管式加热炉的结构及工作原理
- 格式:ppt
- 大小:687.50 KB
- 文档页数:14
一、管式加热炉的结构及工作原理1.1 管式加热炉在炼油和石油化工中的重要性管式加热炉是一种火力加热设备,它利用燃料在炉膛内燃烧时产生的高温火焰与烟气作为热源,加热在炉管中高速流动的介质,使其达到工艺规定的温度,以供给介质在进行分馏、裂解或反应等加工过程中所需的热量,保证生产正常进行。
与其他加热方式相比,管式加热炉的主要优点是加热温度高(可达1273K),传热能力高和便于操作管理。
近60多年所来,管式炉的发展很快,已成为近代石化工业中必不可少的工艺设备之一,在生产和建设中具有十分重要的地位。
例如:一个年处理量为2.5Mt原油的常减压蒸馏装置,虽所用的加热炉的座数不多,但其提供的总热量却达70MW,如果炉子加热能力不够,就会限制整个装置处理能力的提高,甚至无法完成预定的任务。
管式加热炉消耗的燃料量相当可观,一般加工深度较浅的炼厂,约占其原油能力的3%~6%,中等深度的占4%~8%,较深的为8%~15%,其费用约占操作费用的60%~70%,因此,炉子热效率的高低与节约燃料降低成本有密切的关系。
此外,管式炉炉管结焦、炉管烧穿、炉衬烧塌等事故也常常是迫使装置停工检修的重要原因。
在生产中,希望生产装置能达到高处理量、高质量和低消耗以及长周期、安全运转,大量实践表明,管式炉的操作往往是关键之一。
管式炉的基建投资费用,一般约占炼油装置总投资的10%~20%,总设备费用的30%左右,在重整制氢和裂解等石油化工装置中,则占建设费用的25%左右,因此,加热炉设计选型的好坏,还直接影响装置经济的合理性。
1.2 管式加热炉的分类和主要工艺指标1.2.1管式加热炉的分类管式炉的类型很多,如按用途分有纯加热和加热-反应炉,前者如:常压炉、减压炉,原料在炉内只起到加热(包括汽化的作用);后者如:裂解炉、焦化炉,原料在炉内不仅被加热,同时还应保证有一定的停留时间进行裂解或焦化反应。
按炉内进行传热的主要方式分类,管式炉有:纯对流式、辐射-对流式和辐射式。
一、管式加热炉的结构及工作原理1.1 管式加热炉在炼油和石油化工中的重要性管式加热炉是一种火力加热设备,它利用燃料在炉膛内燃烧时产生的高温火焰与烟气作为热源,加热在炉管中高速流动的介质,使其达到工艺规定的温度,以供给介质在进行分馏、裂解或反应等加工过程中所需的热量,保证生产正常进行。
与其他加热方式相比,管式加热炉的主要优点是加热温度高(可达1273K),传热能力高和便于操作管理。
近60多年所来,管式炉的发展很快,已成为近代石化工业中必不可少的工艺设备之一,在生产和建设中具有十分重要的地位。
例如:一个年处理量为2.5Mt原油的常减压蒸馏装置,虽所用的加热炉的座数不多,但其提供的总热量却达70MW,如果炉子加热能力不够,就会限制整个装置处理能力的提高,甚至无法完成预定的任务。
管式加热炉消耗的燃料量相当可观,一般加工深度较浅的炼厂,约占其原油能力的3%~6%,中等深度的占4%~8%,较深的为8%~15%,其费用约占操作费用的60%~70%,因此,炉子热效率的高低与节约燃料降低成本有密切的关系。
此外,管式炉炉管结焦、炉管烧穿、炉衬烧塌等事故也常常是迫使装置停工检修的重要原因。
在生产中,希望生产装置能达到高处理量、高质量和低消耗以及长周期、安全运转,大量实践表明,管式炉的操作往往是关键之一。
管式炉的基建投资费用,一般约占炼油装置总投资的10%~20%,总设备费用的30%左右,在重整制氢和裂解等石油化工装置中,则占建设费用的25%左右,因此,加热炉设计选型的好坏,还直接影响装置经济的合理性。
1.2 管式加热炉的分类和主要工艺指标1.2.1管式加热炉的分类管式炉的类型很多,如按用途分有纯加热和加热-反应炉,前者如:常压炉、减压炉,原料在炉内只起到加热(包括汽化的作用);后者如:裂解炉、焦化炉,原料在炉内不仅被加热,同时还应保证有一定的停留时间进行裂解或焦化反应。
按炉内进行传热的主要方式分类,管式炉有:纯对流式、辐射-对流式和辐射式。
管式加热炉的结构及工作原理管式加热炉是一种常用的工业炉,其结构和工作原理如下:一、结构管式加热炉主要由炉体、炉管、燃烧器、空气预热器、温度控制系统等部分组成。
1.炉体:炉体是加热炉的主要部分,通常采用耐高温材料如耐火砖、浇注料等制成。
炉体形状和大小根据实际需要和生产工艺要求确定,一般呈长方形或圆形。
2.炉管:炉管是管式加热炉的核心部件,通常由不锈钢、合金钢等耐高温材料制成。
炉管一般呈蛇形或圆形,用于装载待加热的物料,同时将热量传递给物料。
3.燃烧器:燃烧器是加热炉的热源,通常位于炉体底部或侧部。
根据加热工艺要求,可以选择不同的燃料,如天然气、石油气、轻油、重油等。
4.空气预热器:空气预热器用于预热燃烧所需的空气,提高燃烧效率。
空气预热器通常位于加热炉的顶部或侧部,与燃烧器相连。
5.温度控制系统:温度控制系统是管式加热炉的重要组成部分,用于控制加热温度和物料受热均匀性。
温度控制系统通常包括温度传感器、调节阀、控制仪表等。
二、工作原理管式加热炉的工作原理是利用燃料燃烧产生的高温烟气,通过炉管传导热量,将待加热的物料加热到所需温度。
具体过程如下:1.燃料在燃烧器中燃烧,产生高温烟气。
2.高温烟气通过炉管,将热量传递给炉管内的待加热物料。
3.物料在受热过程中,温度逐渐升高,达到所需的工艺要求。
4.加热后的物料从炉管末端排出,进入下一生产环节。
5.部分高温烟气通过引风机引入空气预热器中,预热燃烧所需的空气。
6.预热后的空气与燃料在燃烧器中混合燃烧,产生高温烟气继续加热物料。
7.高温烟气和物料产生的蒸汽一同从炉管末端排出,进入下一生产环节。
在实际生产过程中,管式加热炉的操作和控制是非常关键的。
为了确保物料的受热均匀性和生产效率,操作人员需要根据工艺要求和实际生产情况进行调整。
例如,可以通过调节燃烧器的火焰大小、改变炉管的进料速度、调整空气预热器的进风量等方式来控制加热炉的工作状态和加热效果。
此外,为了保证加热炉的安全运行和环保达标排放,还需要进行废气处理和热量回收利用等方面的措施。
管式加热炉工作原理
管式加热炉是一种常用的加热设备,其工作原理是利用电、燃气或其他加热源将能量转化为热能,通过管道将热能传输到需要加热的物体上。
管式加热炉的加热源可以是电阻加热元件、燃气燃烧器或其他加热设备。
无论是哪种加热源,它们都通过热量的产生将能量输入到加热炉中。
在管式加热炉中,加热源会将产生的热量传输给管道。
管道一般由耐高温材料制成,能够承受高温下的加热。
通过管道,热能能够传输到加热炉内的工作物体上。
在管道中,为了提高热能的传递效率,通常会加装热交换器或采用多管道设计。
热交换器能够增加管道与工作物体之间的接触面积,从而提高热量传递的效率。
当热能传输到工作物体上时,物体的温度开始升高。
在加热过程中,可以通过控制加热源的供热量或调节管道中的流体流速来控制加热速度和温度。
管式加热炉的工作原理简单而直观。
通过控制加热源的供热量和管道中的流体流速,可以实现对物体的精确加热。
这种加热方式广泛应用于工业生产中的许多领域,如金属加工、塑料加工、热处理等。
管式加热炉的工作原理
管式加热炉的工作原理基本上是利用电能或燃料能量来产生热能,通过管路输送至被加热的物体或工件上,实现加热的目的。
以下是管式加热炉的一般工作原理:
1.加热源:管式加热炉一般使用电能或者燃料来产生热能,作
为加热源。
电能可以通过电加热器转换成热能,燃料可以通过燃烧产生高温。
2.传热介质:热能一般通过传热介质来传递到被加热物体或工
件上。
传热介质可以是空气,也可以是液体或气体等。
3.管路系统:管式加热炉通过管路系统将热能从加热源输送至
被加热物体或工件上。
一般来说,管路系统包括进料管道、出料管道和循环管道等,确保热能的传递和循环。
4.控制系统:管式加热炉通常配备控制系统,用于监控和控制
加热过程。
控制系统可以根据要求调整加热源的工作状态,控制传热介质的流量和温度,保证加热的效果和安全性。
总之,管式加热炉通过加热源产生热能,通过管路输送传热介质,将热能传递到被加热物体或工件上,实现加热的目的。
控制系统监控和控制加热过程,确保加热的效果和安全性。
管式加热炉工作原理
管式加热炉是一种常用的工业加热设备,利用管内流动的气体或液体传递热能,将其加热至所需温度。
其工作原理如下:
1. 加热介质流动:管式加热炉中存在一个或多个加热管,加热介质(通常是气体或液体)通过这些管道流动。
加热介质必须能够在管道中流动,并且具有传热的能力。
2. 热交换:当加热介质流经加热管时,管壁与介质之间发生热交换。
加热器内的电热元件或燃烧器产生的热量通过管壁传递给介质,使介质的温度升高。
3. 温度控制:通过对加热器供电或燃烧器供应燃料的控制,可以实现对加热器内部温度的控制。
通常使用温度传感器来感知管道内介质的温度,并发送相应的信号给控制系统。
4. 热量传输:经过加热后的介质继续流动,将带有热能的介质传递到需要加热的对象上,实现热量的传输。
这个过程可以通过管道和附件完成,如流量控制阀、喷嘴等。
需要注意的是,管式加热炉的工作原理可以根据具体的炉型、加热介质和加热目标的不同而有所差异。
但总体来说,它们都是通过热交换和热量传输完成物体加热的过程。