苏州工业园区星港学校2019-2020学年第二学期八年级数学期中试卷(含答案)
- 格式:pdf
- 大小:433.45 KB
- 文档页数:4
八年级(下)期中数学试卷(苏科版)一、选择题(本大题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.)1.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.为了调查郑州市某校学生的视力情况,在全校的4700名学生中随机抽取了150名学生,下列说法正确的是()A.此次调查属于全面调查B.样本数量是150C.4700名学生是总体D.被抽取的每一名学生称为个体3.一个不透明的盒子中装有1白球和200个黑球,它们除了颜色外都相同,将球搅匀,从中任意摸出一个球,摸到黑球是()A.必然事件B.随机事件C.不可能事件D.以上事件都有可能4.当x=﹣1时,下列分式中有意义的是()A.B.C.D.5.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”第一步应假设()A.a<b B.a=b C.a≤b D.a≥b6.将分式中的x,y的值都变为原来的2倍,则该分式的值()A.变为原来的2倍B.变为原来的4倍C.不变D.变为原来的一半7.如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,则下列结论中错误的是()A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是正方形C.当AC=BD时,它是矩形D.当AC⊥BD时,它是菱形8.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为()A.10B.5C.2.5D.2.25二、填空题(本大题共10小题不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.若分式的值为0,则x的值为.10.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,赞成、反对、无所谓三种意见的人数之比为7:2:1,画成扇形统计图后,“赞成”所在扇形的圆心角的度数为°.11.分式,,的最简公分母是.12.计算:=.13.如图,在▱ABCD中,AD=7,AB=5,DE平分∠ADC交BC于点E,则BE的长是.14.如图,在菱形ABCD中,AB=2,∠A=120°,E,F分别是边AB和CD上的点,EF ⊥CD于点F,则线段EF的长度为.15.如图,将△ABC绕点A逆时针旋转120°,得到△ADE.若点D在线段BC的延长线上,则∠B=.16.如图,在正方形ABCD中,点F为边CD上一点,BF与AC交于点E.若∠CBF=25°,则∠AED的大小为度.17.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=8,OH=6,则菱形ABCD的面积为.18.如图,矩形ABCD中,AB=8,AD=4,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是.三、解答题(本大题共9小题,请在答题卡指定区域内作答,解答时按要求写出解题步骤.)19.计算:(1);(2).20.先化简,再求值:,其中x=3.21.某玩具公司承接了第19届杭州亚运会吉祥物公仔的生产任务,现对一批公仔进行抽检,其结果统计如下,请根据表中数据,回答问题:抽取的公仔数n101001000200030005000优等品的频数m996951190028564750优等品的频率0.90.96a0.950.952b (1)a=;b=.(2)从这批公仔中任意抽取1只公仔是优等品的概率的估计值是.(精确到0.01)(3)若该公司这一批次生产了10000只公仔,请问这批公仔中优等品大约是多少只?22.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.某区教育局发布了“普通中小学劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到统计图:(1)这次调查活动共抽取人,“2次”所在扇形对应的圆心角是;(2)请将条形统计图补充完整;(3)若该校学生共有3000人,根据调查结果,请你估计该校一周劳动“4次及以上”的学生人数.23.如图,在平行四边形ABCD中,E,F是对角线BD上两个点,且BE=DF.(1)求证:AE=CF;(2)若AD=AE,∠DFC=140°,求∠DAE的度数.24.△ABC在坐标系中的位置如图1所示,其中每个小正方形的边长为1个单位长度.(1)按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC 绕点A逆时针旋转90°得到△AB2C2;(2)如图2,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线(请保留画图痕迹).25.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)当∠DAB为多少度时,四边形BECD为菱形?并说明理由.26.在矩形ABCD中,AB=6,BC=8,E、F是对角线AC上的两个动点,分别从A、C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤10.(1)若G,H分别是AD,BC中点,则四边形EGFH一定是怎样的四边形(E、F相遇时除外)?答:;(直接填空,不用说理)(2)在(1)条件下,若四边形EGFH为矩形,求t的值;(3)在(1)条件下,若G向D点运动,H向B点运动,且与点E,F以相同的速度同时出发,若四边形EGFH为菱形,求t的值.27.将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=3,OC=5.(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落至AB边上的D点,直接写出E点的坐标;(2)如图2,在OA、OC边上选取适当的点M、F,将△MOF沿MF折叠,使O点落在AB边上的D′点,过点D′作D′G⊥CO于点G点,交MF于T点.①求证:TG=AM;②设T(x,y),探求y与x满足的等量关系式,并将y用含x的代数式表示(指出变量x的取值范围);(3)在(2)的条件下,当x=2时,点P在直线MF上,问坐标轴上是否存在点Q,使以M、D′、Q、P为顶点的四边形是平行四边形,若存在,请直接写出Q点坐标;若不存在,请说明理由.。
江苏省2019-2020学年下学期期中测试卷八年级数学一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤水中捞月;⑥冬去春来.其中是必然事件的有()A.1个B.2个C.3个D.4个4.若把一个分式中的m、n同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A.2mm n+B.m nm n+-C.2m nm+D.m nm n-+5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0 B.12C.34D.16.点O是矩形ABCD的对角线AC的中点,E是BC边的中点,8AD=,3OE=,则线段OD的长为()A.5 B.6 C.8 D.10二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上)7.若分式12020xx--有意义,则x的取值范围是.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是.9.方程11233xx x--=--的解是.10.如图,在Rt ABC∆中,90BAC∠=︒,且6BA=,8AC=,点D是斜边BC上的一个动点,过点D分别作DM AB⊥于点M,DN AC⊥于点N,连接MN,则线段MN的最小值为.第10题图第12题图11.在PC机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为cm.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:.第13题图第14题图14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是 .15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 .16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 .三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷--18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =.19.解方程:2533322 x xx x--+=--.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近(精确到0.1),估计摸一次球能摸到黑球的概率是;袋中黑球的个数约为只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了个黑球.21.如图,平行四边形ABCD中,8B∠=︒,G是CD的中点,E=,60BC cmAB cm=,12是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?25.如图,在由边长为1的小正方形组成的56∆的三个顶点均在格点上,⨯的网格中,ABC请按要求解决下列问题:(1)通过计算判断ABC∆的形状;(2)在图中确定一个格点D,连接AD、CD,使四边形ABCD为平行四边形,并求出ABCDY 的面积.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是.性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD==的性质进行探究,以下判断正确的有(填序号).①AC BD⊥;②AC、BD互相平分;③AC平分BAD∠和BCD∠;④ABC ADC∠=∠;⑤180BAD BCD∠+∠=︒;⑥筝形ABCD的面积为12AC BD⨯.(3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由. 判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).期中测试卷(解析版)一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.【解答】A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况【解答】A、调查某航空公司飞行员实力的达标率是准确度要求高的调查,适于全面调查;B、调查乘坐飞机的旅客是否携带了违禁物品是准确度要求高的调查,适于全面调查;C、调查某品牌圆珠笔芯的使用寿命如果普查,所有笔芯都报废,这样就失去了实际意义,适宜抽样调查;D、调查你组6名同学对太原市境总面积的知晓情况,人数少,适宜全面调查.故选:C.3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球; ③13个人中至少有两个人的生日是在同一个月份; ④射击运动员射击一次,命中靶心; ⑤水中捞月; ⑥冬去春来.其中是必然事件的有( ) A .1个B .2个C .3个D .4个【解答】①掷一次骰子,向上一面的点数是3,是随机事件;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球,是不可能事件; ③13个人中至少有两个人的生日是在同一个月份,是必然事件; ④射击运动员射击一次,命中靶心,是随机事件; ⑤水中捞月,是不可能事件; ⑥冬去春来,是必然事件; 故选:B .4.若把一个分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A .2m m n+B .m nm n+- C .2m nm + D .m nm n-+ 【解答】A 、22(3)333m m m n m n=++,故分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,故符合题意;B 、3333m n m nm n m n ++=--,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意; C 、2233(3)3m n m n m m ++=,把一个分式中的m 、n 同时扩大3倍,分式的值也扩大13倍,故不符合题意;D 、3333m n m nm n m n--=++,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意, 故选:A .5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是( )A .0B .12C .34D .1【解答】掷一枚质地均匀的硬币,前3次都是正面朝上,则掷第4次时正面朝上的概率是12; 故选:B .6.点O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8AD =,3OE =,则线段OD 的长为( )A .5B .6C .8D .10【解答】Q 在矩形ABCD 中,8AD =,3OE =,O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8BC AD ∴==,26AB OE ==,90B ∠=︒,22226810AC AB BC ∴=++=, Q 点O 为AC 的中点,90ADC ∠=︒,152OD AC ∴==, 故选:A .二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上) 7.若分式12020x x --有意义,则x 的取值范围是 2020x ≠ .【解答】由题意得:20200x -≠, 解得:2020x ≠, 故答案为:2020x ≠.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是 100 .【解答】为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是100. 故答案为:1009.方程11233x x x--=--的解是 6x = . 【解答】方程整理得:11233xx x --=--, 去分母得:12(3)1x x --=-, 去括号得:1261x x -+=-, 移项合并得:6x -=-, 解得:6x =,经检验6x =是分式方程的解, 故答案为:6x =10.如图,在Rt ABC ∆中,90BAC ∠=︒,且6BA =,8AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为245.【解答】90BAC ∠=︒Q ,且6BA =,8AC =,2210BC BA AC ∴+,DM AB ⊥Q ,DN AC ⊥,90DMA DNA BAC ∴∠=∠=∠=︒,∴四边形DMAN 是矩形,MN AD ∴=,∴当AD BC ⊥时,AD 的值最小,此时,ABC ∆的面积1122AB AC BC AD =⨯=⨯, 245AB AC AD BC ∴==g , MN ∴的最小值为245; 故答案为:245. 11.在PC 机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是扇形统计图.【解答】根据题意,得要反映出磁盘“已用空间”与“可用空间”占“整个磁盘空间”的百分比,需选用扇形统计图.故答案为:扇形统计图.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为 3 cm.【解答】Q菱形ABCD的面积为26cm,BD的长为4cm,∴1462AC⨯⨯=,解得:3AC=,故答案为:3.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:66121.5x x+=.【解答】小明通过AB时的速度是x米/秒,根据题意得:66121.5x x+=,故答案为:66121.5x x+=.14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是13.【解答】51、53、55、57、59、60这6个数中能被5整除的有55和60两个,所以抽到的数能被5整除的可能性的大小是2163=, 故答案为:13.15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 34︒ .【解答】Q 四边形ABDE 是矩形, 90BAE E ∴∠=∠=︒, 62ADE ∠=︒Q , 28EAD ∴∠=︒, AC CD ⊥Q , 90C E ∴∠=∠=︒AE AC =Q ,AD AD =,Rt ACD Rt AED(HL)∴∆≅∆ 28EAD CAD ∴∠=∠=︒, 90282834BAF ∴∠=︒-︒-︒=︒,故答案为:34︒.16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 ( 1.5,0)-或( 3.5,0)-或(6.5,0) .【解答】Q 点Q 在x 轴上,点P 在直线AB 上,以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,当11A C 为平行四边形的边时, 112PQ AC ∴==,P Q 点在直线25y x =+上,∴令2y =时,252x +=,解得 1.5x =-,令2y =-时,252x +=-,解得 3.5x =-,∴点Q 的坐标为( 1.5,0)-,( 3.5,0)-,当11A C 为平行四边形的对角线时, 11A C Q 的中点坐标为(3,2),P ∴的纵坐标为4,代入25y x =+得,425x =+, 解得0.5x =-, (0.5,4)P ∴-,11A C Q 的中点坐标为:(3,2),∴直线PQ 的解析式为:42677y x =-+, 当0y =时,即426077x =-+,解得: 6.5x =,故Q 为( 1.5,0)-或( 3.5,0)-或(6.5,0). 故答案为( 1.5,0)-或( 3.5,0)-或(6.5,0).三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷-- 【解答】1(1)122xx x x ++÷-- (1)(1)12(1)1x x x x x+-+-=-g21121x x -+=g221x x=g 2x =.18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =. 【解答】原式211(1)(1)1(2)a a a a a --+-=--g22(1)(1)1(2)a a a a a -+-=--g12a a +=-, 当2020a =时,原式202012021202022018+==-. 19.解方程:2533322x x x x --+=-- 【解答】去分母,得:253(2)33x x x -+-=-, 去括号,得:253633x x x -+-=-, 移项,合并,得:28x =, 系数化为1,得:4x =,经检验,当4x =时,20x -≠,即4x =是原分式方程的解, 所以原方程的解是4x =.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近 (精确到0.1),估计摸一次球能摸到黑球的概率是 ;袋中黑球的个数约为 只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了 个黑球.【解答】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4,Q摸到黑球的频率会接近0.4,∴黑球数应为球的总数的25,∴估计袋中黑球的个数为250205⨯=只,故答案为:0.4,0.4,20;(2)设放入黑球x个,根据题意得:200.6 50xx+=+,解得25x=,经检验:25x=是原方程的根,故答案为:25;21.如图,平行四边形ABCD中,8AB cm=,12BC cm=,60B∠=︒,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).【解答】(1)证明:Q四边形ABCD是平行四边形,//AD BC∴,DEG CFG∴∠=∠,GDE GCF∠=∠.G Q 是CD 的中点,DG CG ∴=,在EDG ∆和FCG ∆中,DEG CFG GDE GCF DG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EDG FCG AAS ∴∆≅∆. ED FC ∴=. //ED CF Q ,∴四边形CEDF 是平行四边形.(2)①当8AE cm =时,四边形CEDF 是矩形.理由如下: 作AP BC ⊥于P ,如图所示: 8AB cm =Q ,60B ∠=︒, 30BAP ∴∠=︒, 142BP AB cm ∴==, Q 四边形ABCD 是平行四边形,60CDE B ∴∠=∠=︒,8DC AB cm ==,12AD BC cm ==, 8AE cm =Q , 4DE cm BP ∴==,在ABP ∆和CDE ∆中,AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩,()ABP CDE SAS ∴∆≅∆, 90CED APB ∴∠=∠=︒,∴平行四边形CEDF 是矩形(有一个角是直角的平行四边形是矩形),故当8AE cm =时,四边形CEDF 是矩形; 故答案为:8.②当4AE cm =时,四边形CEDF 是菱形.理由如下: 4AE cm =Q ,12AD cm =. 8DE cm ∴=.8DC cm =Q ,60CDE B ∠=∠=︒.CDE∴∆是等边三角形.DE CE∴=.∴平行四边形CEDF是菱形(有一组邻边相等的平行四边形是菱形).故当4AE cm=时,四边形CEDF是菱形;故答案为:4.22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?【解答】(1)这次调查的总人数是:5226%200÷=(人),故答案为:200;(2)选择B的学生有:2005234165840----=(人),补全的条形统计图如右图所示,扇形统计图中E所对应的圆心角是:58 360104.4200︒⨯=︒,故答案为:104.4;(3)341700289200⨯=(人),答:选择C有289人.23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.【解答】(1)如图1,ABCDY即为所求;(2)如图2,正方形AECF即为所求,其面积为222(26)40+=.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?【解答】设两种机器人需要x 小时搬运完成,9006001500kg kg kg +=Q ,A ∴型机器人需要搬运900kg ,B 型机器人需要搬运600kg . 依题意,得:90060030x x -=, 解得:10x =,经检验,10x =是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.25.如图,在由边长为1的小正方形组成的56⨯的网格中,ABC ∆的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断ABC ∆的形状;(2)在图中确定一个格点D ,连接AD 、CD ,使四边形ABCD 为平行四边形,并求出ABCD Y 的面积.【解答】(1)由题意可得,22125AB =+=,222425AC =+=,22345BC =+=, 222(5)(25)255+==Q ,即222AB AC BC +=,ABC ∴∆是直角三角形.(2)过点A 作//AD BC ,过点C 作//CD AB ,直线AD 和CD 的交点就是D 的位置,格点D 的位置如图,ABCD ∴Y 的面积为:52510AB AC ⨯=⨯=.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 .性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD ==的性质进行探究,以下判断正确的有 (填序号). ①AC BD ⊥;②AC 、BD 互相平分;③AC 平分BAD ∠和BCD ∠;④ABC ADC ∠=∠;⑤180BAD BCD ∠+∠=︒;⑥筝形ABCD 的面积为12AC BD ⨯. (3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由.判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .【解答】(1)因为两组邻边分别相等的四边形是筝形,所以菱形或正方形符合题意. 故答案是:菱形或正方形;(2)正确的有①③④⑥.故答案为:①③④⑥;(3)选①.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.选③.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.BAC DAC ∴∠=∠,BCA DCA ∠=∠.AC ∴平分BAD ∠和BCD ∠.选④.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.ABC ADC ∴∠=∠.选⑥.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.∴筝形ABCD 的面积为12AC BD ⨯. (4)当筝形ABCD 满足90ADC ∠=︒时,四边形PNDM 是正方形.理由如下: PM AD ⊥Q ,PN CD ⊥,90PMD PND ∴∠=∠=︒.又90ADC ∠=︒Q ,∴四边形MPND 是矩形.Q 在筝形ABCD 中,AB BC =,AD CD =,同(3)得:()ABD CBD SSS ∆≅∆,ADB CDB ∴∠=∠.又PM AD ⊥Q ,PN CD ⊥,PM PN ∴=.∴四边形MPND 是正方形.故答案为:90ADC ∠=︒;(5)一条对角线垂直且平分另一条对角线的四边形是筝形.理由如下:如图1:若AC 垂直平分BD ,则AB AD =,BD CD =,∴四边形ABCD 是筝形.故答案为:一条对角线垂直且平分另一条对角线的四边形是筝形.(答案不唯一)27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).【解答】(1)①延长FD 到G ,使得DG DF =,连接BG 、EG .(或把CFD ∆绕点D 逆时针旋转180︒得到)BGD ∆, CF BG ∴=,DF DG =,DE DF ⊥Q ,EF EG ∴=.在BEG ∆中,BE BG EG +>,即BE CF EF +>. ②若90A ∠=︒,则90EBC FCB ∠+∠=︒, 由①知FCD DBG ∠=∠,EF EG =, 90EBC DBG ∴∠+∠=︒,即90EBG ∠=︒, ∴在Rt EBG ∆中,222BE BG EG +=, 222BE CF EF ∴+=;(2):①F Q 是AD 的中点,AF FD ∴=,Q 在ABCD Y 中,2AD AB =,AF FD CD ∴==,DFC DCF ∴∠=∠,//AD BC Q ,DFC FCB ∴∠=∠,DCF BCF ∴∠=∠, 12DCF BCD ∴∠=∠,故此选项正确; ②延长EF ,交CD 延长线于M , Q 四边形ABCD 是平行四边形, //AB CD ∴,A MDF ∴∠=∠,F Q 为AD 中点,AF FD ∴=,在AEF ∆和DFM ∆中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEF DMF ASA ∴∆≅∆,FE MF ∴=,AEF M ∠=∠, CE AB ⊥Q ,90AEC ∴∠=︒,90AEC ECD ∴∠=∠=︒,FM EF =Q ,FC EF FM ∴==,故②正确; ③EF FM =Q ,EFC CFM S S ∆∆∴=,MC BE >Q ,2BEC EFC S S ∆∆∴<故2BEC CEF S S ∆∆=错误;④设FEC x ∠=,则FCE x ∠=, 90DCF DFC x ∴∠=∠=︒-, 1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒-, 90AEF x ∠=︒-Q ,3DFE AEF ∴∠=∠,故此选项正确. 故答案为①②④.。
2019-2020学年江苏苏州市昆山市八年级第二学期期中数学试卷一、选择题(共10小题).1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.2.若分式的值为零,则()A.x=3B.x=﹣3C.x=2D.x=﹣23.已知点A(﹣1,y1)、B(2,y2),C(3,y3)都在反比例函数y=﹣的图象上,则下列y1、y2、y3的大小关系为()A.y1<y2<y3B.y1>y3>y2C.y1>y2>y3D.y2>y3>y14.一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含有红球”是()A.不确定事件B.必然事件C.不可能事件D.随机事件5.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=6.若将分式(a,b均为正数)中a,b的值分别扩大为原来的3倍,则分式的值()A.扩大为原来的3倍B.缩小为原来的C.不变D.缩小为原来的7.如图,△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C,且点A在边A′B′上,则旋转角的度数为()A.65°B.60°C.50°D.40°8.下列命题是真命题的是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.一组对边平行且有一组对角相等的四边形是平行四边形D.对角线互相垂直且相等的四边形是正方形9.如图,P为边长为2的正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①AP=EF;②AP⊥EF;③EF最短长度为;④若∠BAP=30°时,则EF的长度为2.其中结论正确的有()A.①②③B.①②④C.②③④D.①③④10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD =3AD,且△ODE的面积是9,则k=()A.B.C.D.12二、填空题(共8小题).11.当x时,分式有意义.12.设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为.13.若关于x的分式方程无解,则a=.14.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为.15.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是.16.如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP 所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为°.17.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC ⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P 在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是(把你认为正确结论的序号都填上,答案格式:“①②③④”).18.如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.三、解答题(共10小题).19.化简(1)﹣;(2)1﹣.20.解方程:﹣=1.21.先化简,再求值:,其中x=.22.2020年3月25日是全国中小学生安全教育日,常德芷兰实验学校为加强学生的安全意识,组织了全校8000名学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计.请根据尚未完成的频率分布表和频数分布直方图解题.频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图.(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?23.已知,在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx﹣k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB 的面积是6,求点P的坐标.24.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.25.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.26.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:日销售单价x(元)3456日销售量y(个)20151210(1)猜测并确定y与x之间的函数关系式,并画出图象;(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?27.如图,直线l1:y=﹣x+b分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(,),B为(,);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B 四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.28.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC 于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.参考答案一、选择题(共10小题).1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.2.若分式的值为零,则()A.x=3B.x=﹣3C.x=2D.x=﹣2解:由题意得:x+2=0,且x﹣3≠0,解得:x=﹣2,故选:D.3.已知点A(﹣1,y1)、B(2,y2),C(3,y3)都在反比例函数y=﹣的图象上,则下列y1、y2、y3的大小关系为()A.y1<y2<y3B.y1>y3>y2C.y1>y2>y3D.y2>y3>y1解:∵反比例函数y=﹣图象上三个点的坐标分别是A(﹣2,y1)、B(1,y2)、C(2,y3),∴y1=﹣=1,y2=﹣1,y3=﹣.∵﹣﹣1<﹣<1,∴y2<y3<y1故选:B.4.一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含有红球”是()A.不确定事件B.必然事件C.不可能事件D.随机事件解:∵盒子中装有3个红球,2个黄球,∴从中随机摸出3个小球,则事件“所摸3个球中必含红球”是必然事件,故选:B.5.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=解:设甲队每天修路xm,依题意得:=,故选:A.6.若将分式(a,b均为正数)中a,b的值分别扩大为原来的3倍,则分式的值()A.扩大为原来的3倍B.缩小为原来的C.不变D.缩小为原来的解:将分式(a,b均为正数)中a,b的值分别扩大为原来的3倍,则分式的值缩小为原来的,故选:B.7.如图,△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C,且点A在边A′B′上,则旋转角的度数为()A.65°B.60°C.50°D.40°解:∵∠ACB=90°,∠ABC=25°,∴∠BAC=65°,∵以点C为旋转中心顺时针旋转后得到△A′B′C,且点A在边A′B′上,∴CA=CA′,∠A′=∠BAC=65°,∠ACA′等于旋转角,∴∠CAA′=∠A′=65°,∴∠ACA′=180°﹣65°﹣65°=50°,即旋转角的度数为50°.故选:C.8.下列命题是真命题的是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.一组对边平行且有一组对角相等的四边形是平行四边形D.对角线互相垂直且相等的四边形是正方形解:A、根据平行四边形定理得出A为假命题,故A错误;B、根据平行四边形定理得出B为假命题,故B错误;C、根据平行四边形定理得出C是真命题,故C正确;D、根据平行四边形定理得出D是假命题,故D错误.故选:C.9.如图,P为边长为2的正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①AP=EF;②AP⊥EF;③EF最短长度为;④若∠BAP=30°时,则EF的长度为2.其中结论正确的有()A.①②③B.①②④C.②③④D.①③④解:①如图,连接PC,∵四边形ABCD为正方形,∴AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中∴△ABP≌△CBP(SAS),∴AP=PC,∵PE⊥BC,PF⊥CD,且∠FCE=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF,故①正确;②延长AP交BC于点G,由①可得∠PCE=∠PFE=∠BAP,∵PE∥AB,∴∠EPG=∠BAP,∴∠EPG=∠PFE,∵∠EPF=90°,∴∠EPG+∠PEF=∠PEG+∠PFE=90°,∴AP⊥EF,故②正确;③当AP⊥BD时,AP有最小值,此时P为BD的中点,由①可知EF=AP,∴EF的最短长度为,故③正确;④当点P在点B或点D位置时,AP=AB=2,∴EF=AP≤2,∴当∠BAP=30°时,AP<2,即EF的长度不可能为2,故④不正确;综上可知正确的结论为①②③,故选:A.10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD =3AD,且△ODE的面积是9,则k=()A.B.C.D.12解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选:C.二、填空题:(本大题共8小题,每小题3分,共24分.)11.当x≠0时,分式有意义.解:由题意得:x2≠0,解得:x≠0.12.设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴ab=2,b﹣a=﹣1,∴﹣==﹣.故答案为:﹣.13.若关于x的分式方程无解,则a=1或﹣2.解:方程两边都乘x(x﹣1)得,x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理得,(a+2)x=3,当整式方程无解时,a+2=0即a=﹣2,当分式方程无解时:①x=0时,a无解,②x=1时,a=1,所以a=1或﹣2时,原方程无解.故答案为:1或﹣2.14.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为24.解:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=24.故答案为:24.15.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1.解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,移项合并得:x=1﹣2k,根据题意得:1﹣2k<0,且1﹣2k≠±1解得:k>且k≠1故答案为:k>且k≠1.16.如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP 所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为75°.解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.17.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC ⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P 在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是①②④(把你认为正确结论的序号都填上,答案格式:“①②③④”).解:①△ODB与△OCA的面积相等都为;②四边形PAOB的面积不会发生变化为k﹣1;③不能确定PA与PB是否始终相等;④由于反比例函数是轴对称图形,当A为PC的中点时,B为PD的中点,故本选项正确.故其中一定正确的结论有①、②、④.故答案为:①、②、④.18.如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=2,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=4,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=4,∴P′D′=,即DQ+PQ的最小值为.故答案为:.三、解答题:(本大题共10小题,共76分)19.化简(1)﹣;(2)1﹣.解:(1)原式===a﹣1;(2)原式=1﹣•=1﹣=﹣=﹣.20.解方程:﹣=1.解:去分母得(x+2)2﹣4=(x+2)(x﹣2),解得x=﹣1,检验:当x=﹣1时,(x+2)(x﹣2)≠0,所以原方程的解为x=﹣1.21.先化简,再求值:,其中x=.解:当x=时原式=÷=•==22.2020年3月25日是全国中小学生安全教育日,常德芷兰实验学校为加强学生的安全意识,组织了全校8000名学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计.请根据尚未完成的频率分布表和频数分布直方图解题.频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了200名学生的竞赛成绩进行统计,其中:m=70,n=0.12;(2)补全频数分布直方图.(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)8000×(0.08+0.2)=2240,所以该校安全意识不强的学生约有2240人.23.已知,在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx﹣k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB 的面积是6,求点P的坐标.解:(1)根据题意,将点A(m,2)代入y=,得:2=,解得:m=2,即点A(2,2),将点A(2,2)代入y=kx﹣k,得:2=2k﹣k,解得:k=2,∴一次函数的解析式为y=2x﹣2;(2)如图,∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=6,解得CP=3,则P点坐标为(4,0),(﹣2,0).24.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,由折叠的性质可得:∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,∴∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),∴AE=CF,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形;解法二:证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)解:∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BE=2AE=,∴BC=AD=AE+ED=AE+BE=+=2.25.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)连接OE.由菱形OCED得:CD⊥OE,又∵BC⊥CD,∴OE∥BC(在同一平面内,垂直于同一条直线的两直线平行),又∵CE∥BD,∴四边形BCEO是平行四边形;∴OE=BC=8∴S四边形OCED=OE•CD=×8×6=24.26.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:日销售单价x(元)3456日销售量y(个)20151210(1)猜测并确定y与x之间的函数关系式,并画出图象;(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?解:(1)由表可知,xy=60,∴y=(x>0),函数图象如下:(2)根据题意,得:W=(x﹣2)•y=(x﹣2)•=60﹣;(3)∵x≤10,∴﹣≤﹣12,则60﹣≤48,即当x=10时,W取得最大值,最大值为48元,答:当日销售单价x定为10元/个时,才能获得最大日销售利润,最大利润是48元.27.如图,直线l1:y=﹣x+b分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(8,0),B为(0,4);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B 四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.解:(1)将点C(4,2)代入y=﹣x+b中,得:2=﹣2+b,解得:b=4,∴直线l1为y=﹣x+4.令y=﹣x+4中x=0,则y=4,∴B(0,4);令y=﹣x+4中y=0,则x=8,∴A(8,0).故答案为:8;0;0;4.(2)∵点C(4,2)是直线l2:y=kx﹣6上的点,∴2=4k﹣6,解得:k=2,∴直线l2为y=2x﹣6.∵点E的横坐标为m(0≤m≤4),∴E(m,﹣m+4),F(m,2m﹣6),∴EF=﹣m+4﹣(2m﹣6)=10﹣m.∵四边形OBEF是平行四边形,∴BO=EF,即4=10﹣m,解得:m=.故当m=时,四边形OBEF是平行四边形.(3)假设存在.以P、Q、A、B为顶点的菱形分两种情况:①以AB为边,如图1所示.∵点A(8,0),B(0,4),∴AB=4.∵以P、Q、A、B为顶点的四边形为菱形,∴AP=AB或BP=BA.当AP=AB时,点P(8﹣4,0)或(8+4,0);当BP=BA时,点P(﹣8,0).当P(8﹣4,0)时,Q(8﹣4﹣8,0+4),即(﹣4,4);当P(8+4,0)时,Q(8+4﹣8,0+4),即(4,4);当P(﹣8,0)时,Q(﹣8+8﹣0,0+0﹣4),即(0,﹣4).②以AB为对角线,对角线的交点为M,如图2所示.∵点A(8,0),B(0,4),∴M(4,2),AM=AB=2.∵PM⊥AB,∴∠PMA=∠BOA=90°,∴△AMP∽△AOB,∴,∴AP=5,∴点P(8﹣5,0),即(3,0).∵以P、Q、A、B为顶点的四边形为菱形,∴点Q(8+0﹣3,0+4﹣0),即(5,4).综上可知:若点P为x轴上一点,则在平面直角坐标系中存在一点Q,使得P、Q、A、B四个点能构成一个菱形,此时Q点坐标为(﹣4,4)、(4,4)、(0,﹣4)或(5,4).28.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC 于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.解:(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,∵EF垂直平分AC,垂足为O,∴OA=OC,∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴四边形AFCE为菱形,②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理得42+(8﹣x)2=x2,解得x=5,∴AF=5cm.(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=CD+AD﹣4t=12﹣4t,即QA=12﹣4t,∴5t=12﹣4t,解得,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,秒.②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上.分三种情况:i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12﹣b,得a+b=12;ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12﹣b=a,得a+b=12;iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12﹣a=b,得a+b=12.综上所述,a与b满足的数量关系式是a+b=12(ab≠0).。
高新区2019-2020学年第二学期期中考试试卷初二数学一、选择题:本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的。
请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上。
........... 1.下列图案中既是中心对称图形,又是轴对称图形的是( ▲ )A. B. C. D. 2.在下列性质中,平行四边形不一定具有的性质是( ▲ )。
A.邻角互补B.对角相等C.内角和为360°D.对角互补 3.将分式nm m-2中的m 、n 都扩大为原来的3倍,则分式的值( ▲ )A .不变B .扩大3倍C .扩大6倍D .扩大9倍4. 矩形两条对角线的夹角为60°,一条较短边长为5cm ,则其对角线的长为( ▲ ) cm .A. 5B. 10C. 15D. 7.55.平行四边形ABCD 的对角线AC 、BD 相交于点O ,给下条件不能判定它为菱形的是( ▲ )A 、AB=ADB 、AC ⊥BD C 、∠A=∠D D 、CA 平分∠BCD 6. 已知反比例函数y=-x2,下列结论不正确...的是( ▲ ) A. 图象必经过点(-1,2) B. y 随x 的增大而增大 C. 图象在第二、四象限内 D. 当x >1时,-2<y <07. 如图,在平面直角坐标系中,□ABCD 的顶点B 、C 在x 轴上,A 、D 两点分别在反比例函数k x y =(k <0,x <0)与1xy =(x >0)的图像上,若□ABCD 的面积为4,则k 的值为( ▲ ) A.-1 B.-2 C.-3 D.-58.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,此时点C 恰好在线段DE 上,若∠B =40°,∠CAE =60°,则∠DAC 的度数为( ▲ )A .15°B .20°C .25°D .30°9.如图,已知正方形ABCD 边长为1,连接AC 、BD,CE 平分∠ACD 交BD 于点E ,则DE 长为( ▲ )A .22-2B .3-1C .2-2D .2-110.如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数y =(k ≠0)在第一象限的图象经过点A (m ,2)和CD 边上的点E (n ,),过点E 作直线l ∥BD 交y 轴于点F ,则点F 的坐标是( ▲ )A .(0,﹣)B .(0,﹣)C .(0,﹣3)D .(0,﹣)二、填空题:本大题共8小题,每小题2分,共16分,把答案直接填在答题卡相对应的位置上。
江苏省苏州市高新区2019-2020学年八年级下学期期中数学试卷一、选择题(本大题共10小题,共20.0分)1. 下列交通标志是中心对称图形的为( ) A. B. C. D.2. √x −y 的有理化因式是( ) A. √x −y B. √x +y C. √x −√y D. √x +√y3. 下列变形中,正确的是( )A. x 2−1y 2−1=x yB. m 2n 2=m nC. (a−b)2a−b =a −bD. 无4. 为了了解我校九年级1048名学生的数学摸底考试情况,现从中随机抽取了100名学生数学摸底考试成绩进行统计分析,就这个问题来说,样本是指( )A. 100B. 被抽取的100名学生C. 被抽取的100名学生的数学摸底考试成绩D. 1048名学生的数学摸底考试成绩5. 下列事件中属于随机事件的是( )A. 关于x 的方程√x −1=2有实数解B. 向量AB ⃗⃗⃗⃗⃗ 与向量BC ⃗⃗⃗⃗⃗ 是平行向量C. 直线y =2x −1与直线y =x +2相交D. 一组对边平行且相等的四边形为平行四边形6. 如图,在平面直角坐标系中,线段AB 的端点为A(1,1)、B(3,1).当函数y =kx (x >0)的图象与线段AB 有交点时,设交点为P(点P 不与点A 、B重合),将线段PB 绕点P 逆时针方向旋转90°得到线段PQ ,以PA 、PQ为边作矩形APQM ,若函数y =k x (x >0)的图象与矩形APQM 的边AM有公共点,则k 的值不可能为( ) A. √5 B. 2 C. √3 D. √27.如图,矩形ABCD中,点A在双曲线y=−8上,点B,C在xx轴上,延长CD至点E,使CD=2DE,连接BE交y轴于点F,连接CF,则△BFC的面积为()A. 5B. 6C. 7D. 88.如图,已知AB⏜的半径为5,所对的弦AB长为8,点P是AB⏜的中点,⏜,则在该旋转过程中,点P的运将AB⏜绕点A逆时针旋转90°后得到AB′动路径长是()A. √5π2B. √5πC. 2√5πD. 2π9.如图,四边形ABCD是边长为8的正方形,点E在边AB上,BE=6,连接BD,CE,过点E作EF//BC,分别交BD、CD于G、F两点,若点M、N分别是DG、CE的中点,则MN的长为()A. 5B. √41C. √27D. 3√210.在图中,一次函数y=x−2与反比例函数y=3的图象交点为A、B.则一次函数值小于反比例函x数值时x的取值范围是()A. x<−1或0<x<2B. x<−1或0<x<3C. −1<x<0或0<x<3D. x>−1或0<x<2二、填空题(本大题共8小题,共16.0分)11.若式子√m+2(m−1)2有意义,则实数m的取值范围是______.12.√3√5=______ ,√(−23)2=______ .13.如图,Rt△ABO中,∠AOB=90°,∠ABO=30°,点A在第二象限,点B在第一象限,过点A的反比例函数表达式为y=−1x,则过点B的反比例函数表达式为______ .14.在四边形ABCD中,BD平分∠ABC,E为AB的中点,DE//CB,∠ACB=90°,下面的结论中,正确的有______.①△BDE为等腰三角形,②∠AED=∠AOD,③AO⋅OC=DO⋅OB,④∠CAB=30°时,四边形BCDE为菱形.15.如图,过原点的直线y=k与反比例函数y=2x(x>0),反比例函数y=4x(x>0)的图象分别交于A,B两点,过点A作y轴的平行线交反比例函数y=4x(x>0)的图象于C点,以AC为边在直线AC的右侧作正方形ACDE,点B恰好在边DE上,则k=______.16.不等式组{x+2>0x−4≥0x−6≤0的解集是______ .17.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形A n B n C n D n.则四边形S An B n C n D n=______.18. 在梯形面积公式S =12(a +b)ℎ中,已知S =30,a =6,ℎ=6,则b = .三、计算题(本大题共1小题,共6.0分)19. 先化简,再求值:(1−1a+1)÷a a 2+2a+1,其中a =√3−1.四、解答题(本大题共7小题,共58.0分)20. 计算:(√3−√2)√6+6√13.21. 为了解学生参加体育活动的情况,武侯区某中学德育处对本校部分学生进行了随机问卷调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”共有如下四个选项:A .0.5小时以下B.0.5~1小时(不包含1小时) C.1~1.5小时(包含1小时) D.1.5小时以上图①、图②是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?(2)请将图①的条形统计图补充完整;(3)若在图②的扇形统计图中,C部分所对应的圆心角的度数;(4)若全校有1000名学生,请你估计全校可能有多少名学生平均每天参加体育活动时间在1小时以上(包含1小时)?22.在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.23.如图,已知A(4,2)、B(n,−4)是一次函数y=kx+b的图象与反比例的图象的两个交点函数y=mx(1)求m的值和一次函数的解析式;−kx−b>0的解集;(2)结合图象直接写出不等式mx(3)若点M(t,y1)、N(1,y2)是反比例函数y=m上两点,且y1<y2,请你借助图象,直接写出tx的取值范围.24.如图1,四边形ABCD和四边形BCMD都是菱形,(1)求证:∠M=60°;(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长.25.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家小时后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程(km)与小明离家时间(ℎ)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.26.在平面直角坐标系中,点A的坐标是(0,6),点B在一次函数y=−x+m的图象上,且AB=OB=5.求一次函数的解析式.【答案与解析】1.答案:C解析:解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选:C.根据中心对称图形的定义即可解答.本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.2.答案:A解析:解:√x−y的有理数因式是√x−y,故选:A.找出所求有理化因式即可.此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.3.答案:C解析:解:选项A:等式的坐标已经是最简分式,没法变为右边,故A不正确;选项B:左边m2已经是最简分式,分子除以了m,分母除以了n,不符合分式的基本性质,故不正确;n2选项C:分子是分母的平方,故可以约掉分母,变为(a−b),故C成立;综上,只有C正确.故选:C.按照分式的基本性质逐个分析验证即可.本题考查了分式的基本性质在分式化简中的应用,熟练掌握分式的基本性质并正确运用,是解题的关键.4.答案:C解析:解:样本是指被抽取的100名学生的数学摸底考试成绩,故选:C .所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.要注意总体、个体和样本所说的“考查对象”是一种数据指标.即要指明具体的对象. 5.答案:B解析:解:A 、关于x 的方程√x −1=2有实数解是必然事件;B 、向量AB⃗⃗⃗⃗⃗ 与向量BC ⃗⃗⃗⃗⃗ 是平行向量是随机事件; C 、直线y =2x −1与直线y =x +2相交是必然事件;D 、一组对边平行且相等的四边形为平行四边形是必然事件;故选:B .根据无理方程的解法、向量的知识、两直线的相交的判定、平行四边形的判定定理判断即可. 本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.答案:A解析:解:分析图形可知:当函数y =k x (x >0)的图象与矩形APQM 的边AM 有公共点为M 时,k 取得最大值,∵P 在y =k x 上且y P =1,∴P(k,1),设PB =a ,则Q(k,1+a),∵四边形APQM 是矩形,∴M(1,1+a),。
2019-2020学年苏州市吴江区八年级下学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,既是轴对称图形,又是中心对称轴图形的是()A. B. C. D.2.对于反比例函数,下列说法不正确的是()A. B. 它的图象在第一、三象限C. D.3.下列式子(1)x−yx2−y2=1x−y;(2)b−ac−a=a−ba−c;(3)a2−2ab−3b2a2−6ab+9b2=a+ba−3b;(4)−x+y−x−y=x−yx+y;(5)2x−12x+1=−1中正确的是()A. 1个B. 2 个C. 3 个D. 4 个4.若正方形的对角线长为2cm,则这个正方形的面积为()A. 4cm2B. 2cm2C. √2cm2D. 2√2cm25.若分式x+3x−2的值为0,则x的值为()A. −3B. 2C. 3D. 06.下列二次根式中,属于最简二次根式的是()A. √2B. √0.2C. √8D. √127.函数的图象经过点,则函数的图象不经过第几象限……………………【】A. 一B. 二C. 三D. 四8. 某村的居民自来水管道需要改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做15天,那么余下的工程由甲队单独完成还需5天,设这项工程的规定时间是x 天,则根据题意,下面所列方程正确的是( )A. 15(1x +11.5x )=5x +1 B. 15(1x −11.5x )=5x +1 C. 15(1x +11.5x )=1−5xD. 15(1x −11.5x )=1−5x9. 已知反比例函数y =−1x 的图象上有两点A(−3,y 1),B(−2,y 2),C(2,y 3),则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 2<y 1<y 3C. y 3<y 1<y 2 D. y 1<y 3<y 210. 正方形具有而矩形不一定有的性质是( )A. 四个角都是直角B. 对角线互相平分C. 对角线互相垂直D. 对角线相等二、填空题(本大题共8小题,共24.0分)11. 49的算术平方根是______;√16的平方根是______.−8的立方根是______. 12. 若y =1√4−x 有意义,则x 的取值范围是______. 13. 在平面直角坐标系xOy 中,已知反比例函数(k ≠0)满足:当x <0时,y 随x 的增大而减小.若该反比例函数的图象与直线都经过点P ,且则实数k 的值有______个.14. 分式1x 2+3x 与2x 2−9的最简公分母是______.15. 在菱形ABCD 中,对角线AC 与BD 交于点O ,如果∠ABC =60°,AC =4,那么这个菱形的面积是____________________.16. 如图,直线分别与反比例函数y =kx 和y =3x 的图象交于点A 和点B ,与y轴交于点P ,且P 为线段AB 的中点,作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若四边形ABDC 的面积是5,则k =______.17.如图,在矩形ABCD中,AB=4,BC=6,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是______ .18.如图所示,边长为3厘米与4厘米的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧.则阴影部分的面积是______平方厘米.三、解答题(本大题共10小题,共76.0分)19.计算(1)√8+√32−√72.(2)√8×√12√6−√27−√48√12.(3)(√15−2√6)×√3+6√18.(4)(√3−√2)2+(√5+2)×(√5−2).(5)√8÷√2−4×√12×(√2−1)0.(6)√3−√12−√7−4√3.20.(1)计算:√8−(√3−1)0+(12)−2−4sin45°;(2)解方程:xx−1−31−x=2.21.有一道题:“先化简再求值:(x−1x+1+2xx2−1)÷1x2−1,其中x=−1”,小明做题时把“x=−1”错抄成了“x=1”,但他的计算结果也是正确,请你通过计算解释这是怎么回事?22.如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,3)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)(3)画出△OAB关于原点对称的△OA2B223.初中就要毕业了,几位同学准备学业考试结束后结伴去苏州旅游,预计共需费用1200元,后来又有2位同学参加进来,但总的费用不变,于是每人可少分担30元,试求共有几位同学准备结伴去苏州旅游?24.(1)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图①、②、③),先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度,并利用图③证明你的结论.(2)将(1)中的“正△ABC”分别改为正方形ABCD(如图④)、正五边形ABCDE(如图⑤).正六边形ABCDEF(如图③)、…、正n边形ABCD…X(如图(n)),“点N是射线CA上任意一点”改为点N是射线CD上任意一点,其余条件不变,根据(1)的求解思路,分别推断∠BQM各等于多少度,将结论填入下表:25.货轮从甲港往乙港运送货物,甲港的装货速度是每小时30吨,一共装了8小时,到达乙港后开始卸货,乙港卸货的速度是每小时x吨,设卸货的时间是y小时,(1)求y与x间的函数关系式;(2)若卸货的速度是40吨每小时,求乙港的卸完全部货物的时间是多少?(3)在(2)的条件下,当卸货时间在4小时的时候,问船上剩余货物是多少吨?26.已知:抛物线y=−mx2+(2m−1)x+m2−1经过坐标原点,且开口向上(1)求抛物线的解析式;(2)结合图象写出,0<x<4时,直接写出y的取值范围______;(3)点A是该抛物线上位于x轴下方的一个动点,过A作x轴的平行线交抛物线于另一点D,作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,求出矩形ABCD的周长.27.如图,直线y=x+m与双曲线y=k相交于A(2,1),B两点.x(1)求出一次函数与反比例函数的解析式,并求出B点坐标;(2)若P为直线x=1上一点,当△APB的面积为6时,请求出点P2的坐标.28.已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使∠CEF=90°,过点E作MN//AD,交AB于点M,交CD于点N,∠AEM=∠FEM.(2)如图2,若点E是OD上一点,点F是AB上一点,且使DEDO =AFAB=14,请判断△EFC形状,并说明理由(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CF,交AB于点F,当DEDO =mn时,请猜想AFAB的值(请直接写出结论)【答案与解析】1.答案:D解析:解:A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、不是中心对称图形,也不是轴对称图形,故此选项错误;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,符合题意;故选:D.根据中心对称图形以及轴对称图形的定义即可作出判断.此题主要考查了中心对称图形与轴对称图形的定义,正确理解定义是解题关键.2.答案:C解析:本题考查了反比例函数的性质,A选项中将(−2,−1)代入解析式中成立;B选项中,因k=2>0,则图象在第一、三象限;C选项中,因k>0,则图象x>0时,y随着x的增大而减小,此项中的判断是错误的;D选项中,因k>0,则图象x<0时,y随着x的增大而减小,正确;故选择C.3.答案:C解析:解:(1)x−yx2−y2=x−y(x+y)(x−y)=1x+y,故错误;(2)b−ac−a =a−ba−c,故正确;(3)a2−2ab−3b2a2−6ab+9b2=(a−3b)(a+b)(a−3b)2=a+ba−3b,故正确;(4)−x+y−x−y =x−yx+y,故正确;(5)2x−12x+1=2x−12x+1,故错误;故选C.根据分式的基本性质化简即可.本题考查了分式的基本性质,熟记分式的基本性质是解题的关键.4.答案:B解析:解:∵四边形ABCD是正方形,对角线长为2cm,∴AC⊥BD,AC=BD=2cm,∴正方形ABCD的面积S=12AC×BD=12×2cm×2cm=2cm2,故选:B.根据正方形的性质得出AC⊥BD,AC=BD=2cm,根据面积公式求出即可.本题考查了正方形的性质的应用,注意:正方形的对角线相等且垂直平分,正方形的面积等于对角线积的一半.5.答案:A解析:解:∵分式x+3x−2的值为0,∴x+3=0,x−2≠0,解得,x=−3,故选:A.根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案.本题考查的是分式的值为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.6.答案:A解析:解:B.√0.2=√15=√55,故B不是最简二次根式;C.√8=2√2,故C不是最简二次根式;D.√12=√22,故D不是最简二次根式;故选:A.根据最简二次根式的定义即可判断.本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.7.答案:A解析:先根据已知条件求出k的值,然后再根据k<0,b<0,判断出一次函数的图象经过的象限即可.解:∵反比例函数经过点,∴,∴k=−1,∴函数y=kx−2的图象不经过第一象限,故选A.8.答案:C解析:解:设这项工程的规定时间是x天,根据题意所列方程为15(1x +11.5x)=1−5x,故选:C.设这项工程的规定时间是x天,根据“如果由甲、乙两队先合做15天,那么余下的工程由甲队单独完成还需5天”列方程可得.本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.9.答案:C解析:解:∵反比例函数y=−1中,k=−1<0,x∴此函数图象在二、四象限,∵−3<−2<0,∴点A(−3,y1)B(−2,y2)在第二象限,∵函数图象在第二象限内为增函数,∴0<y1<y2,∵2>0,∴C(2,y3)在第四象限,∴y3<0,∴y1,y2,y3的大小关系是y3<y1<y2,故选:C.先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.关键是根据反比例函数的增减性解题.10.答案:C解析:解:A、正方形和矩形的四个角都是直角,故本选项不符合题意;B、正方形和矩形的对角线互相平分,故本选项不符合题意;C、正方形的对角线互相垂直,矩形的对角线不互相垂直,故本选项符合题意.D、正方形和矩形的对角线都相等,故本选项不符合题意;故选:C.根据正方形的性质和矩形的对角线的性质对各选项分析判断即可得解.本题考查了正方形的性质和矩形的性质,熟练掌握正方形和矩形的对角线的性质是解题的关键.11.答案:7 ±2−2解析:解:49的算术平方根是7;√16的平方根是±2.−8的立方根是−2,故答案为:7,±2,−2.根据平方根与立方根的定义即可求出答案.本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.12.答案:x<4解析:此题主要考查了二次根式以及分式有意义的条件,正确把握定义是解题关键.直接利用二次根式以及分式有意义的条件进而分析得出答案.解:y=1√4−x有意义,则4−x>0,解得:x<4.故答案为:x<4.13.答案:0解析:本题考查函数性质、函数的交点坐标、根与系数关系、公式变形.设P(x,y),∴x 2+y 2=7.由题意知化简得∴x 2+y 2=(x+y)2−2xy=−2×2k=3k 2−4k,∴3k 2−4k=7,∴k=或k=−1,由反比例函数的性质知k>0,∴k=.因为P是两函数的交点坐标,所以,所以△3k 2−8k≥0,又k>0,所以.因此不存在符合条件的k值.14.答案:x(x2−9)解析:解:分式1x2+3x 与2x2−9的最简公分母是x(x2−9),故答案为:x(x2−9),通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.此题的关键是考查通分.即要通分为最简公分母,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.15.答案:8√3解析:此题主要考查了菱形的性质以及等边三角形的判定与性质.先判断出△ABC是等边三角形,再根据菱形的对角线互相垂直平分和等边三角形的性质求出AO、BO,然后根据菱形的对角线互相平分求出AC、BD,再利用菱形的面积等于对角线乘积的一半列式计算即可得解.解:∵菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AO=12AC=12×4=2,BO=√32×4=2√3,∴BD=2BO=4√3,∴菱形的面积=12AC·BD=12×4×4√3=8√3故答案为8√3.16.答案:2解析:解:∵AC⊥x轴,BD⊥x轴,∴AC//PO//BD,∵P为线段AB的中点,∴OC=OD,设A(−m,km ),B(m,3m),∴AC=km ,BD=3m,CD=2m,∵四边形ABDC的面积=12×2m×(km+3m)=5,∴k=2,故答案为:2.由已知条件得到AC//PO//BD,推出OC=OD,设A(−m,km ),B(m,3m),得到AC=km,BD=3m,CD=2m,根据梯形的面积公式即可得到结论.本题考查了反比例函数与一次函数的交点问题,平行线等分线段定理,梯形的面积的计算,熟练掌握平行线等分线段定理是解题的关键.17.答案:53解析:解:连接CE,如图所示:∵四边形ABCD是矩形,∴∠ADC=90°,CD=AB=4,AD=BC=6,OA=OC,∵EF⊥AC,∴AE=CE,设DE=x,则CE=AE=6−x,在Rt△CDE中,由勾股定理得:x2+42=(6−x)2,解得:x=53,即DE=53;故答案为:53.连接CE,由矩形的性质得出∠ADC=90°,CD=AB=4,AD=BC=6,OA=OC,由线段垂直平分线的性质得出AE=CE,设DE=x,则CE=AE=6−x,在Rt△CDE中,由勾股定理得出方程,解方程即可.本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键.18.答案:4π解析:解:如图,正方形ABCD 的边长为3cm ,正方形EFGC 的边长为5cm ,根据题意有,S 阴影部分=S 扇形CEG +S 梯形ABCE −S △ABG ,∵S 扇形CEG =90π×42360=4π; S 梯形ABCE =12(3+4)×3=212; S △ABG =12×3×7=212.∴S 阴影部分=4π+212−212=4π(cm 2). 故答案为4π.如图,根据图形有S 阴影部分=S 扇形CEG +S 梯形ABCE −S △ABG ,然后根据扇形、梯形和三角形的面积公式进行计算即可.本题考查了扇形的面积公式,也考查了梯形和三角形的面积公式以及不规则几何图形面积的求法. 19.答案:解:(1)√8+√32−√72=2√2+4√2−6√2=0;(2)√8×√12√6−√27−√48√12 =4−√3−√32√3=412; (3)(√15−2√6)×√3+6√18=3√5−6√2+3√22 =3√5−9√22;(4)(√3−√2)2+(√5+2)×(√5−2)=3+2−2√6+5−4=6−2√6;(5)√8÷√2−4×√12×(√2−1)0 =√4−4×√22×1 =2−2√2;√3√12−√7−4√3 =√3−2√3−(2−√3)=−2.解析:(1)直接化简二次根式进而得出答案;(2)直接化简二次根式进而计算得出答案;(3)直接利用二次根式的混合运算法则计算得出答案;(4)直接利用乘法公式进而化简得出答案;(5)直接利用二次根式的混合运算法则计算得出答案;(6)直接利用二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.答案:解:(1)原式=2√2−1+4−4×√22=3;(2)去分母得:x +3=2(x −1),去括号得:x +3=2x −2,移项合并得:x =5,经检验x =5是分式方程的解.解析:(1)原式第一项利用平方根定义化简,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值化简,即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.21.答案:解:解析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x=−1与x=1代入计算得到结果相同,故做题时把“x=−1”错抄成了“x=1”,但他的计算结果也是正确.22.答案:解:(1)如图所示,△OA1B1即为所求.(2)∵OB=√32+42=5,∠BOB1=90°,∴点B旋转到点B1所经过的路线长为90⋅π⋅5180=52π;(3)如图所示,△OA2B2即为所求.解析:(1)分别作出点A、B绕点O逆时针旋转90°所得对应点,再与点O首尾顺次连接即可得;(2)根据弧长公式计算可得;(3)分别作出点A、B关于原点O的对称点,再首尾顺次连接即可得.本题主要考查作图−旋转变换,解题的关键是熟练掌握旋转变换的定义和性质,并据此得出变换后的对应点及弧长公式.23.答案:解:设共有x位同学准备结伴去苏州旅游,根据题意,得1200x−2−1200x=30,整理后,得 x 2−x −80=0,解得x 1=10,x 2=−8(不合题意,舍去).经检验:x =10是原方程的解,且符合题意.所以,原方程的解是x =10.答:共有10位同学准备结伴去苏州旅游.解析:关键描述语为:“每人可少分担30元”;等量关系为:原计划每人分摊的钱数−实际每人分摊的钱数=30.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.答案:解:(1)∵△ABC 是等边三角形,∴AB =BC ,∠ABC =∠BCN =60°,而BM =CN ,∴△ABM≌△BCN ,∴∠BAM =∠NBC ,而∠BQM =∠ABN +∠BAM(三角形外角定理),∵∠ABM =∠ABN +∠NBC ,∴∠ABN +∠BAM =∠ABN +∠NBC ,∴∠BQM =∠ABC =60°;(2)同理可证:△ABM≌△BCN ,所以正方形:90°;正五边形ABCDE :108°;正六边形ABCDEF :120°;正n 边形ABCD …X :(n−2)⋅180∘n .解析:(1)根据等边三角形的性质和BM =CN ,容易证明△ABM≌△BCN ,再根据确定全等三角形的性质,可以得到∠BAM =∠CBN ,而∠BQM =∠ABN +∠BAM ,现在可以得到∠BQM =∠ABC =60°;(2)将(1)中的“正△ABC ”分别改为正方形ABCD(如图④)、正五边形ABCDE(如图⑤).正六边形ABCDEF 等等,始终都可以证明△ABM≌△BCN ,然后利用全等三角形的性质始终都可以证明∠BQM =∠ABC ,再根据正多边形的边数就可以求出各自的度数.25.答案:解:(1)总货量=30×8=240吨,∴xy =240,故y =240x .(2)x =40,代入y =240x 可得y =6,乙港的卸完全部货物的时间是6小时.(3)∵x =40,即当卸货时间在4小时的时候共卸货4×40=160吨.∴船上剩余货物是240−160=80吨.解析:(1)根据总货量=240吨,可得y 与x 成反比例关系,由此可得出关系式;(2)将x =40代入(1)中关系式,即可求得;(3)先求出已经卸载的量,继而求出答案.本题考查了反比例函数的应用,难度不大,注意读懂题意是解题的关键. 26.答案:−94≤y <4解析:解:(1)∵y =x 2+(2m −1)x +m 2−1经过坐标原点,∴0=0+0+m 2−1,即m 2−1=0解得m =±1.又∵开口向上,∴−m >0,∴m <0,∴m =−1,∴二次函数解析式为y =x 2−3x .(2)∵y =x 2−3x═(x −32)2−94,∴x =32时,y 最小值为−94,x =0时,y =0,x =4时,y =4,∴0<x <4时,−94≤y <4.故答案为−94≤y <4.(3)如图,∵BC =1,B 、C 关于对称轴对称,∴B(1,0),C(2,0),∵AB ⊥x 轴,DC ⊥x 轴,∴A(1,−2),D(2,−2),∴AB =DC =2,BC =AD =1,∴四边形ABCD 的周长为6,当BC =1时,矩形的周长为6.(1)把(0,0)代入抛物线解析式求出m 的值,再根据开口方向确定m 的值即可.(2)求出函数最小值以及x =0或4是的y 的值,由此即可判断.(3)由BC =1,B 、C 关于对称轴对称,推出B(,1,0),C(2,0),由AB ⊥x 轴,DC ⊥x 轴,推出A(1,−2),D(2,−2),求出AB ,即可解决问题.本题考查二次函数的有关性质、矩形的性质等知识,解题的关键是熟练掌握配方法确定函数的顶点坐标,学会根据抛物线的对称性解决问题,属于中考常考题型.27.答案:解:(1)因为点A(2,1)在两函数图象上,则1=2+m ,1=k2,解得:m =−1,k =2,∴一次函数的解析式为y =x −1,反比例函数的解析式y =2x ,联立:{y =2x y =x −1,解得:x =2或x =−1,又∵点A 的坐标为(2,1),故点B 的坐标为(−1,−2).(2)把x =12代入y =x −1得,y =12−1=−12,∴直线x =12与直线y =x −1交点C 的坐标为(12,−12),设P(12,n),∴PC =|n +12|, ∴S △APB =S △APC +S △BPC =12|n +12|×(2+1)=6,解得,n =72或n =−92,∴P 点的坐标为(12,72)或(12,−92).解析:(1)将点A 代入两解析式根据待定系数法即可求得一次函数与反比例函数的解析式,联立方程,解方程组即可求得B 点的坐标.(2)求得直线x =12与直线y =x −1的交点坐标,设P(12,n),根据题意得出12|n +12|×(2+1)=6,解得n 的值,从而求得P 的坐标.此题考查了反比例函数与一次函数的交点问题,涉及了待定系数法,二元一次方程组以及三角形面积等的知识,熟练掌握待定系数法是解题的关键. 28.答案:(1)证明:如图1中,∵在正方形ABCD 中,BD 是对角线,∴AD =CD ,DE =DE ,∠ADE =∠CDE =45°,∴△ADE≌△CDE(SAS.)∴∠EAD =∠ECD ,又∵MN//AD,∴∠EAD=∠AEM,∴∠AEM=∠ECD,∵MN⊥CD,∴∠ENC=90°,又∵∠CEF=90°,∴∠FEM+∠CEN=∠CEN+∠ECD=90°,∴∠FEM=∠ECD,∴∠AEM=∠FEM.(2)解:结论:△EFC是等腰直角三角形.理由如下:如图2中,过点E作MN//AD,交AB于点M,交CD于点N.∴MN⊥AB,MN⊥CD,∵点O是BD的中点,∴BD=2OD.∵DEDO =14,∴DEDB =18,∴BEBD =78,∵MN//AD,∴△BME∽△BAD,∴BMBA =BEBD=78,∴AMBA =18,∴AB=8AM.∵AFAB =14,∴AB=4AF.∴AF=2AM.∴AM=FM.∴△FEM≌△AEM(S.A.S.),∴EF=EA.∠FEM=∠AEM.仿(1)可证EA=EC,∠AEM=∠EAD=∠ECD,∴EF=EC,∠FEM=∠ECD,∵∠ECD+∠CEN=90°,∴∠FEM+∠CEN=90°,∴∠FEC=180°−(∠FEM+∠CEN)=180°−90°=90°,∴△EFC是等腰直角三角形.(3)解:如图3中,当DEDB =mn时,AFAB=2mn,理由同(1);解析:(1)由正方形的性质得出∠ABD=45°,∠BAD=∠ABC=∠BCD=∠ADC=90°,AE=CE,由HL证明Rt△AME≌Rt△ENC,得出∠AEM=∠ECN,再由角的互余关系即可得出结论;(2)结论:△EFC是等腰直角三角形.理由如下:如图2中,过点E作MN//AD,交AB于点M,交CD于点N,想办法证明EA=EF=EC,∠CEF=90°即可得出结论;(3)同(1)即可得出答案.本题是综合题目,考查了正方形的性质、全等三角形的判定与性质、平行线分线段成比例定理、等腰直角三角形的判定、线段垂直平分线的性质、等腰三角形的判定与性质等知识;本题综合性强,有一定难度.。
八年级数学下册期中测试卷(考试时间:120分钟,满分120分)一、选择题(每小题3分,共24分)1. 下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.去年济川中学有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量3.反比例函数2yx的图象位于( ).A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限4.下列说法正确的是( )(1)抛一枚硬币,正面一定朝上;(2)掷一颗骰子,点数一定不大于6;(3)为了解一种灯泡的使用寿命,宜采用普查的方法;(4)“明天的降水概率为80%”,表示明天会有80%的地方下雨.A. 1个B. 2个C. 3个D. 4个5. 顺次连接矩形四边中点所组成的四边形是( )A.平行四边形B.菱形C.矩形D.以上图形都不是6. 如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°第6题第6题第7题第8题7. 在矩形ABCD中,已知AD=4,AB=3,P是AD上任意一点,PE⊥BD于E,PF⊥AC于F,则PE+PF的值为( ).A.3 B.245C.5 D.1258.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对二、填空题(每空3分,共30分)9. “一个有理数的绝对值是负数”是 .(填 “必然事件”或“不可能事件”或“随机事件”) 10. 一个四边形的边长依次是a 、b 、c 、d ,且满足22(a )(b )0c d -+-=,则这个四边形是 .11. 已知P 1(﹣1,y 1)、P 2(1,y 2)、P 3(2,y 3)是反比例函数y=的图象上的三点,则y 1、y 2、y 3的大小关系是(用“<”连接) 新- 课-标 -第 -一-网 12.如图,在菱形ABCD 中,∠BAD =60°,BD =4,则菱形ABCD 的周长是___________.第12题 第13题 第14题 第16题 13.如图,将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为___________.14. 如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个方格地面是草坪,除此以外小方格地面完全相同.一只自由飞行的小鸟,将随意落在图中所示的方格地面上,则小鸟落在草坪上的概率为 .15. 要用反证法证明命题“三角形中必有一个内角小于或等于60°”,首先应假设这个三角形中 .16. 如图,090,Rt ABC ACB ∆∠=在中,D 、E 、F 分别是AB 、BC 、CA 的中点,若5CD cm =,则EF .17.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .18.如图,在平面直角坐标系xoy 中,一次函数24y x =-的图象经过正方形OABC 的顶点和C ,则正方形OABC的面积为 . 第18题 三、解答题:(共66分)19.(本题6分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO =DO . 求证:四边形ABCD 是平行四边形.20.(本题共6分)已知y=y 1+y 2,若y 1与x -1成正比例,y 2与x+1成反比例,当x=0时,y=-5;当x=2时,y=1. (1) 求y 与x 的函数关系式; (2) 求当x=-2时,y 的值.21.(本题8分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点分别 为A(﹣2,2),B(0,5),C(0,2).(1) 画△A 1B 1C ,使它与△ABC 关于点C 成中 心对称;(2) 平移△ABC ,使点A 的对应点A 2坐标为(﹣2,﹣6),画出平移后对应的△A 2B 2C 2;(3) 若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,则旋转中心的坐标为______.22.(本题8分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1) 图1中“统计与概率”所在扇形的圆心角为 度; (2) 图2、3中的a = ,b = ;23. (本题8分)一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:实验次数n 200 300 400 500 600 700 800 1000 摸到红球次数 m 151221289358429497568 701 摸到红球频率m n0.75 0.74 0.72 0.72 0.72 0.71ab图1 45%5%实践与综合应统计与概率数与代数空间与图形40%67a 44数与式函数数与代数(内容)图2课时数方程(组)与不等式(组)A 一次方程B 一次方程组C 不等式与不等式组D 二次方程E 分式方程 图318b12A BC D369121518方程(组) 与不等式(组)课时数133EP N M GE D C B A O (1) 表格中a= ,b= ;(2) 估计从袋子中摸出一个球恰好是红球的概率约为 ;(精确到0.1) (3) 如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球?24. (本题8分)如图,在平面直角坐标系中,正比例函数y=3x 与反比例函数y =的图象交于A ,B 两点,点A 的横坐标为2,AC ⊥x 轴,垂足为C ,连接BC . (1) 求反比例函数的表达式; (2) 求△ABC 的面积;25.(本题10分)如图,菱形ABCD 的边长为48cm ,∠A=60°,动点P 从点A 出发,沿着线路AB ﹣BD 做匀速运动,动点Q 从点D 同时出发,沿着线路DC ﹣CB ﹣BA 做匀速运动.(1) 求BD 的长; (2) 已知动点P 、Q 运动的速度分别为8cm/s 、10cm/s .经过12秒后,P 、Q 分别到达M 、N 两点,试判断△AMN的形状,并说明理由,同时求出△AMN 的面积; (3) 设问题(2)中的动点P 、Q 分别从M 、N 同时沿原路返回,动点P 的速度不变,动点Q 的速度改变为a cm/s ,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 为直角三角形,试求a 的值.26.(本题满分12分)如图,正方形OEFG 绕着边长为a 的正方形ABCD 的对角线的交点O旋转,边OE 、OG 分别交边AD 、AB 于点M 、N . (1) 求证:OM =ON ;(2) 问四边形OMAN 的面积是否随着a 的变化而变化?若不变,请用a 的代数式表示出来,若变化,请说明理由;(3) 试探究PA 、PN 、BN 三条线段之间有怎样的数量关系,并写出推理过程.参考答案一、CCBA BDDA二、9.不可能事件10.平行四边形11. y1<y3<y2 12.1613.45014.15.三角形的三个内角都大于60016.517.150或75018.三、19.略20. (1)(2)-3 (3分+3分)21.(1)(2)略(3)(0,-2) (3分+3分+2分)22.(1)36 (2分) (2)60,14 (2分+2分) (3)27 (2分)23.(1)0.71 0.71 (2分+2分)(2)0.7 (2分) (3)6(2分)24.(1)(2)12 (4分+4分)25.(1)48(2分)(2)直角三角形(1分)理由(2分)面积(2分)(3)4, 12, 24(共3分,对一个1分)26.(1)略(3分)(2)不变,(2分+2分)(3)理由略(2分+3分)。
2019-2020学年八年级第二学期期中数学试卷一、选择题1.下列代数式中属于分式的是()A.B.C.D.a2.下列图案中,不是中心对称图形的是()A.B.C.D.3.反比例函数y=的图象经过点(3,﹣2),则k的值为()A.6B.5C.﹣5D.﹣64.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的5.下列分式是最简分式的()A.B.C.D.6.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直7.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣4)B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.图象关于原点中心对称8.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.410.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)11.“抛掷一枚质地均匀的硬币,正面向上”是事件(从“必然”、“随机”、“不可能”中选一个).12.当x=时,分式无意义.13.已知点A(1,a),B(3,b)都在反比例函数y=的图象上,则a,b的大小关系为.(用“<”连接)14.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为.15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k=.16.当m=时,解分式方程=会出现增根.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.18.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.化简:1﹣÷.20.解方程:=1.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.22.某校课外兴趣小组在本校学生中开展“感动中国2019年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,被调查者只能选择一类.其中,A类表示“非常了解”,B类表示“比较了解”,C 类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如表:类别A B C D频数304024b频率a0.40.240.06(1)表中的a=,b=;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?23.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由24.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价为多少元?25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.26.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.27.阅读下面材料:在数学课上,老师请同学思考如下问题:如图①,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题,有如下思路:连接AC.结合小敏的思路作答.(1)若只改变图①中四边形ABCD的形状(如图②),则四边形EFGH还是平行四边形吗?说明理由;(参考小敏思考问题方法)(2)如图②,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是矩形,写出结论并证明;②当AC与BD满足时,四边形EFGH是正方形.28.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB =2,CD=BC,请求出GE的长.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母填涂在答题卷相对应的位置上.)1.下列代数式中属于分式的是()A.B.C.D.a【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.解:、、a的分母中不含有字母,属于整式.的分母中含有字母,属于分式.故选:B.2.下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.解:A、是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项正确;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:B.3.反比例函数y=的图象经过点(3,﹣2),则k的值为()A.6B.5C.﹣5D.﹣6【分析】直接把点(3,﹣2)代入y=,然后求出k即可.解:把点(3,﹣2)代y=得﹣2×3=k,∴k=﹣6,故选:D.4.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的【分析】依题意分别用10x和10y去代换原分式中的x和y,利用分式的基本性质化简即可.解:分别用10x和10y去代换原分式中的x和y,得==,可见新分式与原分式的值相等;故选:A.5.下列分式是最简分式的()A.B.C.D.【分析】根据分式的基本性质进行约分,画出最简分式即可进行判断.解:A、=,故本选项错误;B、=,故本选项错误;C、,不能约分,故本选项正确;D、==,故本选项错误;故选:C.6.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直【分析】先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故选:A.7.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣4)B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.图象关于原点中心对称【分析】根据反比例函数的性质和题目中的函数解析式,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵反比例函数y=﹣,∴当x=1时,y=﹣4,即图象经过点(1,﹣4),故选项A正确;它的图象在第二、四象限,故选项B错误;当x>0时,y随x的增大而增大,故选项C正确;图象关于原点中心对称,故选项D正确;故选:B.8.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.解:样本是所抽取的50名学生对“世界读书日”的知晓情况.故选:B.9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.4【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.解:∵在△ACD中,∵AD=AC,AE⊥CD,∴E为CD的中点,又∵F是CB的中点,∴EF为△BCD的中位线,∴EF∥BD,EF=BD,∵BD=16,∴EF=8,故选:C.10.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据菱形的四条边都相等,先判定△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,然后利用三角形的一个外角等于与它不相邻的两个内角的和可以求出∠DMF=∠BDC=60°,再根据平角等于180°即可求出∠BMD=120°,从而判定②正确;根据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM=∠ADH,再利用“边角边”证明△ABM和△ADH全等,根据全等三角形对应边相等可得AH=AM,对应角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,判定出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④正确.解:在菱形ABCD中,∵AB=BD,∴AB=BD=AD,∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC﹣BE=CD﹣CF,即CE=DF,在△BDF和△DCE中,,∴△BDF≌△DCE(SAS),故①小题正确;∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②小题正确;∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,∴△AMH是等边三角形,故③小题正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=AM•AM=AM2,∴S四边形ABMD=AM2,故④小题正确,综上所述,正确的是①②③④共4个.故选:D.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)11.“抛掷一枚质地均匀的硬币,正面向上”是随机事件(从“必然”、“随机”、“不可能”中选一个).【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:“抛掷一枚质地均匀的硬币,正面向上”是随机事件,故答案为:随机.12.当x=2时,分式无意义.【分析】根据分母等于0,分式无意义列式进行计算即可求解.解:根据题意得,x﹣2=0,解得x=2.故答案为:2.13.已知点A(1,a),B(3,b)都在反比例函数y=的图象上,则a,b的大小关系为b<a.(用“<”连接)【分析】直接利用反比例函数的增减性分析得出答案.解:∵反比例函数y=中,k=4>0,∴在每个象限内,y随x的增大而减小,∵点A(1,a),B(3,b)都在反比例函数y=的图象上,且3>1,∴b<a,故答案为:b<a.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为60°.【分析】根据矩形的性质,可得∠ABC的度数,OA与OB的关系,根据等边三角形的判定,可得答案.解:由矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,得∠ABC=90°,∠BAO=90°﹣∠ACB=60°.由OA=OB,得△ABO是等边三角形,∠AOB=60°,故答案为:60°15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k=﹣3.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S =|k|.解:根据题意,知S=|k|=3,k=±3,又因为反比例函数位于第四象限,k<0,所以k=﹣3,16.当m=2时,解分式方程=会出现增根.【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.解:分式方程可化为:x﹣5=﹣m,由分母可知,分式方程的增根是3,当x=3时,3﹣5=﹣m,解得m=2,故答案为:2.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.18.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【分析】根据点A、B在反比例函数y=(x>0)的图象上,可设出点B坐标为(,m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD∥x轴、BE∥x 轴,即可用m表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S梯形ABED=(+)×(2m﹣m)=.故答案为:.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.化简:1﹣÷.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.解:原式=1﹣•=1﹣=.20.解方程:=1.【分析】因为x2﹣1=(x+1)(x﹣1),所以可确定最简公分母(x+1)(x﹣1),然后方程两边同乘最简公分母将分式方程转化为整式方程求解即可,注意检验.解:方程两边同乘(x+1)(x﹣1),得:x(x+1)﹣(2x﹣1)=(x+1)(x﹣1),解得:x=2.经检验:当x=2时,(x+1)(x﹣1)≠0,∴原分式方程的解为:x=2.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.【分析】(1)由反比例函数y=的性质:当k<0时,在其图象的每个分支上,y随x 的增大而增大,进而可得:m﹣5<0,从而求出m的取值范围;(2)先将交点的纵坐标y=3代入一次函数y=﹣x+1中求出交点的横坐标,然后将交点的坐标代入反比例函数y=中,即可求出m的值.解:(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,∴m﹣5<0,解得:m<5;(2)将y=3代入y=﹣x+1中,得:x=﹣2,∴反比例函数y=图象与一次函数y=﹣x+1图象的交点坐标为:(﹣2,3).将(﹣2,3)代入y=得:3=解得:m=﹣1.22.某校课外兴趣小组在本校学生中开展“感动中国2019年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,被调查者只能选择一类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如表:类别A B C D频数304024b频率a0.40.240.06(1)表中的a=0.3,b=6;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?【分析】(1)根据B类频数和频率求出总数,再根据频数、频率、总数之间的关系分布进行计算即可;(2)用类别为B的学生数所占的百分比乘以360°,即可得出答案;(3)用1000乘以类别为C的人数所占的百分比,即可求出该校学生中类别为C的人数.解:(1)问卷调查的总人数是:=100(名),a==0.3,b=100×0.06=6(名),故答案为:0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数是:360°×0.4=144°;(3)根据题意得:1000×0.24=240(名).答:调查结果估计该校学生中类别为C的人数约为240名.23.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.24.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价为多少元?【分析】设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据数量=总价÷单价结合购进第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批饮料进货单价为8元.25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.26.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.27.阅读下面材料:在数学课上,老师请同学思考如下问题:如图①,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题,有如下思路:连接AC.结合小敏的思路作答.(1)若只改变图①中四边形ABCD的形状(如图②),则四边形EFGH还是平行四边形吗?说明理由;(参考小敏思考问题方法)(2)如图②,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是矩形,写出结论并证明;②当AC与BD满足AC⊥BD,且AC=BD时,四边形EFGH是正方形.【分析】(1)连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)①根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论;②结论:当AC⊥BD,且AC=BD时,四边形EFGH为正方形.根据邻边相等的矩形是正方形即可证明.解:(1)四边形EFGH是平行四边形,理由如下:如答图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)如答图2,连接BD.①当AC⊥BD时,四边形EFGH为矩形;理由如下:同(1)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形;②结论:当AC⊥BD,且AC=BD时,四边形EFGH为正方形.理由:∵EH=BD,EF=AC,BD=AC,∴EH=EF,∵当AC⊥BD时,四边形EFGH是矩形,∴四边形EFGH是正方形.故答案是:AC⊥BD,且AC=BD.28.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB =2,CD=BC,请求出GE的长.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM =CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.。
江苏省苏州高新区第二中学2019-2020学年八年级数学下学期期中试题(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.下列电视台的台标,是中心对称图形的是A .B .C .D .2.对于反比例函数xy 2=,下列说法不正确的是A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小3.为了解我市老年人的健康状况,下列抽样调查最合理的是A.在公园调查部分老年人的健康状况B.在医院调查部分老年人的健康状况C.利用户籍网调查部分老年人的健康状况D.在周围邻居中调查部分老年人的健康状况 4.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等 5.在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。
若120x x <<,12y y >,则k 取值范围是A. k>0B.2k >C.k<0D.2k <6.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B << B .()()()P B P C P A << C .()()()P C P B P A << D .()()()P B P A P C << 7.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图像可以是8.如图,在ABC ∆中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=6,BC=10,则线段EF 的长为A. 1B.2C.2.5D. 39.如图,菱形ABCD 中,AB=4,120A ∠=︒,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK QK +的最小值为A.4B.C.3D.10.如图,在平面直角坐标系中,点(1,4)P 、(,)Q m n 在函数 的图象上,当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D . QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积A.减小B.增大C.先减小后增大D.先增大后减小 二、填空题(每题3分,共24分) 11.反比例函数ky x=的图像经过点(1,6)和(,3)m -,则m = . 12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.13.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =, 若∠ADF=240,则∠EDC= °.14.已知直线y =kx(k>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则x 1y 2+x 2y 1的值为_______. 15.已知菱形的周长为16cm ,两邻角的比是1:3,则菱形的面积是_______16.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.17.如图,一次函数y kx b =+图象与反比例函数my x=的图象都经过点(2,6)A -和点(4,)B n .则不等式mkx b x+≤的解集为 . 18.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆ 沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有 .(把你认为正确的结论的序号都填上) 三、解答题19.(本题7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有_______人,并补全条形统计图;(2)在扇形统计图中___,___m n ==,表示区域C 的圆心角为____度; (3)全校学生中喜欢篮球的人数大约有多少?20.(本题7分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE∥AC,AE∥BD. (1)求证:四边形AODE 是矩形;(2)若AB=12,∠BCD=120°,求四边形AODE 的面积.21.(本题6分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.22.(本题7分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1. 0 mg/L?为什么?23.(本题7分)如图,已知一次函数y kx b =+的图像与反比例函数my x=的图像交于点 (4,)A n 和点1(,3)3B n +,与y 轴交于点C .(1)求反比例函数和一次函数的表达式.(2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD , 求ACD ∆的面积.24.(本题满分7分)己知:如图,在四边形ABCD 中,3AB CD =,//AB CD ,//CE DA ,//DF CB . (1)求证:四边形CDEF 是平行四边形; (2)填空:①当四边形ABCD 必须满足条件 时,四边形CDEF 是矩形; ②当四边形ABCD 必须满足条件 时,四边形CDEF 是菱形.25.(本题7分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边BC 上的一个动点(不与B 、C 重合),反比例函数ky x= (0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN . (1)当点M 是边BC 的中点时. ①求反比例函数的表达式; ②求OMN ∆的面积;(2)在点M 的运动过程中,试证明:MBNB是一个定值.26.(本题8分)如图1,正方形ABCD 顶点A 、B 在函数y=kx(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变.(1)若点A的横坐标为5,求点D的纵坐标;(2)如图2,当k=2时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.初二数学答案1-10. ACCBB CCBDB11. -2 12. 20 13. 57 14. -615 16. 53 17. -2≦x<0或x>4 18. ④19. (1)100 (2)30 10 144 (3)800 20. (1)略 (2)363 21. (1)32 (2)320 22. (1)y=-2x+10 y=x12(2)能 23. (1)y=x 4 y=-43x+4 (2) 621 24. (1)略 (2) AD=BC AD ⊥BC 25. (1)y=x43 (2 ) 2 26. (1) 5 (2) 621。
2019-2020学年江苏省苏州市高新区八年级(下)期中数学试卷一、选择题:本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.(2分)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(2分)在下列性质中,平行四边形不一定具有的性质是()A.邻角互补B.对角相等C.内角和为360°D.对角互补3.(2分)将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.(2分)矩形两条对角线的夹角为60°,一条较短边长为5,则其对角线的长为()A.5B.10C.15D.7.55.(2分)平行四边形ABCD的对角线AC,BD相交于点O,下列条件中,不能判定它为菱形的是()A.AB=AD B.AC⊥BD C.∠A=∠D D.CA平分∠BCD 6.(2分)已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则﹣2<y<07.(2分)如图,在平面直角坐标系中,▱ABCD的顶点B、C在x轴上,A、D两点分别在反比例函数y=(k<0,x<0)与y=(x>0)的图象上,若▱ABCD的面积为4,则k的值为()A.﹣1B.﹣2C.﹣3D.﹣58.(2分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°9.(2分)如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2﹣2B.﹣1C.2﹣D.﹣110.(2分)如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,),过点E作直线l∥BD 交y轴于点F,则点F的坐标是()A.(0,﹣)B.(0,﹣)C.(0,﹣3)D.(0,﹣)二、填空题:本大题共8小题,每小题2分,共16分,把答案直接填在答题卡相对应的位置上.11.(2分)若分式有意义,则x≠.12.(2分)菱形的两邻角的度数之比为l:3,边长为5,则高为.13.(2分)已知点(﹣1,y1)、(2,y2)、(,y3)在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是.14.(2分)一个平行四边形的一条边长为3,两条对角线的长分别为4和2,则它的面积为.15.(2分)设函数y=﹣与y=x+2的图象的交点坐标为(m,n),则﹣的值为.16.(2分)已知关于x的分式方程﹣=1的解为负数,则k的取值范围是.17.(2分)如图,在△ABC中,点D在BC上,BD=AB,BM⊥AD于点M,N是AC的中点,连接MN.若AB=5,BC=8,则MN=.18.(2分)如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接P A,以P A,PC为邻边作平行四边形P AQC,连接PQ,则PQ的最小值为.三、解答题:本大题共8大题,共64分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(12分)计算:(1);(2);(3)﹣x﹣1.20.(5分)先化简÷,再求值.(其中P是满足﹣3<P<3的整数)21.(5分)解方程:﹣=1.22.(7分)新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?23.(8分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标;(3)求△P AB的面积.24.(8分)如图,已知菱形ABCD的对角线AC,BD相交于点O,延长AB至点E,使BE =AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,AC=4,求菱形ABCD的面积.25.(9分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当棚内温度不低于16℃时,该蔬菜能够快速生长,请问这天该蔬菜能够快速生长多长时间?26.(10分)如图(1),正方形ABCD顶点A、B在函数y=(k>0)的图象上,点C、D 分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为5,求点D的纵坐标;(2)如图(2),当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.2019-2020学年江苏省苏州市高新区八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.(2分)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选:C.【点评】掌握好中心对称与轴对称的概念.判断轴对称的关键是寻找对称轴,两边图象折叠后可重合,判断中心对称是要寻找对称中心,旋转180度后重合.2.(2分)在下列性质中,平行四边形不一定具有的性质是()A.邻角互补B.对角相等C.内角和为360°D.对角互补【分析】根据平行四边形的性质进行解答即可.【解答】解:平行四边形邻角互补,对角相等,内角和为360°,不具备的性质是对角互补,故选:D.【点评】此题主要考查了平行四边形的性质,关键是掌握平行四边形对边平行且相等,对角相等.3.(2分)将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【分析】根据分式的基本性质进行解答即可.【解答】解:将分式中的m、n都扩大为原来的3倍可变为==.故选:A.【点评】本题考查的是分式的基本性质,熟知分式的基本性质3是解答此题的关键.4.(2分)矩形两条对角线的夹角为60°,一条较短边长为5,则其对角线的长为()A.5B.10C.15D.7.5【分析】由夹角60°可得△AOB为等边三角形,进而可得对角线的长.【解答】解:如图,矩形两条对角线的夹角为60°,可得△AOB为等边三角形,又AB=5,所以OA=OB=5,所以对角线AC=BD=10故选:B.【点评】熟练掌握矩形两条对角线相等的性质及等边三角形的性质.5.(2分)平行四边形ABCD的对角线AC,BD相交于点O,下列条件中,不能判定它为菱形的是()A.AB=AD B.AC⊥BD C.∠A=∠D D.CA平分∠BCD 【分析】①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.【解答】解:A、为一组邻边相等平行四边形是菱形;B、为对角线互相垂直平分的平行四边形是菱形;D、为一条对角线平分一角,可得出一组邻边相等,也能判定为菱形;C、可判定为矩形,不能判定为菱形,故选C.【点评】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.(2分)已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则﹣2<y<0【分析】根据反比例函数的图象和性质逐项判断即可.【解答】解:当x=﹣1时,代入反比例函数解析式可得y=2,∴反比例函数y=﹣的图象必过点(﹣1,2),故A正确;∵在反比例函数y=﹣中,k=﹣2<0,∴函数图象在二、四象限,且在每个象限内y随x的增大而增大,故B不正确,C正确;当x=1时,y=﹣2,且在第四象限内y随x的增大而增大,∴当x>1时,则﹣2<y<0,故D正确.故选:B.【点评】本题主要考查反比例函数的图象和性质,掌握反比例函数的图象和性质是解题的关键,即在y=(k≠0)中,当k>0时,图象在第一、三象限,且在每个象限内y 随x的增大而减小,当k<0时,图象在第二、四象限,且在每个象限内y随x的增大而减小.7.(2分)如图,在平面直角坐标系中,▱ABCD的顶点B、C在x轴上,A、D两点分别在反比例函数y=(k<0,x<0)与y=(x>0)的图象上,若▱ABCD的面积为4,则k的值为()A.﹣1B.﹣2C.﹣3D.﹣5【分析】连接OA、OD,如图,利用平行四边形的性质得AD垂直y轴,则利用反比例函数的比例系数k的几何意义得到S△OAE和S△ODE,所以S△OAD=2,然后根据平行四边形的面积公式可得到▱ABCD的面积=2S△OAD=4,即可求出k的值.【解答】解:连接OA、OD,如图,∵四边形ABCD为平行四边形,∴AD垂直y轴,∴S△OAE=×|k|=,S△ODE=×|1|=,∴S△OAD=+,∵▱ABCD的面积=2S△OAD=4.∴|k|+1=4,解得k=﹣3或3,∵k<0.∴k=﹣3故选:C.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了平行四边形的性质.8.(2分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°【分析】由旋转的性质得出△ADE≌△ABC,得出∠D=∠B=40°,AE=AC,证出△ACE是等边三角形,得出∠ACE=∠E=60°,由三角形内角和定理求出∠DAE的度数,即可得出结果.【解答】解:由旋转的性质得:△ADE≌△ABC,∴∠D=∠B=40°,AE=AC,∵∠CAE=60°,∴△ACE是等边三角形,∴∠ACE=∠E=60°,∴∠DAE=180°﹣∠E﹣∠D=80DU=(180°﹣∠CAE)=(180°﹣60°)=80°,∴∠DAC=∠DAE﹣∠CAE=80°﹣60°=20°;故选:B.【点评】本题考查了旋转的性质、等边三角形的判定与性质、三角形内角和定理;熟练掌握旋转的性质,证明三角形是等边三角形是解决问题的关键.9.(2分)如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2﹣2B.﹣1C.2﹣D.﹣1【分析】根据正方形的性质和角平分线的性质,可以得到∠BCE和∠BEC的度数,根据勾股定理,可以得到BD的长,然后即可得到DE的长.【解答】解:∵四边形ABCD是正方形,AB=BC=CD=DA=1,∴∠BCD=90°,∴BD==,∵AC为正方形ABCD的对角线,CE平分∠ACD,∴∠BCE=67.5°,∠DCE=22.5°,∵∠BEC=∠EDC+∠DCE=45°+22.5°=67.5°,∴∠BEC=∠BCE,∴BC=BE,∵BC=1,∴BE=1,∴DE=BD﹣BE=﹣1,故选:D.【点评】本题考查正方形的性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.10.(2分)如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,),过点E作直线l∥BD 交y轴于点F,则点F的坐标是()A.(0,﹣)B.(0,﹣)C.(0,﹣3)D.(0,﹣)【分析】由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=(2+m),解得m=1,则A(1,2),B(1,0),D(3,2),E(3,),然后利用待定系数法确定直线BD的解析式,再根据平行线的性质和E的坐标求得直线l的解析式,求x=0时对应函数的值,从而得到点F的坐标.【解答】解:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴A(1,2),E(3,),∴B(1,0),D(3,2),设直线BD的解析式为y=ax+b,把B(1,0),D(3,2)代入得,解得,∵过点E作直线l∥BD交y轴于点F,∴设直线l的解析式为y=x+q,把E(3,)代入得3+q=,解得q=﹣,∴直线l的解析式为y=x﹣当x=0时,y=﹣,∴点F的坐标为(0,﹣),故选:A.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.二、填空题:本大题共8小题,每小题2分,共16分,把答案直接填在答题卡相对应的位置上.11.(2分)若分式有意义,则x≠2.【分析】根据分式有意义的条件可得x﹣2≠0,再解即可.【解答】解:由题意得:x﹣2≠0,解得:x≠2.故答案为:2.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12.(2分)菱形的两邻角的度数之比为l:3,边长为5,则高为5.【分析】菱形ABCD的边长BC=5,CE为高,∠B:∠A=1:3,根据菱形的性质得AD∥BC,则∠A+∠B=180°,可计算出∠B=45°,而CE为高,得到△BCE为等腰直角三角形,根据等腰直角三角形的性质得CE=BC,把BC=5代入计算即可.【解答】解:如图,菱形ABCD的边长BC=5,CE为高,∠B:∠A=1:3,∵AD∥BC,∴∠A+∠B=180°,∴∠B+3∠B=180°,∴∠B=45°,而CE为高,∴△BCE为等腰直角三角形,∴BC=CE,∴CE=BC=×5=5.故答案为:5.【点评】本题考查了菱形的性质:菱形的对边分别平行,四条边都相等,两条对角线互相垂直平分,并且分别平分两组内角.也考查了等腰直角三角形的判定与性质.13.(2分)已知点(﹣1,y1)、(2,y2)、(,y3)在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是y1>y3>y2.【分析】先根据反比例函数y=﹣的系数﹣(k2+1)<0判断出函数图象在二、四象限,在每个象限内,y随x的增大而增大,再根据﹣1<2<,判断出y1、y2、y3的大小.【解答】解:∵反比例函数y=﹣中,k=﹣(k2+1)<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵﹣1<0<2<,∴y1>0>y3>y2,故答案为y1>y3>y2.【点评】本题考查了由反比例函数的图象和性质确定y2,y1,y3的关系.注意是在每个象限内,y随x的增大而增大.不能直接根据x的大小关系确定.14.(2分)一个平行四边形的一条边长为3,两条对角线的长分别为4和2,则它的面积为4.【分析】根据平行四边的性质,可得对角线互相平分,根据勾股定理的逆定理,可得对角线互相垂直,根据菱形的判定,可得菱形,根据菱形的面积公式,可得答案.【解答】解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.【点评】本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.15.(2分)设函数y=﹣与y=x+2的图象的交点坐标为(m,n),则﹣的值为﹣.【分析】将点(m,n)分别两个函数表达式,求出m、n之间的关系即可求解.【解答】解:将点(m,n)代入反比例函数表达式得:mn=﹣3,将点(m,n)代入一次函数表达式得:n=m+2,即n﹣m=2,则﹣==﹣,答案为:﹣.【点评】本题考查的是反比例函数与一次函数的交点问题,解题的关键是将点(m,n)代入函数表达式,求出m、n之间的关系,进而求解.16.(2分)已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据解为负数确定出k的范围即可.【解答】解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,移项合并得:x=1﹣2k,根据题意得:1﹣2k<0,且1﹣2k≠±1解得:k>且k≠1故答案为:k>且k≠1.【点评】此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.17.(2分)如图,在△ABC中,点D在BC上,BD=AB,BM⊥AD于点M,N是AC的中点,连接MN.若AB=5,BC=8,则MN=.【分析】根据题目的已知条件易求DC的长为3,易证MN是三角形ADC的中位线,由三角形中位线定理即可求出MN的长.【解答】解:∵BD=AB,BM⊥AD于点M,∴AM=DM,∵N是AC的中点,∴AN=CN,∴MN是三角形ADC的中位线,∴MN=DC,∵AB=5,BC=8,∴DC=3,∴MN=,故答案是:.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.18.(2分)如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接P A,以P A,PC为邻边作平行四边形P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,然后根据△P′OC和△ABC 相似,利用相似三角形的性质即可求出PQ的最小值.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.【点评】本题考查了勾股定理的运用、平行四边形的性质、相似三角形的判定和性质以及垂线段最短的性质,解题的关键是做高线各种相似三角形.三、解答题:本大题共8大题,共64分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(12分)计算:(1);(2);(3)﹣x﹣1.【分析】(1)先变形为同分母分式的减法,再因式分解、约分即可得;(2)先因式分解、将除法转化为乘法,再约分即可得;(3)先通分、化为同分母分式的减法,再通分、计算即可得.【解答】解:(1)原式=﹣===x+5;(2)原式=•==;(3)原式=﹣=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.20.(5分)先化简÷,再求值.(其中P是满足﹣3<P<3的整数)【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.在﹣3<p<3中的整数p是﹣2,﹣1,0,1,2;为满足原式有意义,只能取﹣1.【解答】解:==.在﹣3<p<3中的整数p是﹣2,﹣1,0,1,2;根据题意,这里p仅能取﹣1,此时原式=.【点评】取适当的数代入求值时,要注意数的值需使原式及化简过程中的每一步都有意义.21.(5分)解方程:﹣=1.【分析】观察可得方程最简公分母为:(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.【点评】解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.22.(7分)新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?【分析】盈利=总售价﹣总进价,应求出衬衫的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价﹣4.【解答】解:设商场第一次购进x件衬衫,则第二次购进2x件,根据题意得:.160000=176000﹣8x解这个方程得:x=2000.经检验:x=2000是原方程的根.∴2x=4000商场利润:(2000+4000﹣150)×58+58×0.8×150﹣80000﹣176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(8分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标;(3)求△P AB的面积.【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时P A+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△P AB=S△ABD﹣S△BDP,即可得出结论.【解答】解:(1)当x=﹣1时,a=x+4=3,∴点A的坐标为(﹣1,3).将点A(﹣1,3)代入y=中,3=,解得:k=﹣3,∴反比例函数的表达式为y=﹣.(2)当y=b+4=1时,b=﹣3,∴点B的坐标为(﹣3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时P A+PB的值最小,如图所示.∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,,解得:,∴直线AD的函数表达式为y=2x+5.当y=2x+5=0时,x=﹣,∴点P的坐标为(﹣,0).(3)S△P AB=S△ABD﹣S△BDP=×2×2﹣×2×=.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求一次(反比例)函数解析式、轴对称中的最短路线问题、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)根据点A的坐标利用待定系数法求出反比例函数表达式;(2)利用对称找出P A+PB的值最小时点P的位置;(3)利用分割图形求面积法求出△P AB的面积.24.(8分)如图,已知菱形ABCD的对角线AC,BD相交于点O,延长AB至点E,使BE =AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,AC=4,求菱形ABCD的面积.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形;(2)欲求菱形ABCD的面积,已知AC=4,只需求得BD的长度即可.利用平行四边形以及菱形的性质可得AC⊥CE,再解直角△ACE求出CE的长度,即为BD的长度.则利用菱形ABCD的面积等于两对角线乘积的一半即可求解.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:∵四边形BECD是平行四边形,∴DB∥CE,∵四边形ABCD是菱形,∴AC⊥BD,∴AC⊥CE.在直角△ACE中,∵∠E=60°,AC=4,∴CE===4.∵四边形BECD是平行四边形,∴BD=CE=4,∴S菱形ABCD=AC•BD=×4×4=8.【点评】本题综合考查了菱形的性质,平行四边形的判定与性质以及解直角三角形.证明出四边形BECD是平行四边形是解题的关键.25.(9分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当棚内温度不低于16℃时,该蔬菜能够快速生长,请问这天该蔬菜能够快速生长多长时间?【分析】(1)观察图象即可解决问题;(2)把B点坐标代入反比例函数解析式,即可解决问题;(3)求出y=16时的两个时间,求出差即可解决问题;【解答】解:(1)12﹣2=10,故恒温系统在这天保持大棚内温度18℃的时间有10个小时.(2)把B(12,18)代入y=中,k=216.(3)设开始部分的函数解析式为y=kx+b,则有解得,∴y=2x+14,当y=16时,x=1,对于y=,y=16时,x=13.5,13.5﹣1=12.5,答:这天该蔬菜能够快速生长的时间为12.5h.【点评】本题考查一次函数的应用、反比例函数的应用等知识,解题的关键是读懂图象信息,熟练应用待定系数法解决问题.26.(10分)如图(1),正方形ABCD顶点A、B在函数y=(k>0)的图象上,点C、D 分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为5,求点D的纵坐标;(2)如图(2),当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.【分析】(1)过点A作AE⊥y轴于点E,则∠AED=90°.利用正方形的性质得AD=DC,∠ADC=90°,再根据等角的余角相等得到∠EDA=∠OCD,则利用“AAS”可判断△AED≌△DOC,从而得到OD=EA=5,于是确定点D的纵坐标为3;(2)作A′M⊥y轴于M,B′N⊥x轴于点N,设OD′=a,OC′=b,同理可得△B′C′N≌△C′D′O≌△A′D′E,利用全等的性质得C′N=OD′=A′M=a,B′N =C′O=D′M=b,则A′(a,a+b),B′(a+b,b),再根据反比例函数图象上点的坐标特征得到a(a+b)=8,b(a+b)=8,解方程组求出a、b,从而得到A′、B′两点的坐标;(3)先利用待定系数法求出直线A′B′解析式为y=﹣x+6,直线C′D′解析式为y =﹣x+2,设点A的坐标为(m,2m),则点D坐标为(0,m),若当A点在直线C′D′上时,则2m=﹣m+2,解得m=,可确定此时点A的坐标,从而得到此时k的值;当点D在直线A′B′上时,则m=6,同样可确定此时点A的坐标和k的值,所以可确定当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时k的取值范围.【解答】解:(1)如图,过点A作AE⊥y轴于点E,则∠AED=90°.∵四边形ABCD为正方形,∴AD=DC,∠ADC=90°,∴∠ODC+∠EDA=90°.∵∠ODC+∠OCD=90°,∴∠EDA=∠OCD,在△AED和△DOC中,∴△AED≌△DOC(AAS),∴OD=EA=5,∴点D的纵坐标为5;(2)作A′M⊥y轴于M,B′N⊥x轴于点N,设OD′=a,OC′=b,同理可得△B′C′N≌△C′D′O≌△A′D′E,∴C′N=OD′=A′M=a,B′N=C′O=D′M=b,∴A′(a,a+b),B′(a+b,b),∵点A′、B′在反比例函数y=的图象上,∴a(a+b)=8,b(a+b)=8,∴解得a=b=2或a=b=﹣2(舍去),∴A′、B′两点的坐标分别为(2,4),(4,2);(3)设直线A′B′的解析式为y=mx+n,把A′(2,4),B′(4,2)代入得,解得,∴直线A′B′解析式为y=﹣x+6,同样可求得直线C′D′解析式为y=﹣x+2,由(2)可知△OCD是等腰直角三角形,设点A的坐标为(m,2m),点D坐标为(0,m),当A点在直线C′D′上时,则2m=﹣m+2,解得m=,此时点A的坐标为(,),∴k=×=;当点D在直线A′B′上时,有m=6,此时点A的坐标为(6,12),∴k=6×12=72;综上可知:当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,k 的取值范围为≤x≤72.【点评】本题是反比例函数综合题,考查了反比例函数的图象与性质,正方形的性质,全等三角形的性质,利用待定系数法求一次函数解析式等知识,添加恰当辅助线构造全等三角形是本题的关键.。
2019-2020学年八年级第二学期期中数学试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列式子中,属于最简二次根式的是()A.B.C.D.3.下列调查方式中,最合适的是()A.为了解某品牌灯泡的使用寿命,采用普查的方式B.为了解我市八年级学生对在线学习课程的满意度情况,采用抽样调查的方式C.为了解某本书中的印刷错误,采用抽样调查的方式D.为了解我市居民的节水意识,采用普查的方式4.下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签B.抛掷1枚质地均匀的硬币反面朝上C.射击运动员射击一次,命中靶心D.长度分别是4,6,8的三条线段能围成一个三角形5.已知反比例函数y=的图象分别位于一、三象限,则k的取值范围是()A.k>5B.k<5C.k>﹣5D.k<﹣56.在平行四边形ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不能是()A.AF=CE B.AE=CF C.∠BEA=∠ECF D.∠BAE=∠FCD 7.如图,将△ABC绕着点A顺时针旋转120°得到△ADE.若点C、D、E在同一条直线上.∠BAC=20°.则∠ADC的度数为()A.20°B.30°C.50°D.60°8.函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y3>y1>y2C.y2>y3>y1 D.y2>y1>y39.如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=(x>0)的图象上,顶点B在反比例函数y=(x>0)的图象上,点C在x轴的正半轴上.若平行四边形OABC的面积为8,则k2﹣k1的值为()A.4B.8C.12D.1610.如图,平行四边形ABCD的对角线AC、BD相交于点O,∠ABC=60°,点E是AB 的中点,连接CE、OE,若AB=2BC,下列结论:①∠ACD=30°;②当BC=4时,BD=4;③CD=4OE;④S△COE=S四边形ABCD,其中正确的个数有()A.1B.2C.3D.4二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上11.若代数式有意义,则x的取值范围是.12.在一个不透明的袋子中,装有红球和白球共20个,这些球除颜色外都相同,搅匀后从中任意模出一个球记下颜色,再把它放回袋子中,不断重复实验,统计结果显示,随着实验次数越来越大,摸到红球的频率逐渐稳定在0.3左右,则据此估计袋子中大约有白球个.13.已知正方形的对角线长为5,则这个正方形的面积是.14.已知实数a,b满足0<a<b,则化简﹣|a|的结果是.15.如图,在△ABC中,BC=14,D、E分别是AB、AC的中点,F是DE延长线上一点,连接AF、CF,若DF=12,∠AFC=90°,则AC=.16.点A(a,b)是一次函数y=2x﹣3与反比例函数y=的交点,则2a2b﹣ab2=.17.如图,菱形ABCD的两个顶点A、B在函数y=(x>0)的图象上,对角线AC∥x 轴,若AC=4,点A的坐标为(2,2),则菱形ABCD的周长为.18.如图,矩形ABCD中,AB=8,AD=4,E在CD边上,且DE=2,将△ADE沿直线AE折叠,得到△AFE,连接BF,则△ABF的面积为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卷相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(1)2+3﹣+;(2)÷×(﹣).20.已知x=﹣2,y=+2,求代数式x2+y2+xy﹣2x﹣2y的值.21.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.22.码头工人往一艘轮船上装载货物,装完货物所需时间y(分钟)与装载速度x(吨/分钟)之间的函数关系如图.(1)求y与x之间的函数表达式;(2)若要求在2小时至2.5小时内(包括2小时与2.5小时)装完这批货物,求装货速度的范围.23.某校课外兴趣小组在本校学生中开展“垃圾分类”知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,学生可根据自己的情况任选其中一类,学校根据调查情况进行了统计,并制成了不完整的条形统计图和扇形统计图:(1)本次共调查了学生人,被调查的学生中,类别为C的学生有人;(2)求类别为A的学生数,并补全条形统计图;(3)求扇形统计图中类别为D的学生数所对应的圆心角的度数;(4)若该校有学生1000名,根据调查结果估计该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为多少人?24.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(n,3)和点B(1,﹣6),与y轴交于点C.(1)求一次函数和反比例函数表达式;(2)请直接写出关于x的不等式kx+b>的解集;(3)把点C绕着点O逆时针旋转90°,得到点C′,连接AC′,BC′,求△ABC′的面积.25.如图,矩形ABCD的对角线AC、BD相交于点O,E是OB的中点,过点B作BF∥AC交AE的延长线于点F,连接CF.(1)求证:△AOE≌△FBE;(2)求证:四边形BOCF是菱形.26.如图,等腰△ABC中,AB=AC=,BC=4,点B在y轴上,BC∥x轴,反比例函数y=(x>0)的图象经过点A,交BC于点D.(1)若OB=3,求k的值;(2)连接CO,若AB=BD,求四边形ABOC的周长.27.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为.28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M 的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.参考答案一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相应位置上.1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是中心对称图形,是轴对称图形,故此选项不合题意;B、不是中心对称图形,也不是轴对称图形,故此选项不合题意;C、是中心对称图形,不是轴对称图形,故此选项不合题意;D、是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.2.下列式子中,属于最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.解:A、=2,不符合题意;B、=,不符合题意;C、是最简二次根式,符合题意;D、=,不符合题意.故选:C.3.下列调查方式中,最合适的是()A.为了解某品牌灯泡的使用寿命,采用普查的方式B.为了解我市八年级学生对在线学习课程的满意度情况,采用抽样调查的方式C.为了解某本书中的印刷错误,采用抽样调查的方式D.为了解我市居民的节水意识,采用普查的方式【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解:A.为了解某品牌灯泡的使用寿命,适合采用抽样调查的方式;B.为了解我市八年级学生对在线学习课程的满意度情况,适合采用抽样调查的方式;C.为了解某本书中的印刷错误,适合采用全面调查的方式;D.为了解我市居民的节水意识,适合采用抽样调查的方式;故选:B.4.下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签B.抛掷1枚质地均匀的硬币反面朝上C.射击运动员射击一次,命中靶心D.长度分别是4,6,8的三条线段能围成一个三角形【分析】直接利用确定事件以及随机事件的定义分析得出答案.解:A、6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签,是随机事件,不合题意;B、抛掷1枚质地均匀的硬币反面朝上,是随机事件,不合题意;C、射击运动员射击一次,命中靶心,是随机事件,不合题意;D、长度分别是4,6,8的三条线段能围成一个三角形,是确定事件,符合题意;故选:D.5.已知反比例函数y=的图象分别位于一、三象限,则k的取值范围是()A.k>5B.k<5C.k>﹣5D.k<﹣5【分析】根据反比例函数的性质可得k﹣5>0,再解不等式即可.解:∵反比例函数y=的图象分别位于一、三象限,∴k﹣5>0,解得,k>5.故选:A.6.在平行四边形ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不能是()A.AF=CE B.AE=CF C.∠BEA=∠ECF D.∠BAE=∠FCD 【分析】根据平行四边形的性质和判定即可解决问题.解:A、∵四边形ABCD是平行四边形,∴AF∥EC,∵AF=EC,∴四边形AECF是平行四边形.故选项A不符合题意.B、根据AE=CF,所以四边形AECF可能是平行四边形,有可能是等腰梯形,故选项B符合题意.C、错误.∵∠BEA=∠FCE,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形.故选项C不符合题意.D、由∠BAE=∠FCD,∠B=∠D,AB=CD可以推出△ABE≌△CDF,∴BE=DF,∵AD=BC,∴AF=EC,∵AF∥EC,∴四边形AECF是平行四边形.故选项D不符合题意.故选:B.7.如图,将△ABC绕着点A顺时针旋转120°得到△ADE.若点C、D、E在同一条直线上.∠BAC=20°.则∠ADC的度数为()A.20°B.30°C.50°D.60°【分析】由旋转的性质可得∠BAC=∠DAE=20°,AC=AE,∠CAE=90°,根据三角形的外角的性质可求∠ADC的度数.解:∵将△ABC绕点A顺时针旋转120°得到△ADE,∴∠BAC=∠DAE=20°,AC=AE,∠CAE=120°,∴∠E=∠ACE=30°,∵∠ADC=∠E+∠DAE=30°+20°=50°,故选:C.8.函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y3>y1>y2C.y2>y3>y1 D.y2>y1>y3【分析】先判断出函数图象所在的象限,再根据其坐标特点解答即可.解:∵﹣k2﹣4<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选:D.9.如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=(x>0)的图象上,顶点B在反比例函数y=(x>0)的图象上,点C在x轴的正半轴上.若平行四边形OABC的面积为8,则k2﹣k1的值为()A.4B.8C.12D.16【分析】延长BA交y轴于D,连接OB,如图,利用平行四边形的性质得到AB⊥y轴,S△AOB=S▱ABCO=4,再利用反比例函数k的几何意义得到S△AOD=k1,S△BOD=k2,从而得到k2﹣k1=4.解:延长BA交y轴于D,连接OB,如图,∵四边形ABCO为平行四边形,∴AB∥x轴,即AB⊥y轴,S△AOB=S▱ABCO=×8=4,∵S△AOD=|k1|=k1,S△BOD=|k2|=k2,∴k2﹣k1=4,∴k2﹣k1=8.故选:B.10.如图,平行四边形ABCD的对角线AC、BD相交于点O,∠ABC=60°,点E是AB 的中点,连接CE、OE,若AB=2BC,下列结论:①∠ACD=30°;②当BC=4时,BD=4;③CD=4OE;④S△COE=S四边形ABCD,其中正确的个数有()A.1B.2C.3D.4【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB =90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,可求出BO的长,进而可求出BD=4,故②正确;易证OE为△ABC的中位线,可得BC=2OE,又因为AB=2BC,所以可得CD=4OE,故③正确;根据等底同高的三角形面积相等可得S△AOE =S△COE,再由③可知S△AOE=S△ABC,进而可得S△COE=S四边形ABCD,故④错误.解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵BC=4,∴AB=8,∴AC==4,∴OC=2,∴BO==2,∴BD=2BO=4,故②正确;∵O为AC中点,E为AB中点,∴OE为△ABC的中位线,∴BC=2OE,∵AB=2BC,∴CD=4OE,故③正确;∵AO=OC,∴S△AOE=S△COE,∵OE∥BC,OE=BC,∴S△AOE=S△ABC,∵S△ABC=S▱ABCD,∴S△COE=S四边形ABCD,故④错误.故选:C.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上11.若代数式有意义,则x的取值范围是x≥2.【分析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.解:∵代数式有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.12.在一个不透明的袋子中,装有红球和白球共20个,这些球除颜色外都相同,搅匀后从中任意模出一个球记下颜色,再把它放回袋子中,不断重复实验,统计结果显示,随着实验次数越来越大,摸到红球的频率逐渐稳定在0.3左右,则据此估计袋子中大约有白球6个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解:设盒子中大约有红球x个,根据题意得:=0.3,解得:x=6,∴白球为20﹣6=14个,答:估计盒子中大约有白球14个.故答案为:14.13.已知正方形的对角线长为5,则这个正方形的面积是25.【分析】根据正方形的对角线长为5,可知正方形的面积等于对角线乘积的一半,然后代入数据计算即可.解:∵正方形的对角线长为5,∴正方形的面积是:=25,故答案为:25.14.已知实数a,b满足0<a<b,则化简﹣|a|的结果是﹣2a+b.【分析】根据二次根式的性质即可求出答案.解:原式=|a﹣b|﹣|a|,∵0<a<b,∴a﹣b<0,∴原式=﹣(a﹣b)﹣a=﹣a+b﹣a=﹣2a+b,故答案为:﹣2a+b.15.如图,在△ABC中,BC=14,D、E分别是AB、AC的中点,F是DE延长线上一点,连接AF、CF,若DF=12,∠AFC=90°,则AC=10.【分析】根据三角形中位线定理求出DE,得到EF的长,根据直角三角形的性质计算,得到答案.解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=7,∴EF=DF﹣DE=5,在Rt△AFC中,AE=EC,∴AC=2EF=10,故答案为:10.16.点A(a,b)是一次函数y=2x﹣3与反比例函数y=的交点,则2a2b﹣ab2=27.【分析】把点A(a,b)分别代入两个函数表达式,求出a﹣2b与ab的值,代入代数式进行计算即可.解:∵点A(a,b)是一次函数y=2x﹣3与反比例函数y=的交点,∴b=2a﹣3,ab=9,即2a﹣b=3,ab=9,∴原式=ab(2a﹣b)=9×3=27.故答案为:27.17.如图,菱形ABCD的两个顶点A、B在函数y=(x>0)的图象上,对角线AC∥x 轴,若AC=4,点A的坐标为(2,2),则菱形ABCD的周长为4.【分析】连接BD交AC于E,根据菱形的性质得到BD⊥AC,AE=CE,求得AE=CE =2,求得y=,得到E(4,2),求得B(4,1),根据勾股定理即可得到结论.解:连接BD交AC于E,∵四边形ABCD是菱形,∴BD⊥AC,AE=CE,∵AC=4,∴AE=CE=2,∵点A的坐标为(2,2),点A在函数y=(x>0)的图象上,∴k=2×2=4,∴y=,∵AC∥x轴,∴E(4,2),∴B点的横坐标为4,∵点B在函数y=(x>0)的图象上,∴B(4,1),∴AB==,∴菱形ABCD的周长为4,故答案为:4.18.如图,矩形ABCD中,AB=8,AD=4,E在CD边上,且DE=2,将△ADE沿直线AE折叠,得到△AFE,连接BF,则△ABF的面积为.【分析】过点F作MN∥BC交CE于点M,交AB于点N,证明△EMF∽△FNA,得出,设FM=x,则NF=4﹣x,得出,解得x=,求出FN,则可求出答案.解:过点F作MN∥BC交CE于点M,交AB于点N,则FM⊥EC,FN⊥AB,∴四边形ADMN为矩形,∴AD=MN,∵将△ADE沿直线AE折叠得到△AFE,∴∠D=∠AFE=90°,AD=AF=4,DE=EF=2,∴∠MEF+∠MFE=∠MFE+∠AFN=90°,∴∠MEF=∠AFN,∵∠EMF=∠ANF=90°,∴△EMF∽△FNA,∴,设FM=x,则NF=4﹣x,∵∠EMF=90°,∴EM2+MF2=EF2,∴EM==,∴,解得x=或x=0(舍去),∴FM=,∴FN=4﹣x=4﹣=,∴S△ABF=×AB×FN==.故答案为:.三、解答题:本大题共10小题,共76分.把解答过程写在答题卷相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(1)2+3﹣+;(2)÷×(﹣).【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解;(1)原式=2+﹣+=+2;(2)原式=﹣=﹣.20.已知x=﹣2,y=+2,求代数式x2+y2+xy﹣2x﹣2y的值.【分析】先计算出x+y与xy的值,再利用完全平方公式得到x2+y2+xy﹣2x﹣2y=(x+y)2﹣xy﹣2(x+y),然后利用整体代入的方法计算.解:∵x=﹣2,y=+2,∴x+y=2,xy=﹣1,∴x2+y2+xy﹣2x﹣2y=(x+y)2﹣xy﹣2(x+y)=(2)2﹣(﹣1)﹣2×2=12+1﹣4=13﹣4.21.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【分析】(1)根据平移的性质即可将△ABC向右平移6个单位长度得到△A1B1C1;(2)根据中心对称的定义即可画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)根据旋转的性质即可将△ABC绕某一点旋转可得到△A2B2C2,进而写出旋转中心的坐标.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据图形可知:旋转中心的坐标为:(﹣3,0).22.码头工人往一艘轮船上装载货物,装完货物所需时间y(分钟)与装载速度x(吨/分钟)之间的函数关系如图.(1)求y与x之间的函数表达式;(2)若要求在2小时至2.5小时内(包括2小时与2.5小时)装完这批货物,求装货速度的范围.【分析】(1)根据函数图象可以设出函数的解析式,然后根据图象中的数据即可求得函数的解析式;(2)利用函数关系式,当装载时间120≤y≤150时,即120≤≤150,解不等式即可求解..解:(1)设y与x的函数关系式是y=,400=,得k=600,即y与x的函数关系式是y=;(2)当120≤y≤150时,即120≤≤150,解得4≤x≤5.故如果要在2小时至2.5小时内(包括2小时与2.5小时)装完这批货物,则装货速度至少为每分钟4≤x≤5吨.23.某校课外兴趣小组在本校学生中开展“垃圾分类”知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,学生可根据自己的情况任选其中一类,学校根据调查情况进行了统计,并制成了不完整的条形统计图和扇形统计图:(1)本次共调查了学生200人,被调查的学生中,类别为C的学生有28人;(2)求类别为A的学生数,并补全条形统计图;(3)求扇形统计图中类别为D的学生数所对应的圆心角的度数;(4)若该校有学生1000名,根据调查结果估计该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为多少人?【分析】(1)根据类别为A的人数和所占的百分比,可以求得本次调查的人数,然后根据C占14%,即可计算出类别为C的人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出类别为A的人数,然后将条形统计图补充完整;(3)根据统计图中的数据,可以计算出扇形统计图中类别为D的学生数所对应的圆心角的度数;(4)根据统计图中的数据,可以计算出该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为多少人.解:(1)本次共调查了学生100÷50%=200(人),被调查的学生中,类别为C的学生有200×14%=28(人),故答案为:200,28;(2)类别为A的学生有:200﹣100﹣28﹣12=60(人),补充完整的条形统计图如右图所示;(3)扇形统计图中类别为D的学生数所对应的圆心角的度数为:360°×=21.6°;(4)1000×=800(人),即该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为800人.24.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(n,3)和点B(1,﹣6),与y轴交于点C.(1)求一次函数和反比例函数表达式;(2)请直接写出关于x的不等式kx+b>的解集;(3)把点C绕着点O逆时针旋转90°,得到点C′,连接AC′,BC′,求△ABC′的面积.【分析】(1)根据待定系数法,即可求解;(2)根据函数与不等式的关系,可得答案;(3)根据三角形面积的和差,可得答案.解:(1)将点B的坐标代入反比例函数表达式得:﹣6=,解得:m=﹣6,将点A的坐标代入反比例函数表达式并解得:n=﹣2,故点A(﹣2,3),将点A、B的坐标代入一次函数表达式得:,解得,故一次函数的表达式为:y=﹣3x﹣3;(2)从图象看,当0<x<1或x<﹣2时,kx+b>,故不等式的解集为0<x<1或x<﹣2;(3)设直线AB交x轴于点H,对于y=﹣3x﹣3,令x=0,则y=﹣3,令y=0,则x=﹣1,故点H、C的坐标分别为(﹣1,0)、(0,﹣3),∵点C绕着点O逆时针旋转90°,得到点C′,故其坐标为:(3,0),△ABC′的面积S=S△C′HB+S△C′HA=C′H×(y A﹣y B)=×(3+1)(3+6)=18.25.如图,矩形ABCD的对角线AC、BD相交于点O,E是OB的中点,过点B作BF∥AC交AE的延长线于点F,连接CF.(1)求证:△AOE≌△FBE;(2)求证:四边形BOCF是菱形.【分析】(1)由ASA即可得出△AOE≌△FBE;(2)由全等三角形的性质得出OA=BF,由矩形的性质得出OA=OB=OC=OD,则OC=BF,证四边形BOCF是平行四边形,由OB=OC,即可得出结论.【解答】证明:(1)∵BF∥AC,∴∠AOE=∠FBE,∵E是OB的中点,∴OE=BE,在△AOE和△FBE中,,∴△AOE≌△FBE(ASA);(2)由(1)得:△AOE≌△FBE,∴OA=BF,∵四边形ABD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB=OC=OD,∴OC=BF,∵BF∥AC,∴四边形BOCF是平行四边形,又∵OB=OC,∴四边形BOCF是菱形.26.如图,等腰△ABC中,AB=AC=,BC=4,点B在y轴上,BC∥x轴,反比例函数y=(x>0)的图象经过点A,交BC于点D.(1)若OB=3,求k的值;(2)连接CO,若AB=BD,求四边形ABOC的周长.【分析】(1)过A作AE⊥BC于E交x轴于F,则AF∥y轴,根据矩形的性质得到EF =OB=3,根据勾股定理得到AE==,求得A(2,),于是得到结论;(2)设OB=a,得到A(2,+a),D(,a),列方程得到2(+a)=a,求得OB=6,根据勾股定理得到OC===2,于是得到结论.解:(1)过A作AE⊥BC于E交x轴于F,则AF∥y轴,∵BC∥x轴,∴四边形BOFE是矩形,∴EF=OB=3,∵AB=AC=,BC=4,∴BE=BC=2,∴AE==,∴A(2,),∵反比例函数y=(x>0)的图象经过点A,∴k=2×=9;(2)设OB=a,∵BD=AB=,∴A(2,+a),D(,a),∵反比例函数y=(x>0)的图象经过点A,交BC于点D,∴2(+a)=a,解得:a=6,∴OB=6,∴OC===2,∴四边形ABOC的周长=AB+OB+OC+AC=11+2.27.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为6.【分析】(1)首先证明四边形FBHG是矩形,再证明FB=FG即可解决问题.(2)延长BC到J,使得CJ=AI.证明△IDE≌△JDE(SAS)即可解决问题.(3)证明△BIE的周长=2AB即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠DCE=∠ABC=∠ABF=90°,∵GF⊥CF,GH⊥AB,∴∠F=∠GHB=∠FBH=90°,∴四边形FBHG是矩形,∵ED=EG,∠DEG=90°,∵∠DEC+∠FEG=90°,∠DEC+∠EDC=90°,∴∠FEG=∠EDC,∵∠F=∠DCE=90°,∴△DCE≌△EFG(AAS),∴FG=EC,EF=CD,∵CB=CD,∴EF=BC,∴BF=EC,∴BF=GF,∴四边形FBHG是正方形.(2)证明:延长BC到J,使得CJ=AI.∵DA=DC,∠A=∠DCJ=90°,AI=CJ,∴△DAI≌△DCJ(SAS),∴DI=DJ,∠ADI=∠CDJ,∴∠IDJ=∠ADC=90°,∵∠IDE=45°,∴∠EDI=∠EDJ=45°,∵DE=DE,∴△IDE≌△JDE(SAS),∴∠DEI=∠DEJ,∴DE平分∠IEC.(3)解:∵△IDE≌△JDE,∴IE=EJ,∵EJ=EC+CJ,AI=CJ,∴IE=EC=AI,∴△BIE的周长=BI+BE+IE=BI+AI+BE+EC=2AB=6.故答案为6.28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M 的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.【分析】(1)ED=AD sin∠DAB=8×=4,同理AE=4,即可求解;(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),点D′M′都在函数上,则(a﹣8)×4=(a﹣4)×2,即可求解;(3)分B′C′是矩形的边、B′C′是矩形的对角线两种情况,分别求解即可.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=2=6,故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).。
2019-2020学年八年级第二学期期中数学试卷一、选择题(共10小题).1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.在下列性质中,平行四边形不一定具有的性质是()A.邻角互补B.对角相等C.内角和为360°D.对角互补3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.矩形两条对角线的夹角为60°,一条较短边长为5,则其对角线的长为()A.5B.10C.15D.7.55.平行四边形ABCD的对角线AC,BD相交于点O,下列条件中,不能判定它为菱形的是()A.AB=AD B.AC⊥BD C.∠A=∠D D.CA平分∠BCD 6.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则﹣2<y<07.如图,在平面直角坐标系中,▱ABCD的顶点B、C在x轴上,A、D两点分别在反比例函数y=(k<0,x<0)与y=(x>0)的图象上,若▱ABCD的面积为4,则k的值为()A.﹣1B.﹣2C.﹣3D.﹣58.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE 上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°9.如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2﹣2B.﹣1C.2﹣D.﹣110.如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,),过点E作直线l∥BD交y 轴于点F,则点F的坐标是()A.(0,﹣)B.(0,﹣)C.(0,﹣3)D.(0,﹣)二、填空题:本大题共8小题,每小题2分,共16分,把答案直接填在答题卡相对应的位置上.11.若分式有意义,则x≠.12.菱形的两邻角的度数之比为l:3,边长为5,则高为.13.已知点(﹣1,y1)、(2,y2)、(,y3)在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是.14.一个平行四边形的一条边长为3,两条对角线的长分别为4和2,则它的面积为.15.设函数y=﹣与y=x+2的图象的交点坐标为(m,n),则﹣的值为.16.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是.17.如图,在△ABC中,点D在BC上,BD=AB,BM⊥AD于点M,N是AC的中点,连接MN.若AB=5,BC=8,则MN=.18.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.三、解答题:本大题共8大题,共64分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(1);(2);(3)﹣x﹣1.20.先化简÷,再求值.(其中P是满足﹣3<P<3的整数)21.解方程:﹣=1.22.新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?23.如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.24.如图,已知菱形ABCD的对角线AC,BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,AC=4,求菱形ABCD的面积.25.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当棚内温度不低于16℃时,该蔬菜能够快速生长,请问这天该蔬菜能够快速生长多长时间?26.如图(1),正方形ABCD顶点A、B在函数y=(k>0)的图象上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为5,求点D的纵坐标;(2)如图(2),当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.参考答案一、选择题:本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选:C.2.在下列性质中,平行四边形不一定具有的性质是()A.邻角互补B.对角相等C.内角和为360°D.对角互补【分析】根据平行四边形的性质进行解答即可.解:平行四边形邻角互补,对角相等,内角和为360°,不具备的性质是对角互补,故选:D.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【分析】根据分式的基本性质进行解答即可.解:将分式中的m、n都扩大为原来的3倍可变为==.故选:A.4.矩形两条对角线的夹角为60°,一条较短边长为5,则其对角线的长为()A.5B.10C.15D.7.5【分析】由夹角60°可得△AOB为等边三角形,进而可得对角线的长.解:如图,矩形两条对角线的夹角为60°,可得△AOB为等边三角形,又AB=5,所以OA=OB=5,所以对角线AC=BD=10故选:B.5.平行四边形ABCD的对角线AC,BD相交于点O,下列条件中,不能判定它为菱形的是()A.AB=AD B.AC⊥BD C.∠A=∠D D.CA平分∠BCD 【分析】①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.解:A、为一组邻边相等平行四边形是菱形;B、为对角线互相垂直平分的平行四边形是菱形;D、为一条对角线平分一角,可得出一组邻边相等,也能判定为菱形;C、可判定为矩形,不能判定为菱形,故选C.6.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则﹣2<y<0【分析】根据反比例函数的图象和性质逐项判断即可.解:当x=﹣1时,代入反比例函数解析式可得y=2,∴反比例函数y=﹣的图象必过点(﹣1,2),故A正确;∵在反比例函数y=﹣中,k=﹣2<0,∴函数图象在二、四象限,且在每个象限内y随x的增大而增大,故B不正确,C正确;当x=1时,y=﹣2,且在第四象限内y随x的增大而增大,∴当x>1时,则﹣2<y<0,故D正确.故选:B.7.如图,在平面直角坐标系中,▱ABCD的顶点B、C在x轴上,A、D两点分别在反比例函数y=(k<0,x<0)与y=(x>0)的图象上,若▱ABCD的面积为4,则k的值为()A.﹣1B.﹣2C.﹣3D.﹣5【分析】连接OA、OD,如图,利用平行四边形的性质得AD垂直y轴,则利用反比例函数的比例系数k的几何意义得到S△OAE和S△ODE,所以S△OAD=2,然后根据平行四边形的面积公式可得到▱ABCD的面积=2S△OAD=4,即可求出k的值.解:连接OA、OD,如图,∵四边形ABCD为平行四边形,∴AD垂直y轴,∴S△OAE=×|k|=,S△ODE=×|1|=,∴S△OAD=+,∵▱ABCD的面积=2S△OAD=4.∴|k|+1=4,解得k=﹣3或3,∵k<0.∴k=﹣3故选:C.8.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE 上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°【分析】由旋转的性质得出△ADE≌△ABC,得出∠D=∠B=40°,AE=AC,证出△ACE是等边三角形,得出∠ACE=∠E=60°,由三角形内角和定理求出∠DAE的度数,即可得出结果.解:由旋转的性质得:△ADE≌△ABC,∴∠D=∠B=40°,AE=AC,∵∠CAE=60°,∴△ACE是等边三角形,∴∠ACE=∠E=60°,∴∠DAE=180°﹣∠E﹣∠D=80DU=(180°﹣∠CAE)=(180°﹣60°)=80°,∴∠DAC=∠DAE﹣∠CAE=80°﹣60°=20°;故选:B.9.如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2﹣2B.﹣1C.2﹣D.﹣1【分析】根据正方形的性质和角平分线的性质,可以得到∠BCE和∠BEC的度数,根据勾股定理,可以得到BD的长,然后即可得到DE的长.解:∵四边形ABCD是正方形,AB=BC=CD=DA=1,∴∠BCD=90°,∴BD==,∵AC为正方形ABCD的对角线,CE平分∠ACD,∴∠BCE=67.5°,∠DCE=22.5°,∵∠BEC=∠EDC+∠DCE=45°+22.5°=67.5°,∴∠BEC=∠BCE,∴BC=BE,∵BC=1,∴BE=1,∴DE=BD﹣BE=﹣1,故选:D.10.如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,),过点E作直线l∥BD交y 轴于点F,则点F的坐标是()A.(0,﹣)B.(0,﹣)C.(0,﹣3)D.(0,﹣)【分析】由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=(2+m),解得m=1,则A(1,2),B(1,0),D(3,2),E(3,),然后利用待定系数法确定直线BD的解析式,再根据平行线的性质和E的坐标求得直线l的解析式,求x=0时对应函数的值,从而得到点F 的坐标.解:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴A(1,2),E(3,),∴B(1,0),D(3,2),设直线BD的解析式为y=ax+b,把B(1,0),D(3,2)代入得,解得,∵过点E作直线l∥BD交y轴于点F,∴设直线l的解析式为y=x+q,把E(3,)代入得3+q=,解得q=﹣,∴直线l的解析式为y=x﹣当x=0时,y=﹣,∴点F的坐标为(0,﹣),故选:A.二、填空题:本大题共8小题,每小题2分,共16分,把答案直接填在答题卡相对应的位置上.11.若分式有意义,则x≠2.【分析】根据分式有意义的条件可得x﹣2≠0,再解即可.解:由题意得:x﹣2≠0,解得:x≠2.故答案为:2.12.菱形的两邻角的度数之比为l:3,边长为5,则高为5.【分析】菱形ABCD的边长BC=5,CE为高,∠B:∠A=1:3,根据菱形的性质得AD∥BC,则∠A+∠B=180°,可计算出∠B=45°,而CE为高,得到△BCE为等腰直角三角形,根据等腰直角三角形的性质得CE=BC,把BC=5代入计算即可.解:如图,菱形ABCD的边长BC=5,CE为高,∠B:∠A=1:3,∵AD∥BC,∴∠A+∠B=180°,∴∠B+3∠B=180°,∴∠B=45°,而CE为高,∴△BCE为等腰直角三角形,∴BC=CE,∴CE=BC=×5=5.故答案为:5.13.已知点(﹣1,y1)、(2,y2)、(,y3)在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是y1>y3>y2.【分析】先根据反比例函数y=﹣的系数﹣(k2+1)<0判断出函数图象在二、四象限,在每个象限内,y随x的增大而增大,再根据﹣1<2<,判断出y1、y2、y3的大小.解:∵反比例函数y=﹣中,k=﹣(k2+1)<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵﹣1<0<2<,∴y1>0>y3>y2,故答案为y1>y3>y2.14.一个平行四边形的一条边长为3,两条对角线的长分别为4和2,则它的面积为4.【分析】根据平行四边的性质,可得对角线互相平分,根据勾股定理的逆定理,可得对角线互相垂直,根据菱形的判定,可得菱形,根据菱形的面积公式,可得答案.解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.15.设函数y=﹣与y=x+2的图象的交点坐标为(m,n),则﹣的值为﹣.【分析】将点(m,n)分别两个函数表达式,求出m、n之间的关系即可求解.解:将点(m,n)代入反比例函数表达式得:mn=﹣3,将点(m,n)代入一次函数表达式得:n=m+2,即n﹣m=2,则﹣==﹣,答案为:﹣.16.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据解为负数确定出k的范围即可.解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,移项合并得:x=1﹣2k,根据题意得:1﹣2k<0,且1﹣2k≠±1解得:k>且k≠1故答案为:k>且k≠1.17.如图,在△ABC中,点D在BC上,BD=AB,BM⊥AD于点M,N是AC的中点,连接MN.若AB=5,BC=8,则MN=.【分析】根据题目的已知条件易求DC的长为3,易证MN是三角形ADC的中位线,由三角形中位线定理即可求出MN的长.解:∵BD=AB,BM⊥AD于点M,∴AM=DM,∵N是AC的中点,∴AN=CN,∴MN是三角形ADC的中位线,∴MN=DC,∵AB=5,BC=8,∴DC=3,∴MN=,故答案是:.18.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.【分析】以PA,PC为邻边作平行四边形PAQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,然后根据△P′OC和△ABC相似,利用相似三角形的性质即可求出PQ的最小值.解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.三、解答题:本大题共8大题,共64分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(1);(2);(3)﹣x﹣1.【分析】(1)先变形为同分母分式的减法,再因式分解、约分即可得;(2)先因式分解、将除法转化为乘法,再约分即可得;(3)先通分、化为同分母分式的减法,再通分、计算即可得.解:(1)原式=﹣===x+5;(2)原式=•==;(3)原式=﹣=.20.先化简÷,再求值.(其中P是满足﹣3<P<3的整数)【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.在﹣3<p<3中的整数p是﹣2,﹣1,0,1,2;为满足原式有意义,只能取﹣1.解:==.在﹣3<p<3中的整数p是﹣2,﹣1,0,1,2;根据题意,这里p仅能取﹣1,此时原式=.21.解方程:﹣=1.【分析】观察可得方程最简公分母为:(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.22.新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?【分析】盈利=总售价﹣总进价,应求出衬衫的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价﹣4.解:设商场第一次购进x件衬衫,则第二次购进2x件,根据题意得:.160000=176000﹣8x解这个方程得:x=2000.经检验:x=2000是原方程的根.∴2x=4000商场利润:(2000+4000﹣150)×58+58×0.8×150﹣80000﹣176000=90260(元).答:在这两笔生意中,商场共盈利90260元.23.如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.解:(1)当x=﹣1时,a=x+4=3,∴点A的坐标为(﹣1,3).将点A(﹣1,3)代入y=中,3=,解得:k=﹣3,∴反比例函数的表达式为y=﹣.(2)当y=b+4=1时,b=﹣3,∴点B的坐标为(﹣3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,,解得:,∴直线AD的函数表达式为y=2x+5.当y=2x+5=0时,x=﹣,∴点P的坐标为(﹣,0).(3)S△PAB=S△ABD﹣S△BDP=×2×2﹣×2×=.24.如图,已知菱形ABCD的对角线AC,BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,AC=4,求菱形ABCD的面积.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE =CD,BE∥CD,从而证明四边形BECD是平行四边形;(2)欲求菱形ABCD的面积,已知AC=4,只需求得BD的长度即可.利用平行四边形以及菱形的性质可得AC⊥CE,再解直角△ACE求出CE的长度,即为BD的长度.则利用菱形ABCD的面积等于两对角线乘积的一半即可求解.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:∵四边形BECD是平行四边形,∴DB∥CE,∵四边形ABCD是菱形,∴AC⊥BD,∴AC⊥CE.在直角△ACE中,∵∠E=60°,AC=4,∴CE===4.∵四边形BECD是平行四边形,∴BD=CE=4,∴S菱形ABCD=AC•BD=×4×4=8.25.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当棚内温度不低于16℃时,该蔬菜能够快速生长,请问这天该蔬菜能够快速生长多长时间?【分析】(1)观察图象即可解决问题;(2)把B点坐标代入反比例函数解析式,即可解决问题;(3)求出y=16时的两个时间,求出差即可解决问题;解:(1)12﹣2=10,故恒温系统在这天保持大棚内温度18℃的时间有10个小时.(2)把B(12,18)代入y=中,k=216.(3)设开始部分的函数解析式为y=kx+b,则有解得,∴y=2x+14,当y=16时,x=1,对于y=,y=16时,x=13.5,13.5﹣1=12.5,答:这天该蔬菜能够快速生长的时间为12.5h.26.如图(1),正方形ABCD顶点A、B在函数y=(k>0)的图象上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为5,求点D的纵坐标;(2)如图(2),当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.【分析】(1)过点A作AE⊥y轴于点E,则∠AED=90°.利用正方形的性质得AD =DC,∠ADC=90°,再根据等角的余角相等得到∠EDA=∠OCD,则利用“AAS”可判断△AED≌△DOC,从而得到OD=EA=5,于是确定点D的纵坐标为3;(2)作A′M⊥y轴于M,B′N⊥x轴于点N,设OD′=a,OC′=b,同理可得△B′C′N≌△C′D′O≌△A′D′E,利用全等的性质得C′N=OD′=A′M=a,B′N =C′O=D′M=b,则A′(a,a+b),B′(a+b,b),再根据反比例函数图象上点的坐标特征得到a(a+b)=8,b(a+b)=8,解方程组求出a、b,从而得到A′、B′两点的坐标;(3)先利用待定系数法求出直线A′B′解析式为y=﹣x+6,直线C′D′解析式为y =﹣x+2,设点A的坐标为(m,2m),则点D坐标为(0,m),若当A点在直线C′D′上时,则2m=﹣m+2,解得m=,可确定此时点A的坐标,从而得到此时k的值;当点D在直线A′B′上时,则m=6,同样可确定此时点A的坐标和k的值,所以可确定当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时k的取值范围.解:(1)如图,过点A作AE⊥y轴于点E,则∠AED=90°.∵四边形ABCD为正方形,∴AD=DC,∠ADC=90°,∴∠ODC+∠EDA=90°.∵∠ODC+∠OCD=90°,∴∠EDA=∠OCD,在△AED和△DOC中,∴△AED≌△DOC(AAS),∴OD=EA=5,∴点D的纵坐标为5;(2)作A′M⊥y轴于M,B′N⊥x轴于点N,设OD′=a,OC′=b,同理可得△B′C′N≌△C′D′O≌△A′D′E,∴C′N=OD′=A′M=a,B′N=C′O=D′M=b,∴A′(a,a+b),B′(a+b,b),∵点A′、B′在反比例函数y=的图象上,∴a(a+b)=8,b(a+b)=8,∴解得a=b=2或a=b=﹣2(舍去),∴A′、B′两点的坐标分别为(2,4),(4,2);(3)设直线A′B′的解析式为y=mx+n,把A′(2,4),B′(4,2)代入得,解得,∴直线A′B′解析式为y=﹣x+6,同样可求得直线C′D′解析式为y=﹣x+2,由(2)可知△OCD是等腰直角三角形,设点A的坐标为(m,2m),点D坐标为(0,m),当A点在直线C′D′上时,则2m=﹣m+2,解得m=,此时点A的坐标为(,),∴k=×=;当点D在直线A′B′上时,有m=6,此时点A的坐标为(6,12),∴k=6×12=72;综上可知:当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,k 的取值范围为≤x≤72.。
试卷第1页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前苏科版2019-2020学年度第二学期八年级期中检测数学试卷题号 一 二 三 总分 得分评卷人 得分一、单选题1.(3分)下列四个图案中,不是中心对称图案的是( )A .B .C .D .2.(3分)我市七年级有10000名学生参加某项考试,为了了解这些学生的考试成绩,从中抽取了500名考生的考试成绩进行统计分析.下列说法:①这10000名学生的考试成绩是总体;②每个学生的考试成绩是个体;③抽取的500名考生的考试成绩是总体的一个样本;④样本容量是10000.正确的有( )个. A .4B .3C .2D .13.(3分)某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人4.(3分)单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制出如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵及以上的人数占总人数的( )试卷第2页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .40%B .70%C .76%D .96%5.(3分)下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰6.(3分)小李掷一枚硬币,连续8次正面都朝上,请问他第9次掷硬币时,出现正面朝上的概率是( ). A .0B .1C .D .7.(3分)如图,矩形ABCD 被对角线AC 、BD 分成四个小三角形,这四个小三角形的周长之和是68,10AC =.则矩形ABCD 的周长是( )A .48B .38C .28D .148.(3分)如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边的中点,菱形ABCD 的周长为36,则OH 的长等于( )A .4.5B .5C .6D .99.(3分)从下面四个条件中任意选两个,能使四边形ABCD 是平行四边形选法有( ) ①AB//CD ;②AB =CD ;③BC//AD ;④BC =AD A .2种B .3种C .4种D .5种10.(3分)如图,ABC V 中,18BC =.若BD AC ⊥于D 点,CE AB ⊥于E 点,,F G 分则为BC 、DE 的中点,若10ED =,则FG 的长为( )试卷第3页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .56B .106C .8D .9评卷人 得分二、填空题11.(4分)“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).12.(4分)如图是当前对生活垃圾的常见三种处理方式,本图中的有关数据宜用__________统计图表示.13.(4分)如图所示的折线统计图分别表示我市A 、B 两县在4月份的日平均气温,记该月A 、B 两县的日平均气温为12C ︒的天数分别是a 天和b 天,则a b +=__________.14.(4分)某工厂的产品每50件装为一箱,现质检部门对100箱产品进行质量检查,每箱中的次品数见表: 次品数 0 1 2 3 4 5 箱数5014201042试卷第4页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………该工厂规定:一箱产品的次品数达到或超过6%,则判定该箱为质量不合格的 产品箱.若在这100箱中随机抽取一箱,抽到质量不合格的产品箱概率为_______15.(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).16.(4分)工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形.这依据的道理是:_______________________________.17.(4分)如图,在菱形ABCD 中,AC 、BD 交于点O ,AC =4,菱形ABCD 的面积为45,E 为AD 的中点,则OE 的长为___.18.(4分)如图所示,在正方形ABCD 中,以AB 为边向正方形外作等边三角形ABE ,连接CE 、BD 交于点G ,连接AG ,那么∠AGD 的底数是_____度.试卷第5页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分三、解答题19.(10分)下面第一排表示十张扑克牌的不同情况,任意摸一张.请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用线连起来.20.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?21.(12分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A ”,则收费2元,若指针指向字母“B ”,则奖励3元;若指针指向字母“C ”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?试卷第6页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………22.(12分)如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长.23.(14分)如图,△ABC 的中线BD ,CE 交于点O ,F ,G 分别是BO ,CO 的中点. (1)填空:四边形DEFG 是 四边形. (2)若四边形DEFG 是矩形,求证:AB =AC .(3)若四边形DEFG 是边长为2的正方形,试求△ABC 的周长.参考答案1.C2.B3.D4.C5.D6.C7.C8.A9.C10.A11.不可能12.扇形13.1214.4 2515.小于16.对角线相等的平行四边形是矩形.17.3 218.6019.见解析.20.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.21.商人盈利的可能性大.22.3cm.23.(1)平行;(2)见解析;(3).答案第1页,总1页。
2019-2020学年苏州市高新区四校联考八年级下学期期中数学试卷一、选择题(本大题共10小题,共20.0分)1.下列说法错误的是()A. 平行四边形的对角相等B. 正方形的对称轴有四条C. 矩形既是中心对称图形又是轴对称图形D. 菱形的对角线相等且互相平分2.某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下列说法正确的是()A. 出现正面的频率是6B. 出现正面的频率是4C. 出现正面的频率是0.4D. 出现正面的频率是0.63.下列调查方式,你认为最适合普查的是()A. 了解某型号节能灯的使用寿命B. 了解我市每天的流动人口数C. 了解我市居民日平均用水量D. 旅客上飞机前的安检4.为了解2016年重庆实验外国语学校学生的中考数学试卷得分情况,我校教师从中随机抽查了300份进行分析,下列说法中不正确的是()A. 以上调查方式属于抽样调查B. 总体是所有考生的中考数学试卷得分情况C. 个体指每个考生的中考数学试卷得分情况D. 样本容量指所抽取的300份试卷5.如图,在△ABC中,BD,CE是△ABC的中线,BD与CE相交于点O,点F,G分别是BO,CO的中点,连接AO.若要使得四边形DEFG是正方形,则需要满足条作()A. AO=BCB. AB⊥ACC. AB=AC且AB⊥ACD. AO=BC且AO⊥BC6.计算:mm+2−64−m2÷3m−2的结果为()A. 1B. m−2m+2C. m+2m−2D. 2mm+27.如图所示,在▱ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()A. AC⊥BDB. OA=OCC. AC=BDD. AO=OD8.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k+1x的图象上.若点A的坐标为(−2,−2),则k的值为()A. 3B. 4C. −4D. −59.如图,菱形ABCD中,对角线AC与BD相交于点O,OE//DC且交BC于点E,AD6cm,则OE的长为()A. 6cmB. 4cmC. 3cmD. 2cm10.如图,已知在△ABC中,AD垂直平分BC,AC=EC,点B、D、C、E在同一直线上,则下列结论1AB=AC2∠CAE=∠E3AB+BD=DE4∠BAC=∠ACB正确的个数有()个A. 1B. 2C. 3D.4二、填空题(本大题共8小题,共16.0分)11.口袋中放有黄、白、红三种颜色的小球各1个,这3个球除颜色外没有任何区别,随机从口袋中任取1个球,写出这个实验中一个可能发生的事件:______ .12.从一副扑克牌中任意抽取一张.(1)这张牌是“A”;(2)这张牌是“红心”;(3)这张牌是“大王”;(4)这张牌是“红色的”.将这些事件的序号按发生的可能性从小到达顺序排列是.13.分式x3y2,14xy的最简公分母是______ .14.当分式x+2x−1无意义时x=;该分式值为0时x=.15.只含分式,或分式和整式,并且分母中含有______的方程叫做分式方程.解分式方程必须______.把求得的根代入______,或代入原方程两边所乘的______,使分母为零的根是______,增根必须舍去.16.已知菱形的两条对角线长分别为4和9,则菱形的面积为______.17.如图,在▱ABCD中,AE、CF分别是∠DAB,∠BCD的角平分线,若∠B=50°,则∠DFC=______°.18.如图,在边长为8的菱形ABCD中,∠A=60°,M是边AD的中点,N是AB上一点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′B,则A′B的取值范围______.三、解答题(本大题共9小题,共64.0分)19. 计算:(1)a+b a−2b÷a 2−b 2a 2−4ab+4b 2; (2)4m 2−4−1m−2.20. 解方程和不等式组:(1)x 2x−1=2−31−2x ;(2){3x +3>0x −6≤−2x.21. (1)解下列不等式,并把它们的解集在数轴上表示出来.5x +15>4x −13;2x−13≤3x−46.(2)解不等式组:{3x −2<82x −1>2; (3)求不等式组{x −2(x −3)≤8x 2−(x −3)>14的解,并求出不等式组的整数解.22.如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,△CDF的面积为4,射线CF与射线AB交于点N,且∠CNA=45°,连接EF,请直接写出线段EF的长.23.某手机店老板到电子批发市场选购A、B两种型号的手机,A型手机比B型手机每套进价高200元,同样用6000元采购A型、B型手机时,B型手机比A型手机多1台.(1)求A、B两种手机进价分别为多少元?(2)该A型手机每台售价为1800元,B型手机每台售价为1500元,手机店老板决定,购进B型手机的数量比购进A型手机的数量的2倍少3台,两种手机全部售完后,总获利超过12800元,问最少购进A型手机多少台?24.为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:类别时间t(小时)人数A t≤0.55B0.5<t≤120C1<t≤1.5aD 1.5<t≤230E t>210(1)a=______;(2)补全条形统计图.(3)据了解该市有大约30万名学生,请你估计初中学生每天进行体育锻炼时间在1小时以上的人数.25.已知:如图,四边形ABCD是平行四边形,E,F是对角线AC上的两点,AE=CF.(1)求证:四边形DEBF是平行四边形;(2)如果AE=EF=FC,请直接写出图中所有面积等于四边形DEBF的面积的三角形.26.如图,用三角尺和直尺,过点C画CD//AB.27.如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.【答案与解析】1.答案:D解析:解:A、平行四边形的对角相等,正确,故本选项错误;B、正方形的对称轴有四条,正确,故本选项错误;C、矩形既是中心对称图形又是轴对称图形,正确,故本选项错误;D、菱形的对角线相等且互相平分,错误,菱形的对角线不一定相等,故本选项正确.故选:D.给人家平行四边形的性质,正方形的对称性,矩形的对称性以及菱形的性质对各选项分析判断即可得解.本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握平行四边形以及特殊四边形的性质是解题的关键.2.答案:D解析:解:∵某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,=0.6.∴出现正面的频率是:610故选:D.直接利用频率求法,频数÷总数=频率,进而得出答案.此题主要考查了频数与频率,正确掌握频率的定义是解题关键.3.答案:D解析:解:A、了解某型号节能灯的使用寿命,适合抽样调查,故此选项错误;B、了解我市每天的流动人口数,适合抽样调查,故此选项错误;C、了解我市居民日平均用水量,适合抽样调查,故此选项错误;D、旅客上飞机前的安检,适合全面调查,故此选项正确;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进而得出答案.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.答案:D解析:解:A、以上调查方式属于抽样调查,故A不符合题意;B、总体是所有考生的中考数学试卷得分情况,故B不符合题意;C、个体指每个考生的中考数学试卷得分情况,故C不符合题意;D、样本容量指所抽取的300,故D符合题意;故选:D.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.答案:D解析:解:∵点E、D分别为AB、AC的中点,∴DE=1BC,DE//BC,2∵点F、G分别是BO、CO的中点,∴FG=1BC,FG//BC,2∴DE=FG,DE//FG,∴四边形DEFG为平行四边形,∵点E、F分别为AB、OB的中点,OA,EF//OA,∴EF=12当EF=FG,即AO=BC时平行四边形DEFG为菱形,当AO⊥BC时,DE⊥OA,∵EF//OA,∴EF⊥FG,∴四边形DEFG为正方形,则当AO=BC且AO⊥BC时,四边形DEFG是正方形,故选:D.根据三角形中位线定理得到DE=12BC,DE//BC,FG=12BC,FG//BC,得到四边形DEFG为平行四边形,根据正方形的判定定理解答即可.本题考查的是三角形中位线定理、正方形的判定,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6.答案:A解析:解:原式=m m+2+6(m+2)(m−2)⋅m−23=mm+2+2m+2=m+2m+2=1.故选A.原式第二项利用除法法则变形,约分后两项利用同分母分式的加法法则计算即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7.答案:B解析:解:A、菱形的对角线才相互垂直.故不对.B、根据平行四边形的对角线互相平分可知此题选B.C、只有平行四边形为矩形时,其对角线相等,故也不对.D、只有平行四边形为矩形时,其对角线相等且平分.故也不对.故选:B.根据平行四边形的对角线互相平分即可判断.此题主要考查平行四边形的性质.即平行四边形的对角线互相平分.8.答案:A解析:解:∵矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,∴S矩形CEOF =S矩形AGOH,∵点A的坐标为(−2,−2),∴S矩形AGOH=2×2=4,∴S矩形CEOF=4,∴k+1=4,∴k=3.故选A.先根据矩形的性质得到 矩形CEOF=S矩形AGOH=4,再利用反比例函数k的几何意义得k+1=4,然后解方程即可.本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数k的几何意义.9.答案:C解析:本题考查菱形的性质及三角形中位线定理,难度较小.由题意得AB=AD=6cm,O为AC 的中点,因为OE//DC交BC于点E,所以OE为△ABC的中位线,根据三角形中位线定理可得OE= AB=3cm,故此题选C.10.答案:C解析:1∵AD垂直平分BC,∴AB=AC.故正确;2∵AC=EC,∴∠CAE=∠E.故正确;3∵AB=AC=CE,BD=CD,∴AB+BD=CE+CD=DE.故正确;4∵∠ACB=∠CAE+∠E=2∠CAE,∠BAC=2∠CAD,而AC不一定是∠DAE的平分线.故错误.故选C.11.答案:取出1个黄色的小球解析:解:随机从口袋中任取1个球,共有三种情况可能发生:取出一个黄色小球;取出一个白色小球;取出一个红色小球.任选一种填空即可.根据实际情况即可解决.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.答案:(3)<(1)<(2)<(4).解析:试题分析:分别求出抽出各种扑克的概率,即可比较出各种扑克的可能性大小.从一副扑克牌中任意抽取一张,(1)这张牌是“A”的概率为454=227;(2)这张牌是“红心”的概率为1354;(3)这张牌是“大王”的概率为154;(4)这张牌是“红色的”的概率为2754=12,∴(3)<(1)<(2)<(4),故答案为:(3)<(1)<(2)<(4).13.答案:12xy2解析:解:分式x3y2,14xy的分母分别是3y2、4xy,故最简公分母是12xy2;故答案为12xy2.确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.14.答案:1;−2解析:试题分析:根据分式无意义的条件列出关于x的方程,求出x的值;再根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.∵分式x+2无意义,x−1∴x−1=0,解得x=1;∵分式x+2的值为0,x−1∴{x+2=0x−1≠0,解得x=−2.故答案为:1,−2.15.答案:字母验根原方程公分母增根解析:解:只含分式,或分式和整式,并且分母中含有分母的方程叫做分式方程.解分式方程必须验根.把求得的根代入原方程,或代入原方程两边所乘的公分母,使分母为零的根是增根,增根必须舍去,故答案为:字母,验根,原方程,公分母,增根.直接根据分式方程的概念和解分式方程的步骤填空得出即可.此题主要考查了解分式方程的步骤,正确把握证明步骤是解题关键.16.答案:18×4×9=18.解析:解:菱形的面积=12故答案为18.利用菱形的面积等于对角线乘积的一半求解.本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相ab(a、b是两等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).记住菱形面积=12条对角线的长度).17.答案:65解析:解:∵在▱ABCD中,AD//BC,∴∠DAB+∠B=180°.又∠B=50°,∴∠DAB=130°.∵AE是∠DAB的角平分线,∴∠DAE=12∠DAB=65°.∵四边形ABCD是平行四边形,∴AD//BC,∠BAD=∠BCD,AB=CD,而AE、CF分别是∠DAB、∠BCD的角平分线,∴∠BAE=∠FCD,在△ABE与△CDF中,{∠BAE=∠FCD AB=CD∠B=∠D,∴△ABE≌△CDF(ASA),∴BE=DF,而AD=BC,∴AF=CE,而AF//CE,∴四边形AFCE是平行四边形.∴AE//FC,∴∠DFC=∠DAE=65°.故答案是:65°.利用平行四边形的性质得到∠DAB=130°,则根据角平分线的性质知∠DAE=65°;容易证△ABE≌△CDF,所以BE=DF,再由AF、CE平行且相等判定四边形AFCE是平行四边形,故AE//FC,所以∠DFC=∠DAE=65°.本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.18.答案:4√3−4≤A′B≤8解析:解:如图所示,连接BM,BD,∵M是边AD的中点,△AMN沿MN所在的直线翻折得到△A′MN,∴点A′的轨迹为以AD为直径的半圆M,A′M=AM=4,∵∠A=60°,AB=AD,∴△ABD是等边三角形,∴BM⊥AD,∠ABM=30°,∴BM=√3AM=4√3,∵A′B+A′M≥BM,∴A′B≥BM−A′M=4√3−4,当点N与点A或点D重合时,点A′与点A或点D重合,此时A′B的最大值为8,∴A′B的取值范围为:4√3−4≤A′B≤8,故答案为:4√3−4≤A′B≤8.连接BM,BD,依据M是边AD的中点,△AMN沿MN所在的直线翻折得到△A′MN,即可得到点A′的轨迹为以AD为直径的半圆M,依据A′B+A′M≥BM,即可得出A′B≥BM−A′M=4√3−4,当点N与点A或点D重合时,A′B的最大值为8,即可得到A′B的取值范围.此题主要考查了菱形的性质以及折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.答案:解:(1)a+ba−2b ÷a2−b2a2−4ab+4b2=a+ba−2b⋅(a−2b)2(a+b)(a−b)=a−2ba−b;(2)4m2−4−1m−2=4(m+2)(m−2)−m+2(m+2)(m−2)=4−m−2 (m+2)(m−2)=2−m (m+2)(m−2)=−1m+2.解析:(1)根据分式除法可以解答本题;(2)根据分式的减法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 20.答案:解:(1)去分母得:x =2(2x −1)+3,解得:x =−13,经检验x =−13是分式方程的解;(2){3x +3>0①x −6≤−2x②, 由①得:x >−1,由②得:x ≤2,则不等式组的解集为−1<x ≤2.解析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 21.答案:解:(1)5x +15>4x −13,移项,得:5x −4x >−13−15,合并同类项,得:x >−28.故解集在数轴上表示出来为:;2x−13≤3x−46,去分母,得:2(2x −1)≤3x −4,去括号,得:4x −2≤3x −4,移项,得:4x −3x ≤−4+2,合并同类项,得:x ≤−2.故解集在数轴上表示出来为:;(2){3x −2<8…①2x −1>2…②, 解①得:x <103, 解②得:x >32,则不等式组的解集是:32<x <103;(3){x −2(x −3)≤8…①x 2−(x −3)>14…②, 解①得:x ≥−2,解②得:x <112,则不等式组的解集是:−2≤x <112,则整数解是:−2,−1,0,1,2,3,4,5.解析:(1)去分母、去括号,移项合并同类项,即可求解;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集;(3)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,然后确定整数解即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.22.答案:解:(1)如图所示:△ABE 即为所求;(2)如图所示:点N ,F 即为所求,EF =√5.解析:(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据题意利用直角三角形的性质结合勾股定理得出符合题意的图形.此题主要考查了应用设计与作图以及勾股定理,正确应用勾股定理是解题关键.23.答案:解:(1)设A型手机进价为x元,则B型手机进价为(x−200)元,由题意得:6000 x +1=6000x−200解得:x1=1200,x2=−1000(不合题意,舍去),经检验:x=1200是原分式方程的解,x−200=1200−200=1000,答:A、B两种手机进价分别为1200元、1000元;(2)设购进A型手机a台,则购进B型手机(2a−3)台,由题意得:(1800−1200)a+(1500−1000)(2a−3)>12800,解得:a>81516,答:至少购进A型手机的数量是9台.解析:(1)直接利用6000元采购A型、B型手机时,B型手机比A型手机多1台,得出等式求出答案;(2)根据题意表示出两种手机全部售完的利润进而得出不等式求出答案.此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出等量关系是解题关键.24.答案:35解析:解:(1)a=100−(5+20+30+10)=35.故答案为35;(2)补全条形统计图如下所示:(3)30×35+30+10=22.5(万人).100即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.(1)用样本总数100减去A、B、D、E类的人数即可求出a的值;(2)由(1)中所求a的值得到C类别的人数,即可补全条形统计图;(3)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可.本题考查的是条形统计图和频数分布表的综合运用.读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了利用样本估计总体.25.答案:(1)证明:连接BD,交AC于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA−AE=OC−CF,即OE=OF,∴四边形DEBF是平行四边形;(2)∵AE=EF=FC,∴S△ADE=S△DEF=S△CDF=S△ABE=S△BEF=S△BCF,图中所有面积等于四边形DEBF的面积的三角形为△ADF,△CDE,△ABF,△CBE.解析:(1)首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形;(2)根据等底等高的三角形的面积相等即可得到结论.此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.答案:解:如图,直线CD即为所求.解析:根据平行线的判定方法画出平行线即可.本题考查作图−复杂作图,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.答案:解:(1)图2猜想:AE+CF=EF,证明:在BC的延长线上截取CA′=AE,连接A′D,∵∠DAB=∠BCD=90°,∴∠DAB=∠DCA′=90°,又∵AD=CD,AE=A′C,∴△DAE≌△DCA′(SAS),∴ED=A′D,∠ADE=∠A′DC,∵∠ADC=120°,∴∠EDA′=120°,∵∠EDF=60°,∴∠EDF=∠A′DF=60°,又DF=DF,∴△EDF≌△A′DF(SAS),则EF=A′F=FC+CA′=FC+AE;(2)如图3,AE+CF=EF,证明:在BC的延长线上截取CA′=AE,连接A′D,∵∠DAB与∠BCD互补,∠BCD+∠DCA′=180°∴∠DAB=∠DCA′,又∵AD=CD,AE=A′C,∴△DAE≌△DCA′(SAS),∴ED=A′D,∠ADE=∠A′DC,∵∠ADC=2α,∴∠EDA′=2α,∵∠EDF=α,∴∠EDF=∠A′DF=α又DF=DF,∴△EDF≌△A′DF(SAS),则EF=A′F=FC+CA′=FC+AE.解析:(1)由题干中截长补短的提示,再结合第(1)问的证明结论,在第二问可以用截长补短的方法来构造全等,从而达到证明结果.(2)同理作辅助线,同理进行即可,直接写出猜想,并证明.本题是常规的角含半角的模型,解决这类问题的通法:旋转(截长补短)构造全等即可,题目所给例题的思路,为解决此题做了较好的铺垫.。
2019-2020学年江苏省苏州市工业园区八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅类涂在答题卡相应位置上.1.(2分)表示4的()A.平方B.平方根C.立方根D.算术平方根2.(2分)若2x=3y,且x≠0,则的值为()A.B.C.D.3.(2分)下列计算正确的是()A.B.=2C.=2D.=﹣3 4.(2分)一个不透明的袋子中装有1个红球、2个白球和3个黑球,每个球除颜色外都相同.将球摇匀后,从中任意摸出一个球,则摸到红球是()A.必然事件B.不可能事件C.确定事件D.随机事件5.(2分)下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式6.(2分)若点A(x1,y1),B(x2,y2)在函数y=﹣上,且x1<0<x2,则下列结论中正确的是()A.y1>y2B.y1<y2C.y1=y2D.y1,y2的大小关系无法确定7.(2分)如图,在△ABC中,点D在AB上,∠ACD=∠B.若AD=2,BD=3,则AC 等于()A.5B.6C.D.8.(2分)将两张全等的正方形透明纸片叠放在一起,并使其中心重合,得到如图所示的图形,则该图形()A.既是轴对称图形又是中心对称图形B.既不是轴对称图形也不是中心对称图形C.是轴对称图形但不是中心对称图形D.是中心对称图形但不是轴对称图形9.(2分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为()A.3m B.3.2m C.3.4m D.3.6m10.(2分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,AD=5,则BD等于()A.13B.2C.8D.6二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.11.(2分)化简:=.12.(2分)若分式有意义,则x应满足的条件是.13.(2分)给出下列3个分式:,它们的最简公分母为.14.(2分)转动如图所示的转盘(转盘中各个扇形的面积都相等),当转盘停止转动时,指针落在阴影区域的概率为.15.(2分)如图,平行四边形ABCD的对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE.若△ABE的周长为10cm,则平行四边形ABCD的周长为cm.16.(2分)如图,四边形纸片ABCD中,AB=BC,∠ABC=∠ADC=90°.若该纸片的面积为10cm2,则对角线BD=cm.17.(2分)如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别交于点A、B、C和点D、E、F,若BC=2AB,AD=2,CF=6,则BE的长为.18.(2分)如图,菱形ABCD的边长为1,∠ABC=60°.E,F分别是BC,BD上的动点,且CE=DF,则AE+AF的最小值为.三、解答题:本大题共10小题,共64分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.19.(5分)计算:.20.(5分)解方程:=4.21.(5分)先化简,再求值:,其中a=1+.22.(5分)某校组织全校2000名学生进行了防火知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了如图所示的频数分布表和频数分布直方图(不完整):抽取部分学生的成绩频率分布表分组频数频率50.5~60.5200.0560.5~70.5a0.1570.5~80.576b80.5~90.51040.2690.5~100.51400.35合计4001根据所给信息,回答下列问题:(1)a=,b=;(2)补全频数分布直方图;(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数.23.(6分)甲、乙、丙,丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)甲第一次传花时,恰好传给乙的概率是;(2)求经过两次传花,花恰好回到甲手中的概率;(3)经过三次传花,花落在丙手上的概率记作P1,落在丁手上的概率记作P2,则P1 P2(填“>”、“<”或者“=”)24.(6分)已知:如图,在四边形ABCD中,AB与CD不平行,E,F,G,H分别是AD,BC,BD,AC的中点.(1)求证:四边形EGFH是平行四边形;(2)①当AB与CD满足条件时,四边形EGFH是菱形;②当AB与CD满足条件时,四边形EGFH是矩形.25.(6分)甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.26.(8分)如图,在△ABC中,∠C=40°.将△ABC绕点A按逆时针方向旋转后得△ADE,连接BD.当DE∥AC时,求∠ABD的度数.27.(8分)如图,Rt△AOB的直角边OB在x轴的正半轴上,反比例函数y=(x>0)的图象与斜边OA相交于点C,与直角边AB相交于点D,且AC=2OC.(1)若点C(2,3),求点D的坐标;(2)若S△ACD=8,求k的值.28.(10分)如图①,在矩形ABCD中,AB=3cm,AD>AB,点E从点A出发,沿射线AC以a(cm/s)的速度匀速移动,连接DE,过点E作EF⊥DE,EF与射线BC相交于点F,作矩形DEFG,连接CG,设点E移动的时间为t(s),△CDE的面积为S(cm2).S 与t的函数关系如图②所示.(1)a=;(2)求矩形DEFG面积的最小值;(3)当△CDG为等腰三角形时,求t的值.2019-2020学年江苏省苏州市工业园区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅类涂在答题卡相应位置上.1.(2分)表示4的()A.平方B.平方根C.立方根D.算术平方根【分析】利用平方根的性质判断即可.【解答】解:是4的算术平方根.故选:D.2.(2分)若2x=3y,且x≠0,则的值为()A.B.C.D.【分析】根据比例的性质求出=,变形后代入,即可求出答案.【解答】解:∵2x=3y,且x≠0,∴两边除以2y得:=,∴=﹣1=﹣1=,故选:C.3.(2分)下列计算正确的是()A.B.=2C.=2D.=﹣3【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的性质对C、D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、与﹣不能合并,所以B选项错误;C、原式=2,所以C选项正确;D、原式=3,所以D选项错误.故选:C.4.(2分)一个不透明的袋子中装有1个红球、2个白球和3个黑球,每个球除颜色外都相同.将球摇匀后,从中任意摸出一个球,则摸到红球是()A.必然事件B.不可能事件C.确定事件D.随机事件【分析】根据随机事件定义可得答案.【解答】解:从中任意摸出一个球,则摸到红球是随机事件,故选:D.5.(2分)下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解一批节能灯的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批节能灯全部用于实验;B、调查你所在班级同学的身高,要求精确、难度相对不大、实验无破坏性,应选择普查方式;C、了解环保部门调查沱江某段水域的水质情况,会给调查对象带来损伤破坏,应该选取抽样调查的方式才合适;D、调查全市中学生每天的就寝时间,进行一次全面的调查,费大量的人力物力是得不偿失的,采取抽样调查即可;故选:C.6.(2分)若点A(x1,y1),B(x2,y2)在函数y=﹣上,且x1<0<x2,则下列结论中正确的是()A.y1>y2B.y1<y2C.y1=y2D.y1,y2的大小关系无法确定【分析】根据反比例函数的性质和题目中的函数解析式,可以得到y1和y2的大小关系,本题得以解决.【解答】解:∵函数y=﹣,∴在每个象限内,y随x的增大而增大,当x<0时,y>0,当x>0时,y<0,∵点A(x1,y1),B(x2,y2)在函数y=﹣上,且x1<0<x2,∴y1>y2,故选:A.7.(2分)如图,在△ABC中,点D在AB上,∠ACD=∠B.若AD=2,BD=3,则AC 等于()A.5B.6C.D.【分析】根据两角对应相等,即可证明△ADC∽△ACB,得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.【解答】解:在△ADC和△ACB中,∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=AD+BD=2+3=5,∴AC2=5×2=10,∴AC=,故选:D.8.(2分)将两张全等的正方形透明纸片叠放在一起,并使其中心重合,得到如图所示的图形,则该图形()A.既是轴对称图形又是中心对称图形B.既不是轴对称图形也不是中心对称图形C.是轴对称图形但不是中心对称图形D.是中心对称图形但不是轴对称图形【分析】根据轴对称图形和中心对称图形的定义判断即可.【解答】解:重叠部分的图形,既是轴对称图形也是中心对称图形.故选:A.9.(2分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为()A.3m B.3.2m C.3.4m D.3.6m【分析】直接利用同一时刻物体影子与实际高度成比例,进而得出答案.【解答】解:连接AC,过点M作MF⊥PF,∵同一时刻物体影子与实际高度成比例,∴=,解得:PF=2.4,∴PQ=PF+FQ=PF+MN=2.4+0.8=3.2(m),故选:B.10.(2分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,AD=5,则BD等于()A.13B.2C.8D.6【分析】连接AC,过D作DF⊥BC于F,则∠F=90°,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,根据相似三角形的性质和判定求出=,求出CF、DF的长,再根据勾股定理求出BD即可.【解答】解:连接AC,过D作DF⊥BC于F,则∠F=90°,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,由勾股定理得:AC=5,∵在△ACD中,AC=5,CD=10,AD=5,∴AC2+CD2=AD2,∴∠ACD=90°,∵∠ABC=90°,∴∠ACB+∠BAC=90°,∠ACB+∠DCF=90°,∴∠BAC=∠DCF,∵∠ABC=∠F=90°,∴△ABC∽△CFD,∴=,∴==,设CF=3x,DF=4x,在Rt△DFC中,由勾股定理得:CD2=CF2+DF2,即102=(3x)2+(4x)2,解得:x=2(负数舍去),即CF=3×2=6,DF=4x=8,∴BF=4+6=10,在Rt△DFB中,BD===2,故选:B.二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.11.(2分)化简:=2.【分析】将分子、分母同乘,计算即可.【解答】解:==2.故答案为2.12.(2分)若分式有意义,则x应满足的条件是x≠2.【分析】直接利用分式的定义分析得出答案.【解答】解:分式有意义,则x﹣2≠0,则x应满足的条件是:x≠2.故答案为:x≠2.13.(2分)给出下列3个分式:,它们的最简公分母为a2bc.【分析】根据最简公分母的定义判断即可.【解答】解:3个分式,,,它们的最简公分母是a2bc.故答案为:a2bc.14.(2分)转动如图所示的转盘(转盘中各个扇形的面积都相等),当转盘停止转动时,指针落在阴影区域的概率为.【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.【解答】解:∵圆被等分成6份,其中阴影部分占3份,∴落在阴影区域的概率为=;故答案为:.15.(2分)如图,平行四边形ABCD的对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE.若△ABE的周长为10cm,则平行四边形ABCD的周长为20cm.【分析】由平行四边形性质可得AB+AD=10cm,OB=OD,又由OE⊥BD,可得BE=DE,继而可求得△ABE的周长为AB+AD,根据三角形的周长求得平行四边形的周长即可.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵OE⊥BD,∴BE=DE,∵△ABE的周长为10cm,∴AB+AE+BE=AB+AE+DE=AB+AD=10cm,∴AB+AD=10cm,∴平行四边形ABCD的周长是2(AB+AD)=20cm,故答案为:20.16.(2分)如图,四边形纸片ABCD中,AB=BC,∠ABC=∠ADC=90°.若该纸片的面积为10cm2,则对角线BD=2cm.【分析】作BE⊥AD于E,BF⊥CD于F,则四边形BEDF是矩形,证明△ABE≌△CBF (AAS),得出BE=BF,△ABE的面积=△CBF的面积,则四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,求出BE=,则BD=BE=2【解答】解:作BE⊥AD于E,BF⊥CD于F,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC,∴∠ABE=∠CBF,在△ABE和△CBF中,,∴△ABE≌△CBF(AAS),∴BE=BF,△ABE的面积=△CBF的面积,∴四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,∴BE=DE,BE2=10,∴BE=,∴BD=BE=2;故答案为:2.17.(2分)如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别交于点A、B、C和点D、E、F,若BC=2AB,AD=2,CF=6,则BE的长为.【分析】过A作DF的平行线,交BE于G,交CF于H,依据BG∥CH,即可得到=,进而得出BE的长.【解答】解:如图所示,过A作DF的平行线,交BE于G,交CF于H,则AD=GE=HF=2,CH=6﹣2=4,∵BG∥CH,∴=,即=,∴BG=,∴BE=BG+GE=+2=,故答案为:.18.(2分)如图,菱形ABCD的边长为1,∠ABC=60°.E,F分别是BC,BD上的动点,且CE=DF,则AE+AF的最小值为.【分析】如图,连接AC,过点C作CT⊥CA,使得CT=AD=1,连接AT.证明△ADF ≌△ECT(SAS),推出AF=ET,推出AE+AF=AE+ET≥AT,求出AT即可解决问题.【解答】解:如图,连接AC,过点C作CT⊥CA,使得CT=AD=1,连接AT.∵四边形ABCD是菱形,∴AB=CB=CD=AD,∠ABC=∠ADC=60°,∠ADB=∠ADC=30°,∴△ABC是等边三角形,∴∠ACB=60°,AC=AB=1,∵AC⊥CT,∴∠ECT=30°,∴∠ADF=∠ECT,∵CE=DF,CT=DA,∴△ADF≌△ECT(SAS),∴AF=ET,∴AE+AF=AE+ET≥AT,∵∠ACT=90°,AC=CT=1,∴AT===,∴AE+AF≥,∴AE+AF的最小值为.三、解答题:本大题共10小题,共64分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.19.(5分)计算:.【分析】利用二次根式的乘法法则运算.【解答】解:原式=+﹣=6+2﹣=6+.20.(5分)解方程:=4.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:+=4,去分母得:x+4+2=4x﹣12,移项合并得:﹣3x=﹣18,解得:x=6,经检验x=6是分式方程的解.21.(5分)先化简,再求值:,其中a=1+.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=•=•=,当a=1+,b=1﹣时,原式==.22.(5分)某校组织全校2000名学生进行了防火知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了如图所示的频数分布表和频数分布直方图(不完整):抽取部分学生的成绩频率分布表分组频数频率50.5~60.5200.0560.5~70.5a0.1570.5~80.576b80.5~90.51040.2690.5~100.51400.35合计4001根据所给信息,回答下列问题:(1)a=60,b=0.19;(2)补全频数分布直方图;(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数.【分析】(1)根据频数分布表中的数据,可以计算出a和b的值;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)根据频数分布表中的数据,可以计算出全校获奖学生的人数.【解答】解:(1)a=400×0.15=60,b=76÷400=0.19,故答案为:60,0.19;(2)由(1)知,a=60,补全的频数分布直方图如右图所示;(3)2000×0.35=700(人),即全校获奖学生的有700人.23.(6分)甲、乙、丙,丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)甲第一次传花时,恰好传给乙的概率是;(2)求经过两次传花,花恰好回到甲手中的概率;(3)经过三次传花,花落在丙手上的概率记作P1,落在丁手上的概率记作P2,则P1=P2(填“>”、“<”或者“=”)【分析】(1)直接利用概率公式计算可得;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在甲手中的情况,再利用概率公式即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在丙、丁手中的情况,再利用概率公式即可求得答案.【解答】解:(1)甲第一次传花时,恰好传给乙的概率是,故答案为:;(2)画树状图:共有9种等可能的结果,其中符合要求的结果有3种,∴P(第2次传球后球回到甲手里)==.(3)画树状图如下,由树状图知经过三次传花共有27种等可能结果,其中花落在丙手上的有7种结果,花落在丁手上的有7种结果,∴P1=、P2=,则P1=P2,故答案为:=.24.(6分)已知:如图,在四边形ABCD中,AB与CD不平行,E,F,G,H分别是AD,BC,BD,AC的中点.(1)求证:四边形EGFH是平行四边形;(2)①当AB与CD满足条件AB=CD时,四边形EGFH是菱形;②当AB与CD满足条件AB⊥CD时,四边形EGFH是矩形.【分析】(1)根据三角形中位线定理得到EG=AB,EG∥AB,FH=AB,FH∥AB,根据平行四边形的判定定理证明结论;(2)①根据邻边相等的平行四边形是菱形解答;②根据矩形的判定定理解答.【解答】(1)证明:∵E,G分别是AD,BD的中点,∴EG是△DAB的中位线,∴EG=AB,EG∥AB,同理,FH=AB,FH∥AB,∴EG=FH,EG∥FH,∴四边形EGFH是平行四边形;(2)①∵F,G分别是BC,BD的中点,∴FG是△DCB的中位线,∴FG=CD,FG∥CD,当AB=CD时,EG=FG,∴四边形EGFH是菱形;②∵HF∥AB,∴∠HFC=∠ABC,∵FG∥CD,∴∠GFB=∠DCB,∵AD⊥BC,∴∠ABC+∠DCB=90°,∴∠GFH=90°,∴平行四边形EGFH是矩形,故答案为:①AB=CD;②AB⊥CD.25.(6分)甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【分析】首先提出问题,例如,求甲、乙两公司的人数分别是多少?则本题的等量关系是:乙公司的人均捐款﹣甲公司的人均捐款=40,根据这个等量关系可得出方程求解.【解答】问题:求甲、乙两公司的人数分别是多少?解:设乙公司人数为x,则甲公司的人数为(1+20%)x,根据题意得:﹣=40解得:x=250经检验x=250是原方程的根,故(1+20%)×250=300(人),答:甲公司为300人,乙公司250人.26.(8分)如图,在△ABC中,∠C=40°.将△ABC绕点A按逆时针方向旋转后得△ADE,连接BD.当DE∥AC时,求∠ABD的度数.【分析】由旋转的性质得出△ADE≌△ABC,则∠C=∠E=,由平行线的性质得出∠E =∠EAC,则可得出∠ABD=∠ADB,则可求出答案.【解答】解:∵将△ABC绕点A按逆时针方向旋转后得△ADE,∴△ADE≌△ABC,∴∠C=∠E=,∵DE∥AC,∴∠E=∠EAC,又∵∠BAD=∠EAC,∴∠BAD=∠C=40°,∵AB=AD,∴∠ABD=∠ADB,∴∠ABD=(180°﹣∠BAD)=70°.27.(8分)如图,Rt△AOB的直角边OB在x轴的正半轴上,反比例函数y=(x>0)的图象与斜边OA相交于点C,与直角边AB相交于点D,且AC=2OC.(1)若点C(2,3),求点D的坐标;(2)若S△ACD=8,求k的值.【分析】(1)由点C的坐标可知OE、CE的长度,进而确定反比例函数的关系式,由AC =2OC,根据相似三角形可求出点D的横坐标,点D的横坐标可求出纵坐标,(2)根据三角形相似得到OB=3OE,AB=3CE,设点C(a,),则A(3a,),即可得到D(3a,),然后根据三角形面积得到•2a=8,解得k=3.【解答】解:(1)如图.过点C作CE⊥x轴,垂足为点E.∵C(2,3),∠CEO=90°,∴OE=2,CE=3,∴k=xy=OE•CE=2×3=6.∵AB⊥x轴,∴∠ABC=∠CEO=90°.∴CE∥AB,∴=,∵AC=2OC,∴BE=2OC=4,∴OB=6.把x=6代入y=得y=1,∴D(6,1);(2)∵AB⊥x轴,∴∠ABC=90°,同理∠CEO=90°,∴CE∥AB,∴=,∵AC=2OC,∴BE=2OE,∴OB=3OE,AB=3CE,设点C(a,),则A(3a,),把x=3a代入y=,得y=,∴D(3a,),∴AD=,△ACD中AD边上的高为2a.∵S△ACD=8,∴•2a=8.∴k=3.28.(10分)如图①,在矩形ABCD中,AB=3cm,AD>AB,点E从点A出发,沿射线AC以a(cm/s)的速度匀速移动,连接DE,过点E作EF⊥DE,EF与射线BC相交于点F,作矩形DEFG,连接CG,设点E移动的时间为t(s),△CDE的面积为S(cm2).S 与t的函数关系如图②所示.(1)a=1;(2)求矩形DEFG面积的最小值;(3)当△CDG为等腰三角形时,求t的值.【分析】(1)求出AC=5cm,由图象可知运动时间为5s,则可得出答案;(2)过点E作MN⊥BC,MN与射线BC相交于点N,与AD相交于点M,证明△ENF ∽△DME,得出,证明△ENC∽△ABC,得出EF=DE,则S矩形DEFG=EF•DE=.当DE⊥AC时,DE取得最小值,则可得出答案;(3)证明△CDG∽△ADE,得出,可分三种情况:当CG=DG时,当CG =CD时,当CD=DG时,分别求出t的值即可.【解答】解:(1)由图象可知,三角形ADC的面积为6,∵矩形ABCD中,AB=3cm,∴CD=3cm,∴S△ADC=×AD×CD=6,∴AD=4cm,∴AC===5cm,由图象可知当t=5时,点E移动到点C,∴t=5,∴a==1(cm/s).故答案为:1.(2)如图1,过点E作MN⊥BC,MN与射线BC相交于点N,与AD相交于点M,则在Rt△ENF和Rt△DME中,∵∠NEF+∠MED=90°,且∠MDE+∠MED=90°,∴∠NEF=∠MDE,又∵∠ENF=∠DME=90°,∴△ENF∽△DME,∴,∵EN∥AB,∴△ENC∽△ABC,∴,∴,∴,∴EF=DE,∴S矩形DEFG=EF•DE=.由垂线段最短知,当DE⊥AC时,DE取得最小值,此时DE=,∴S=.∴矩形DEFG面积的最小值为;(3)∵∠EDG=∠ADC=90°,∴∠EDG﹣∠EDC=∠ADC﹣∠EDC,∴∠CDG=∠ADE,又∵,∴△CDG∽△ADE,∴,①如图2,当CG=DG时,有AE=DE,此时点E为AC的中点,AE=,∴t=;②如图2,当CG=CD时,有AE=AD,此时AE=4,∴t=4;③如图3,当CD=DG时,有AD=DE,∴DE=4,过点D作DH⊥AC于点H,∵∠AHD=∠ADC=90°,∠DAH=∠CAD,∴△ADH∽△ACD,∴,∴AH=,∴AE=2AH=,∴t=.综合以上可得,当△CDG为等腰三角形时,t的值为或4或.。
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
1 / 4
2019–2020学年第二学期期中教学调研卷
初二数学
2020.05
一、选择题(本大题共10小题,每小题2分,共20分..)
1.下列图标中,是中心对称图形的是
2. 若分式的值为0,则x的值为( )
A. 0 B. ﹣1 C. 1 D.
2
3.已知,则的值是( )
A. ﹣5 B. 5 C. ﹣4
D.
4
4反比例函数1myx−=的图象在第一、第三象限,则m可能取的一个值为( )
A. 0 B. 1 C. 2 D. 3
5.正方形的对称轴的条数为( )
A. 1 B. 2 C. 3 D. 4
6.下列命题是假命题的是( )
A. 四个角相等的四边形是矩形 B. 对角线相等的平行四边形是矩形
C. 对角线垂直的四边形是菱形 D. 对角线垂直的平行四边形是菱形
7.己知点112233(,),(,),(,)xyxyxy在反比例函数3=yx的图像上,当1230xxx
时,123,,yyy的大小关系是( )
A. 132yyy B. 213yyy C. 312yyy D. 321yyy
8.如图,将△ABC绕点C逆时针旋转得到△A’召B’C,点B恰好落在A’B’上,若∠A=
25°,∠BCA ’=45°,则∠A’BC = ( ).
A.30° B.35° C.40° D. 45°
9.如图,双曲线(0,0)kykxx=经过□ABCD的对角线的交点D,已知边OC在y轴上,且OC⊥CA,
若OC=3,BC=5,则k=( ).
A.3 B.6 C.12 D.15
10.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,
AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形:③AD=4AG;
④△DBF≌△EFA.其中正确结论的序号是( ).
A.①② B.③④ C.①③④ D.①②③④
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
2 / 4
二、填空题(本大题共8小题,每小题2分,共16分)
11.当x______时,32xx−+有意义
12.已知关于x的分式方程的解是负数,则a的取值范围是 .
13.菱形的周长为12cm,一个内角等于120°,则这个菱形的面积为 cm2.
14.点(,)Pmn是函数3yx=−和4=+yx图像的一个交点,则+−mnnm的值为 .
15.如图,在矩形ABCD中,点E在AD上,且EC平分BED.若2,45==ABEBC,
则BC的长为 .
16.如图,在平面直角坐标系中,点A是反比例函数12(0)yxx=−的图像上的一点,ACy⊥轴,垂足
为C,点B在x轴的负半轴上,则ABC的面积为 .
17.如图,如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,
OF⊥AD于F.则OE+OF=
18.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=
在第一象限的图
象经过点B.若OA2﹣AB2=12,则k的值为 .
三、解答题
19
.计算(每题4分共8分)
(1) (2)11aaa−−−
20. (本题4分)解方程:
第15题 第16题 第17题 第18题
−+−5
(1)(1)
x
xx
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
3 / 4
21.(本题5分)若5(1)(1)xxx−+−=1+xA+1−xB,求A、B的值.
22.(本题6分)先化简,然后请你为a在﹣2到2之间(包括﹣2和2),任
意选取一个合适的整数,再求出此时原式的值.
23、(本题满分5分)甲、乙两地相距360千米.新修的高速公路开通后,在甲乙两地之间行驶的长途客
运车平均车速提高了50%,而从甲地到乙地的时间缩短了2小时,试确定原来的平均车速.
24.(本题满分6分)如图,己知ABC的三个项点的
坐标分别为(5,0),(2,3),(1,0)ABC−−−.
(1)画出ABC关于原点O成中心对称的图形
ABC
;
(2)将ABC绕原点O顺时针旋转90°,画出
对应的ABC,并写出点B的坐标 .
25.(本题满分5分)如图,在四边形ABCD中,P是对角线BD的中点,
E、F 分别是AB、CD的中点,AD=BC,∠PEF=20°,求 ∠PFE的度数.
26.(本题满分7分)如图,菱形ABCD的对角线AC、BD相交于点O,
//BEAC,//AEBD,OE
与AB交于点F.
(1)试判断四边形AEBO的形状,并说明理由:
(2)若5=OE,8=AC,求菱形ABCD的面积.
27(本题满分9分)如图,已知直线xy21=与双曲线)0(=kxky交于A、B两点,A点横坐标为4.
(1)求k值;
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
4 / 4
(2)直接写出关于x的不等式021−xkx的解集;
(3)若双曲线)0(=kxky上有一点C的纵坐标为8
求△AOC的面积.
(4)若在x轴上有点M,y轴上有点N,
且点M、N、A、C四点恰好构成平行四边形,
直接写出点M、N的坐标.
28. (本题满分9分) 如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线
AC于M,连接BM,且AH=3.
(1)求DM的长;
(2)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB
的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;
(3)在(2)的条件下,当点P在边AB上运动时是否存在这样的 t值,使∠MPB与∠BCD互为余角,
若存在,则求出t值,若不存,在请说明理由.
(图2)
M A B D C H M
A B D C H
(图1)