第2章 应变式传感器(4)分析
- 格式:ppt
- 大小:1.74 MB
- 文档页数:53
传感器技术习题解答第一章传感器的一般特性1-1:答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。
1-2:答:(1)动态特性是指传感器对随时间变化的输入量的响应特性;(2)描述动态特性的指标:对一阶传感器:时间常数对二阶传感器:固有频率、阻尼比。
1-3:答:传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数,即A=ΔA/Y FS*100%1-4;答:(1):传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器的线性度;(2)拟合直线的常用求法有:端基法和最小二5乘法。
1-5:答:由一阶传感器频率传递函数w(jw)=K/(1+jωη),确定输出信号失真、测量结果在所要求精度的工作段,即由B/A=K/(1+(ωη)2)1/2,从而确定ω,进而求出f=ω/(2π).1-6:答:若某传感器的位移特性曲线方程为y1=a0+a1x+a2x2+a3x3+…….让另一传感器感受相反方向的位移,其特性曲线方程为y2=a0-a1x+a2x2-a3x3+……,则Δy=y1-y2=2(a1x+a3x3+ a5x5……),这种方法称为差动测量法。
其特点输出信号中没有偶次项,从而使线性范围增大,减小了非线性误差,灵敏度也提高了一倍,也消除了零点误差。
1-7:解:Y FS=200-0=200由A=ΔA/Y FS*100%有A=4/200*100%=2%。
精度特级为2.5级。
1-8:解:根据精度定义表达式:A=ΔA/Ay FS*100%,由题意可知:A=1.5%,Y FS=100所以ΔA=A Y FS=1.5因为 1.4<1.5所以合格。
1-9:解:Δhmax=103-98=5Y FS=250-0=250故δH=Δhmax/Y FS*100%=2%故此在该点的迟滞是2%。
1-10:解:因为传感器响应幅值差值在10%以内,且Wη≤0.5,W≤0.5/η,而w=2πf,所以 f=0.5/2πη≈8Hz即传感器输入信号的工作频率范围为0∽8Hz1-11解:(1)切线法如图所示,在x=0处所做的切线为拟合直线,其方程为:Y =a0+KX,当x=0时,Y=1,故a0=1,又因为dY/dx=1/(2(1+x)1/2)|x=0=1/2=K故拟合直线为:Y=1+x/2最大偏差ΔYmax在x=0.5处,故ΔYmax=1+0.5/2-(1+0.5)1/2=5/4-(3/2)1/2=0.025Y FS=(1+0.5/2)-1=0.25故线性度δL=ΔYmax/ Y FS*100%=0.025/0.25*100%=0.10*100%=10%(2)端基法:设Y的始点与终点的连线方程为Y=a0+KX因为x=0时,Y=1,x=0.5时,Y=1.225,所以a0=1,k=0.225/0.5=0.45而由 d(y-Y)/dx=d((1+x)1/2-(1+0.45x))/dx=-0.45+1/(2(1+x)1/2)=0有-0.9(1+x)1/2+1=0(1/0.9)2=1+xx=0.234ΔYmax=[(1+x)1/2-(1+0.45x)]|x=0.234=1.11-1.1053=0.0047Y FS=1+0.45*0.5-1=0.225δL端基=ΔYmax/ Y FS*100%=0.0047/0.225*100%=2.09%(3)最小二*法由公式()()xykninkniaxxyxxyxxxyxyxaiiiiiiiiiii*4695.00034.14695.005.1506.100365.1055.0*625.2751.1*65.1*691.60034.105.168.36265.255.0*625.255.0*691.65.1*751.1)**)22222((+==--=--==--=--=-∑∑-∑=-∑-∑=∑∑∑∑∑∑由d(y-Y)/dx=d((1+x)1/2-(1.0034+0.4695*x))/dx=-0.4695+1/(2(1+x)1/2)=0有x=1/(0.939)2-1=0.134ΔYmax=[(1+x)1/2-(1.0034+0.4695x)]|x=0.234=1.065-1.066=-0.001Y FS =1.0034+0.4695x-1.0034=0.235 δL 二*法=ΔYmax/ Y FS *100%=0.001/0.235*100%=0.0042*100%=0.42%1-12:解:此为一阶传感器,其微分方程为a 1dy/dx+a 0y=b 0x 所以 时间常数η=a 1/a 0=10sK=b 0/a 0=5*10-6V/Pa1- 13:解:由幅频特性有:()=+=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-ωωξωωω04021/2221K A ()()3125.1arctan 36.016.0*7.0*2arctan 012arctan 947.07056.01*42120222264.010006007.010006001-=--=-⎪⎪⎭⎫⎝⎛-==+=+⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-ωωωωξωϕ1- 14:解:由题意知:()()()max minmax3%H j H j H j ωωω-<因为最小频率为W=0,由图1-14知,此时输出的幅频值为│H (jw )│/K=1,即│H (jw )│=K()maxmax 013%0.9719.3620.97KK kHz H j ωωω∴-<<<⎛<= ⎝1- 15解:由传感器灵敏度的定义有: K =m mv mmv x y μμ/51050==∆∆ 若采用两个相同的传感器组成差动测量系统时,输出仅含奇次项,且灵敏度提高了2倍,为20mv/μm.第二章 应变式传感器2-1:答:(1)金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
应变式传感器课程设计一、课程目标知识目标:1. 学生能理解应变式传感器的原理,掌握其组成结构及工作方式。
2. 学生能够描述应变式传感器在工程测量中的应用,了解其优缺点。
3. 学生掌握应变式传感器的数学模型及其转换关系。
技能目标:1. 学生能够独立完成应变式传感器的电路连接,进行简单的数据采集。
2. 学生能够运用所学知识,对实际测量中的数据进行初步处理和分析。
3. 学生能够运用应变式传感器设计简单的实际应用项目,提高解决问题的能力。
情感态度价值观目标:1. 学生通过学习应变式传感器,培养对物理科学的兴趣和探究精神。
2. 学生在团队合作中,培养沟通协调能力和团队合作精神。
3. 学生了解传感器技术在现代社会中的重要作用,增强对科技创新的认识,提高社会责任感和使命感。
课程性质:本课程为高二年级物理选修课程,旨在通过实践操作,使学生掌握应变式传感器的基本原理和应用。
学生特点:高二年级学生已具备一定的物理基础和实验操作能力,对传感器技术有一定了解,但对实际应用尚缺乏经验。
教学要求:结合学生特点,课程设计注重理论与实践相结合,提高学生的动手操作能力和问题解决能力。
通过具体的学习成果分解,使学生在课程结束后能够达到上述课程目标。
后续教学设计和评估将以此为基础,确保课程目标的实现。
二、教学内容1. 应变式传感器原理及结构- 介绍应变式传感器的工作原理- 分析应变片的结构和材料- 讲解应变式传感器的电路连接方式2. 应变式传感器的数学模型- 探讨应变式传感器的转换关系- 引导学生建立应变式传感器的数学模型- 实例分析应变式传感器的数学模型应用3. 应变式传感器的应用- 介绍应变式传感器在工程测量中的应用领域- 分析应变式传感器的优缺点- 案例展示应变式传感器在实际项目中的应用4. 实践操作与数据处理- 安排学生进行应变式传感器的电路连接及数据采集- 指导学生进行实验数据的初步处理和分析- 引导学生针对实际问题,运用应变式传感器进行解决方案的设计5. 教学进度安排- 原理及结构:2课时- 数学模型:2课时- 应用:2课时- 实践操作与数据处理:4课时教材章节关联:- 第二章 传感器原理- 第三章 传感器数学模型- 第四章 传感器应用- 附录 实验操作指导教学内容根据课程目标进行选择和组织,注重科学性和系统性。
传感器习题与思考题146题第1章传感器概述1.下列传感器属于物性型有源传感器的是(D)A金属电阻应变片B压电式传感器C热敏电阻D半导体气敏传感器2.什么是传感器?它由哪几个部分组成?分别起到什么作用?答:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。
传感器由敏感元件、转换元件、转换电路、辅助电源四部分组成。
敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;转换电路转换成电量输出。
3.传感器的性能参数反映了传感器的什么关系?什么是传感器的静态特性,描述传感器静态特性的技术指标有哪些?各种参数代表什么意义?什么是传感器的动态待性?动态参数有那些?应如何选择?答:传感器的性能参数反映了传感器的输入与输出关系。
传感器的静态特性指被测量处于稳定状态下的输入输出关系。
传感器静态特性的技术指标有线性度、灵敏度、迟滞、重复性、漂移。
传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。
灵敏度S是指传感器的输出量增量Δy与引起输出量增量Δy的输入量增量Δx的比值。
传感器的动态特性是指其输出对随时间变化的输入量的响应特性。
一阶传感器的动态参数是传感器的时间常数。
当ωτ《1时,A(ω)≈1,φ(ω)≈0,表明传感器输出与输入为线性关系,输出比较真实的反映了输入的变化规律。
二阶传感器的动态参数有传感器的固有频率、传感器的阻尼比。
传感器固有频率ωn》ω输入信号频率,ζ<1,欠阻尼;A(ω)≈1,φ(ω)≈0,传感器输再现输入的波形。
4、传感器的标定有哪两种?标定的目的是什么?传感器的标定分为静态标定和动态标定。
静态标定目的是确定传感器的静态特性指标,如线性度、灵敏度、滞后和重复性等。
动态标定目的是确定传感器的动态特性参数,如频率响应、时间常数、固有频率和阻尼比等。
5.画出测试系统的组成框图,并说明各组成部分的作用。
应变式传感器工作原理应变式传感器是一种常用的传感器,可以用来测量物体的应变或变形。
它们通常用于工程、建筑、汽车和航空航天等领域,用于监测结构的变形、应变和应力。
在本文中,我们将探讨应变式传感器的工作原理,以及它们在实际应用中的一些常见用途。
应变式传感器的工作原理基于材料的电阻率随应变变化的特性。
当一个材料受到外部力的作用时,它会发生应变,导致材料的电阻发生变化。
应变式传感器利用这种原理,将材料的电阻变化转化为电信号,从而实现对应变的测量。
应变式传感器通常由敏感材料、电路和输出接口组成。
敏感材料是传感器的核心部件,它可以是金属、半导体或者陶瓷等材料。
当敏感材料受到应变时,它的电阻会发生变化。
电路部分则负责将敏感材料的电阻变化转化为电压或电流信号,输出接口则将信号传输给外部设备进行处理或显示。
应变式传感器可以分为多种类型,包括电阻应变式传感器、电容应变式传感器和电感应变式传感器等。
其中,电阻应变式传感器是最常见的一种类型。
它们通常由敏感材料组成的电桥电路和信号处理电路组成,可以实现对应变的高精度测量。
在实际应用中,应变式传感器有着广泛的用途。
在工程领域,它们可以用于监测建筑结构的变形和应变,以及汽车和飞机的结构健康监测。
在制造业中,应变式传感器可以用于监测机械设备的应变和应力,从而实现对设备状态的实时监测和预警。
此外,应变式传感器还可以用于医疗设备、体育器材和安全防护设备等领域。
总的来说,应变式传感器是一种非常重要的传感器,它可以实现对物体应变和变形的高精度测量。
通过了解其工作原理和实际应用,我们可以更好地理解和应用这一技术,为各种领域的工程和科学研究提供支持和帮助。
应变式传感器实验报告一、引言应变式传感器是一种广泛应用于工业领域的传感器,其主要作用是测量物体的应变量。
本实验旨在通过实验操作和数据分析,深入了解应变式传感器的原理、性能和应用。
二、实验原理1. 应变式传感器的原理应变式传感器是利用金属材料受力时会产生形变而引起电阻值的变化,从而转化成电信号输出。
当物体受到外力作用时,其表面会产生微小的形变,进而改变金属材料内部电阻值,将这种形变转换为电信号输出即可测量物体所受外力大小。
2. 实验仪器与材料(1)多功能测试仪(2)应变片(3)导线3. 实验步骤(1)将应变片粘贴在被测物体表面,并固定好。
(2)将多功能测试仪连接到计算机上,并打开相应软件。
(3)通过测试仪对被测物体施加不同大小的外力,并记录下相应的电信号输出值。
(4)根据实验数据计算出被测物体所受外力大小。
三、实验结果与分析1. 实验数据记录表外力大小(N)电信号输出值(mV)0 010 2.520 5.130 7.840 10.22. 数据分析从实验数据中可以看出,随着被测物体所受外力的增加,其电信号输出值也随之增加,呈现出一定的线性关系。
通过对实验数据进行拟合,可以得到应变式传感器的灵敏度和线性误差等性能指标。
四、实验结论与建议1. 实验结论本实验通过对应变式传感器的原理和性能进行了深入了解,并通过实验操作和数据分析验证了其可靠性和准确性。
应变式传感器在工业领域有着广泛的应用前景。
2. 实验建议(1)在实验过程中要注意被测物体表面必须平整光滑,并且应变片固定牢固。
(2)在进行数据分析时要注意选择合适的拟合方法,并对误差进行修正。
(3)在使用多功能测试仪时要仔细阅读说明书,并按照说明书操作。
五、参考文献[1] 王志勇, 马海彬, 陈明,等. 应变式传感器原理及其应用[J]. 传感器与微系统, 2010(4):1-4.[2] 黄华, 郑海峰. 应变式传感器的原理及应用[J]. 电气自动化,2012(5):25-27.。
应变式传感器工作原理
应变式传感器是一种常用的传感器类型,它可以用来测量物体的应变或变形情况。
在工业领域中,应变式传感器被广泛应用于力学测试、结构监测、材料性能研究等方面。
那么,应变式传感器是如何工作的呢?接下来,我们将详细介绍应变式传感器的工作原理。
应变式传感器的工作原理主要基于应变电阻效应。
当受力作用于物体时,物体会产生应变,即物体的形状和尺寸会发生变化。
而应变式传感器就是利用这种应变效应来进行测量的。
传感器内部包含了一个或多个应变电阻,当物体受力导致应变时,应变电阻的电阻值也会相应发生变化。
通过测量电阻值的变化,就可以间接地得知物体所受的应变情况。
在实际应用中,应变式传感器通常被粘贴或固定在被测物体的表面。
当物体受到外力作用时,传感器也会产生相应的应变,从而改变应变电阻的电阻值。
这种变化可以通过电路进行检测和测量,最终转换成与外力大小相关的电信号输出。
除了应变电阻式传感器外,应变式传感器还有其他工作原理的类型,比如压电式应变传感器、电容式应变传感器等。
这些传感器在测量原理上有所不同,但都是基于物体受力导致应变的基本原理进行工作的。
总的来说,应变式传感器的工作原理是利用物体受力导致应变的效应,通过测量应变电阻的电阻值变化来间接测量物体所受的外力大小。
它在工程领域中具有重要的应用价值,可以帮助工程师们进行结构监测、材料性能测试等工作。
希望通过本文的介绍,读者对应变式传感器的工作原理有了更加深入的理解。
应变式力传感器原理
应变式力传感器利用材料的弹性变形特性来测量力的大小。
其工作原理如下:
1. 工作原理简述:
应变式力传感器由弹性材料制成,通常是金属或合金材料。
当外部施加力作用于传感器时,传感器内部的弹性材料会发生变形,而该变形会导致材料内部的应变产生变化。
2. 弹性材料的工作原理:
弹性材料具有弹性恢复能力,即当外力去除后能够恢复到初始状态。
在施加力之前,弹性材料的晶体结构处于初始状态,其晶体格子之间的距离是稳定的。
而当外力作用于材料时,晶格结构会发生略微的变化,晶体格子之间的距离会发生微小的变化。
3. 应变的产生:
当外力作用于弹性材料时,晶格结构的微小变化会导致材料内部产生应变。
应变是指单位长度的变形量,通常用应变率(单位长度的变形比例)来表示。
弹性材料的应变率与外力的大小成正比。
4. 电桥测量原理:
为了测量应变的变化,应变式力传感器通常采用了电桥测量原理。
电桥由四个电阻组成,其中一个电阻位于弹性材料上。
当材料受到外力作用时,其内部的应变发生变化,导致电阻值发生微小变化。
这会导致电桥的输出电压发生变化,从而可以通
过测量输出电压的变化来确定外界施加的力的大小。
总结:
应变式力传感器通过利用弹性材料的应变特性,测量外界施加的力的大小。
其工作原理主要包括弹性材料的应变产生和电桥测量原理。
通过测量电桥输出电压的变化,可以确定外界施加的力的大小。