分母有理化ppt
- 格式:ppt
- 大小:374.00 KB
- 文档页数:11
代数(四)根式计算(四)——分母有理化【知识要点】1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:=来确定,①单项二次根式:aa-等分别互为有理化因式。
ba-与b②两项二次根式:利用平方差公式来确定。
如a+与a,,3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
【典型例题】例1 把下列各式分母有理化(2(3(4)(1例2 把下列各式分母有理化(2(3)(4)(1例3 把下列各式分母有理化:(1(2(3例4已知x =y =,求下列各式的值:(1)x y x y +-(2)223x xy y -+例5 把下列各式分母有理化:(1)a b ≠ (2(3例6 计算:(122⎡⎤⎥-⎥⎝⎭⎝⎭⎦(2++例6(1)已知x =y =,求221010x xy y ++的值。
(2,其中2a =2b =【练 习】A 组1.计算(1); (2)⎛- ⎝;(3 (4)+2.设梯形上底为a ,下底长为b ,高为h ,面积为s 。
(1)a =b =h =s ; (2)a =b =h =s ;(3)a =b =,h =s ;3.已知x =,求5x x -的值。
4.已知a =b =的值。
B 组1.计算:(1) ; (2(3)(4)(5)(6a b -(33a -+(4)-⎝(55(6+。
第六讲 分母有理化【知识要点】1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式(1)定义:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式.(2)确定方法:a =来确定. 如:a a 与,b a b a ++与,b a b a --与等分别互为有理化因式. ②两项二次根式:利用平方差公式22))((b a b a b a -=-+来确定. 如:b a b a -+与,b a b a -+与,y b x a y b x a -+与分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
【经典例题】【例1】把下列各式分母有理化 ①231 ②421 ③ 273④15362 ⑤50381- ⑥32121【例2】把下列各式分母有理化 ①1145- ② 1486-- ③ 3322-④322333- ⑤3535-+【例3】已知,325,325+=-=b a 求b a 11-的值。
【例4】已知121-=x ,求41412+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x 的值【例5】观察下列算式:【初试锋芒】1.下列各式:①y x +,②y b x a +,③y a x b -,④x y -的有理化因式是( )A.①②B.②③ C .③④ D .④①2.下面化简正确的是( ) A.2328325a a a = B.b b 2323= C.212ba b a -=- D.xy y y x 156112523=3. 求4554452021515+-+的值( ) A .4 B .52 C .523-D .529 4.下列式子运算正确的是( ) A.123=- B.248= C. 331= D.4321321=-++ 5.化简253-时,甲的做法是:25)25)(25()25(3253+=-+-=- 乙的做法是:25)25()25)(25(253+=--+=-,以下判断正确的是( ) A.甲的解法正确,乙的解法不正确 B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确.6.已知121,12-=+=b a ,则a 与b 的关系( ) A .a=b B.ab=1 C.a=-b D.ab=-1 7.)57(21+的倒数是 8.已知,132-=a 则222+-a a = 9.已知ab=1,其中2008)223(+=a ,则b= 10.23,23-=+=b a ,则b a 11+= 【大展身手】1.已知3=x 、31=y ,求xy x y x x +--431的值。
第二讲 分母有理化
一、知识要点与思维方法
把分母中的根号化去的方法,叫做分母有理化,又称有理化分母,是数学上的专有名词,指的是在二次根式中分母原为无理数,而将该分母化为有理数的过程,也就是将分母中的根号化去.
⑴在计算二次根式除法时,当被开方数不能恰好为整数时,常用分母有理化的方法化简.
⑵分母有理化的依据是:分式的基本性质和二次根式的性质()()()0,022≥=≥=a a a a a a .
二、例题选讲
例1、 化简 ①671
- ②32347++
③5326
2-+ ④355353--
⑤()()75537
523-+-+
⑥x x x x x x x x -++++++-+1111
例2、 已知2231
+=x ,求3262-+-x x x 的值.
例3、 解不等式x x 332<
-
三、课堂练习
1、 化简 ①
22341+ ②y x y x 3232-+
③()()()()13123322---+ ④5325
32+++-
2、 计算
③
154510-- ② 221111x x x x +-+++
③494747491
75571
53351
331
++++++++。