的像点位移,使它相当于水平相片的构象,并符合所规定的比例尺的变换过程。
6是将建立的投影光束,单元模型或航带模型以及区域模型的数字模型,根据少数地面控制点,按最小二乘法原理进行平差计算,并求加密点地面坐标的方法。
地球科学与环境工程学院实验报告书一实习任务在LPS中采集4个控制点及两个检查点的像平面坐标及其对应物方坐标;编写空间后方前方交会的程序,利用该程序计算出相片的外方位元素,并且利用内外方位元素解算出两个检查点的物方坐标,并与LPS工作站上的对应坐标相比较。
二实验原理前方交会数学模型及公式后方交会数学模型,公式计算时使用迭代计算附源代码三实验思路及步骤利用后方交会得出两张像片各自的外方位元素1)获取已知数据:从摄影资料中插曲像片比例尺、平均航高、内方位元素以及控制点的地面摄影测量坐标及对应的像点坐标。
2)确定未知数的初始值:在竖直摄影的情况下,胶原素的初始值为0,线元素其中Zs=m*f+∑Z 41,Xs=∑X 41,Ys=∑Z 41。
3) 计算旋转矩阵R 。
4) 逐点计算像点坐标的近似值:利用共线方程。
5) 组成误差方程并法化。
6) 解求外方位元素。
7) 检查计算是否收敛。
利用解求出的外方位元素进行前方交会1) 用各自像片的角元素计算出左右像片的旋转矩阵R1和R2。
2) 根据左右像片的外方位元素计算摄影基线分量Bx,By ,Bz 。
3) 逐点计算像点的空间辅助坐标。
4) 计算投影系数。
5) 计算未知点的地面摄影测量坐标。
6) 重复以上步骤完成所有点的地面坐标的计算。
四 程序框图后方交会程序框图五计算成果由四个地面控制点求出相片外方位元素的解航向倾角:-0.00398694旁向倾角:0.00211388相片旋角:-0.067578两检查点物方坐标分别为:2001 160.561 2127.272 2002 2031.232 2185.930Point ID rX rY rZ2001 -0.8600 -2.8281 1683.90242002 1.4830 -0.0987 2.31812001 670969.5900 114812.4019 1883.9024 22002 671410.2130 123166.4213 1986.0801 2误差:2001 +0.000231 -0.000729 +0.0010822002 -0.000196 -0.000238 +0.000374六心得体会通过本次实习,对于LPS有了更深的了解,操作上也更加熟练,同时在翻译操作手册的工程中,对本专业设计到的某些词汇有了初步的掌握在编写后方交会的程序过程中,对空间后方-前方交会的算法认识的更加深刻,对迭代计算的步骤也更加熟悉。