分类与决策树[1]
- 格式:ppt
- 大小:1.37 MB
- 文档页数:58
分类分析--决策树(经典决策树、条件推断树)分类分析--决策树决策树是数据挖掘领域中的常⽤模型。
其基本思想是对预测变量进⾏⼆元分离,从⽽构造⼀棵可⽤于预测新样本单元所属类别的树。
两类决策树:经典树和条件推断树。
1 经典决策树经典决策树以⼀个⼆元输出变量(对应威斯康星州乳腺癌数据集中的良性/恶性)和⼀组预测变量(对应九个细胞特征)为基础。
具体算法如下:(1) 选定⼀个最佳预测变量将全部样本单元分为两类,实现两类中的纯度最⼤化(即⼀类中良性样本单元尽可能多,另⼀类中恶性样本单元尽可能多)。
如果预测变量连续,则选定⼀个分割点进⾏分类,使得两类纯度最⼤化;如果预测变量为分类变量(本例中未体现),则对各类别进⾏合并再分类。
(2) 对每⼀个⼦类别继续执⾏步骤(1)。
(3) 重复步骤(1)~(2),直到⼦类别中所含的样本单元数过少,或者没有分类法能将不纯度下降到⼀个给定阈值以下。
最终集中的⼦类别即终端节点(terminal node)。
根据每⼀个终端节点中样本单元的类别数众数来判别这⼀终端节点的所属类别。
(4) 对任⼀样本单元执⾏决策树,得到其终端节点,即可根据步骤3得到模型预测的所属类别。
上述算法通常会得到⼀棵过⼤的树,从⽽出现过拟合现象。
结果就是,对于训练集外单元的分类性能较差。
为解决这⼀问题,可采⽤10折交叉验证法选择预测误差最⼩的树。
这⼀剪枝后的树即可⽤于预测。
R中的rpart包⽀持rpart()函数构造决策树,prune()函数对决策树进⾏剪枝。
下⾯给出判别细胞为良性或恶性的决策树算法实现。
(1)使⽤rpart()函数创建分类决策树:#⽣成树:rpart()函数可⽤于⽣成决策树library(rpart)set.seed(1234)dtree <- rpart(class ~ ., data=df.train, method="class",parms=list(split="information"))#rpart() 返回的cptable值中包括不同⼤⼩的树对应的预测误差,因此可⽤于辅助设定最终的树的⼤⼩。
3.1 分类与决策树概述3.1。
1 分类与预测分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。
例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。
这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。
例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平"、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差",在这个例子中,所研究的属性“信用度"是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。
还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。
那么这种问题在数据挖掘中被称为预测.总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测.3。
1.2 决策树的基本原理1.构建决策树通过一个实际的例子,来了解一些与决策树有关的基本概念.表3—1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、..。
..。
、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。
这里把这个表记做数据集D.银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。
当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。
这里的信用等级分析模型,就可以是一棵决策树. 在这个案例中,研究的重点是“信用等级”这个属性。
给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良"还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良"、“差"这3个类别的某一类别中去.这里把“信用等级”这个属性称为“类标号属性”。
决策树名词解释决策树(DecisionTree)是一种常见的数据挖掘技术,也称为决策树分类(Decision Tree Classification)。
决策树是一种以树状结构表示数据的模型,它可以用来描述一组数据集的概念,它可以用来作出决策。
策树是一种数据挖掘的常用算法,它可以用于分类、回归任务,以及关联规则建模,它可以帮助智能系统理解数据,从而实现更好的决策。
决策树的基本原理很简单,它是一种将每个属性值与实例的关联转换成树形结构的方法。
在这种树形结构中,每个节点存储关联属性的值,从而决定一个决策。
策树通常用于研究一组已知数据,它可以用来预测未知数据的结果,也可以用来归类数据,从而发现数据的规律性。
决策树的建立有很多步骤,但是大致可以分为以下几个步骤:(1)数据集准备:首先,需要对数据集进行预处理,将数据分成训练集和测试集。
(2)决策树划分:根据训练集中的特征属性,将数据集划分为不同的分支,并且不断划分,直到达到决策树模型所需要的精度或停止条件为止。
(3)估属性:根据训练集中的数据,选择最优的划分属性,用于对训练集进行划分。
(4)决策树剪枝:新建的决策树可能过度拟合训练数据,这会使训练出来的决策树在测试数据上的表现变差,因此,需要使用剪枝算法,来减少决策树的过拟合现象。
(5)测试:根据训练好的决策树,对测试集数据进行分类,统计测试集分类正确率,从而对决策树进行评估。
决策树在实际应用中可以用于社会决策分析、企业决策分析、关联规则挖掘等应用场景,但是决策树也有若干缺点。
其一,决策树生成过程中属性之间的关系可能非线性,而决策树假设属性之间的关系是线性的,因此可能导致决策树模型的准确性不足。
其二,决策树的剪枝操作可能会过度剪枝,也影响模型的准确性。
总之,决策树是一种常用的数据挖掘技术,它可以用于推理和预测数据,它可以用来帮助智能系统理解数据,从而改善决策效率。
但是,因为决策树的局限性,仍然需要其他的数据挖掘技术来提高决策的准确性。
决策树的概念
决策树是一种基于树形结构的分类和回归模型,它通过一系列的决策来对数据进行分类或预测。
在决策树中,每个节点表示一个属性或特征,每个分支表示该属性或特征的一个取值,而每个叶子节点表示一个分类或回归结果。
决策树的建立过程就是在数据集中选择最优的属性或特征,将数据集划分为更小的子集,直到所有数据都被正确分类或预测。
决策树的主要优点是易于理解和解释,可以处理多分类问题,同时也可以用于回归问题。
此外,决策树还可以处理缺失值和异常值,具有很好的鲁棒性。
决策树的主要缺点是容易过拟合,特别是当树的深度过大时,容易出现过拟合现象。
为了解决这个问题,可以采用剪枝等方法来降低模型的复杂度。
决策树的应用非常广泛,例如在金融、医疗、工业等领域中,可以用于客户信用评估、疾病诊断、产品质量控制等方面。
在机器学习领域中,决策树也是一种常用的分类和回归算法,被广泛应用于数据挖掘、自然语言处理、图像识别等领域。
如何使用决策树算法进行分类决策树算法是一种常用的机器学习算法,被广泛用于分类问题。
它通过将数据集划分为不同的子集,基于特征的不同取值进行决策,并最终生成一棵树结构来实现分类。
在本文中,我们将探讨如何使用决策树算法进行分类。
首先,我们需要了解决策树算法的工作原理。
决策树以树的形式表示,由根节点、内部节点和叶节点组成。
根节点表示最重要的特征,内部节点表示其他重要特征,而叶节点表示最终分类结果。
决策树的构建过程通过递归地选择最佳特征对数据进行划分,直到满足停止条件。
以下是使用决策树算法进行分类的步骤:1. 数据预处理:首先,我们需要对数据进行预处理。
这包括处理缺失值、异常值和重复值,以及对连续特征进行离散化等。
预处理是数据挖掘过程中的关键步骤,能够提高模型的准确性和鲁棒性。
2. 特征选择:选择合适的特征对分类结果有至关重要的影响。
可以使用相关性分析、信息增益等指标来评估特征的重要性。
选择具有较高信息增益或相关性的特征作为决策树的划分依据。
3. 决策树构建:决策树的构建是递归进行的过程。
从根节点开始,根据选定的特征将数据集划分成不同的子集。
可以使用多种划分准则,如基尼指数和信息增益等。
重复此过程,直到满足停止条件。
4. 停止条件:决策树构建的停止条件是根据实际需求进行定义的。
可以根据树的深度、节点的样本数或其他指标来进行判断。
过拟合是常见的问题,所以需要合理设置停止条件以避免过拟合。
5. 决策树剪枝:决策树构建完成后,可能出现过拟合的情况。
剪枝是通过裁剪决策树的一些子树来减少过拟合。
剪枝可以通过预剪枝或后剪枝来实现。
预剪枝是在构建树的过程中进行剪枝,而后剪枝是在构建完成后再进行剪枝。
6. 分类预测:完成决策树的构建和剪枝后,我们可以使用分类预测来对新样本进行分类。
从根节点开始,根据特征的取值进行递归判断,直到达到叶节点。
叶节点的分类结果即为预测结果。
决策树算法的优点在于易于理解和解释,而且可以处理非线性关系。
决策树原理和简单例子决策树是一种常用的机器学习算法,它可以用于分类和回归问题。
决策树的原理是基于一系列的规则,通过对特征的判断来对样本进行分类或预测。
下面将通过原理和简单例子来介绍决策树。
1. 决策树的原理决策树的构建过程是一个递归的过程,它将样本集合按照特征的不同取值分割成不同的子集,然后对每个子集递归地构建决策树。
构建决策树的过程是通过对特征的选择来确定每个节点的划分条件,使得信息增益或信息增益比最大。
2. 决策树的构建假设有一个分类问题,样本集合包含n个样本,每个样本有m个特征。
决策树的构建过程如下:(1) 若样本集合中的样本都属于同一类别,则构建叶子节点,并将该类别作为叶子节点的类别标签。
(2) 若样本集合中的样本特征为空,或者样本特征在所有样本中取值相同,则构建叶子节点,并将该样本集合中出现次数最多的类别作为叶子节点的类别标签。
(3) 若样本集合中的样本特征不为空且有多个取值,则选择一个特征进行划分。
常用的划分方法有信息增益和信息增益比。
(4) 根据选择的特征的不同取值将样本集合划分成多个子集,对每个子集递归地构建决策树。
(5) 将选择的特征作为当前节点的判断条件,并将该节点加入决策树。
3. 决策树的例子假设有一个二分类问题,样本集合包含10个样本,每个样本有2个特征。
下面是一个简单的例子:样本集合:样本1:特征1=0,特征2=1,类别=1样本2:特征1=1,特征2=1,类别=1样本3:特征1=0,特征2=0,类别=0样本4:特征1=1,特征2=0,类别=0样本5:特征1=1,特征2=1,类别=1样本6:特征1=0,特征2=0,类别=0样本7:特征1=1,特征2=0,类别=0样本8:特征1=0,特征2=1,类别=1样本9:特征1=1,特征2=1,类别=1样本10:特征1=0,特征2=1,类别=1首先计算样本集合的信息熵,假设正样本和负样本的比例都是1:1,信息熵为1。
选择特征1进行划分,计算信息增益:对于特征1=0的样本,正样本有2个,负样本有2个,信息熵为1。
贝叶斯分类器与决策树分类器的比较一原理:1.1贝叶斯分类器的原理:贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类,是通过某些特征对不同的内容进行分类。
特征的定义任何可以用来判断内容中具备或缺失的东西。
如要对文档进行分类时,所谓的内容就是文档,特征就是文档中的单词(当然你也可以选择其他合理的东西)。
当向贝叶斯分类器输入一个要进行分类的样本后,分类器会先对该样本进行分析,确定其特征,然后将根据这些特征时,计算样本属于各分类的概率。
条件概率:定义:设A, B是两个事件,且P(A)>0 称P(B∣A)=P(AB)/P(A)为在条件A 下发生的条件事件B发生的条件概率。
乘法公式:设P(A)>0,则有P(AB)=P(B∣A)P(A)全概率公式和贝叶斯公式:定义设S为试验E的样本空间,B1, B2, …Bn为E的一组事件,若BiBj=Ф, i≠j, i, j=1, 2, …,n; B1∪B2∪…∪Bn=S则称B1, B2, …, Bn为样本空间的一个划分。
定理设试验E的样本空间为,A为E的事件,B1, B2, …,Bn为的一个划分,且P(Bi)>0 (i=1, 2, …n),则P(A)=P(A∣B1)P(B1)+P(A∣B2)+ …+P(A∣Bn)P(Bn)称为全概率公式。
定理设试验E的样本空间为S,A为E的事件,B1, B2, …,Bn为的一个划分,则P(Bi∣A)=P(A∣Bi)P(Bi)/∑P(B|Aj)P(Aj)=P(B|Ai)P(Ai)/P(B)称为贝叶斯公式。
说明:i,j均为下标,求和均是1到n。
1.2 决策树分类器的原理:树:树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。
把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
分类决策树DecisionTreeClassifier详解介绍分类决策树(Decision Tree Classifier)是机器学习中一种常见且易于理解的分类算法。
它通过树状结构来表示实例可能的分类过程,每个内部节点表示一个属性上的判断条件,每个分支代表一个可能的属性值,每个叶节点代表一个分类结果。
下面将详细介绍分类决策树的基本概念、构建过程、优缺点以及实际应用。
一、基本概念1. 决策树:决策树是一种树形结构,其中每个内部节点表示在一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。
2. 根节点:决策树的顶部节点,包含对整个数据集的第一次划分。
3. 内部节点:决策树中的节点,它根据某个属性的值将数据集划分成子集,并且还有子节点。
4. 叶节点:决策树中没有子节点的节点,它表示一个类别或者决策结果。
5. 剪枝:为了防止过拟合,通过去掉决策树的一些分支来简化模型的过程。
二、构建过程分类决策树的构建通常包括以下步骤:1. 特征选择:选择合适的特征进行数据集的划分。
常见的特征选择算法有信息增益、增益率、基尼指数等。
2. 决策树生成:根据选择的特征评估标准,递归地生成决策树。
从根节点开始,对数据集进行划分,生成子节点。
重复此过程,直到满足停止条件(如达到最大深度、节点中样本数小于预设值等)。
3. 决策树剪枝:通过去掉决策树的一些分支来简化模型,防止过拟合。
剪枝策略包括预剪枝和后剪枝。
三、优缺点1. 优点:- 易于理解和解释:决策树的结构直观,易于理解和解释,适合非专业人士使用。
- 对数据预处理要求较低:决策树算法能够处理数值型和离散型数据,不需要过多的数据预处理。
- 能够处理非线性关系:决策树能够自动捕捉特征与目标变量之间的非线性关系。
- 对异常值和缺失值不敏感:决策树算法在一定程度上对异常值和缺失值具有鲁棒性。
2. 缺点:- 容易过拟合:决策树在生成过程中可能会过于复杂,导致过拟合现象。
决策树分类算法⼀、决策树原理决策树是⽤样本的属性作为结点,⽤属性的取值作为分⽀的树结构。
决策树的根结点是所有样本中信息量最⼤的属性。
树的中间结点是该结点为根的⼦树所包含的样本⼦集中信息量最⼤的属性。
决策树的叶结点是样本的类别值。
决策树是⼀种知识表⽰形式,它是对所有样本数据的⾼度概括决策树能准确地识别所有样本的类别,也能有效地识别新样本的类别。
决策树算法ID3的基本思想:⾸先找出最有判别⼒的属性,把样例分成多个⼦集,每个⼦集⼜选择最有判别⼒的属性进⾏划分,⼀直进⾏到所有⼦集仅包含同⼀类型的数据为⽌。
最后得到⼀棵决策树。
J.R.Quinlan的⼯作主要是引进了信息论中的信息增益,他将其称为信息增益(information gain),作为属性判别能⼒的度量,设计了构造决策树的递归算法。
举例⼦⽐较容易理解:对于⽓候分类问题,属性为:天⽓(A1) 取值为:晴,多云,⾬⽓温(A2) 取值为:冷,适中,热湿度(A3) 取值为:⾼,正常风 (A4) 取值为:有风,⽆风每个样例属于不同的类别,此例仅有两个类别,分别为P,N。
P类和N类的样例分别称为正例和反例。
将⼀些已知的正例和反例放在⼀起便得到训练集。
由ID3算法得出⼀棵正确分类训练集中每个样例的决策树,见下图。
决策树叶⼦为类别名,即P 或者N。
其它结点由样例的属性组成,每个属性的不同取值对应⼀分枝。
若要对⼀样例分类,从树根开始进⾏测试,按属性的取值分枝向下进⼊下层结点,对该结点进⾏测试,过程⼀直进⾏到叶结点,样例被判为属于该叶结点所标记的类别。
现⽤图来判⼀个具体例⼦,某天早晨⽓候描述为:天⽓:多云⽓温:冷湿度:正常风:⽆风它属于哪类⽓候呢?-------------从图中可判别该样例的类别为P类。
ID3就是要从表的训练集构造图这样的决策树。
实际上,能正确分类训练集的决策树不⽌⼀棵。
Quinlan的ID3算法能得出结点最少的决策树。
ID3算法:⒈对当前例⼦集合,计算各属性的信息增益;⒉选择信息增益最⼤的属性A k;⒊把在A k处取值相同的例⼦归于同⼀⼦集,A k取⼏个值就得⼏个⼦集;⒋对既含正例⼜含反例的⼦集,递归调⽤建树算法;⒌若⼦集仅含正例或反例,对应分枝标上P或N,返回调⽤处。
决策树分类方法决策树是一种常见的用于分类和回归问题的机器学习方法。
它通过构建树形结构的规则来进行预测。
本文将详细介绍决策树分类方法的原理、算法以及相关应用。
一、决策树分类方法的原理决策树分类方法遵循以下原理:1. 特征选择:通过度量特征的信息增益或信息增益比来选择最优的划分特征。
信息增益是指通过划分数据集获得的纯度提升,信息增益比则是对信息增益进行修正,避免倾向于选择取值较多的特征。
2. 决策节点:根据选择的特征创建决策节点,并将样本集划分到不同的子节点中。
3. 叶节点:当将样本划分到同一类别或达到预定的划分次数时,创建叶节点并标记为对应的类别。
4. 剪枝:为了避免过拟合,可以通过剪枝操作来简化生成的决策树。
二、决策树分类方法的算法常见的决策树分类算法包括ID3算法、C4.5算法以及CART算法。
1. ID3算法:通过计算每个特征的信息增益选择划分特征,将样本划分到信息增益最大的子节点中。
此算法对取值较多的特征有所偏好。
2. C4.5算法:在ID3算法的基础上进行改进,引入了信息增益比的概念,解决了ID3算法对取值较多的特征的偏好问题。
3. CART算法:通过计算基尼指数选择划分特征,将样本划分到基尼指数最小的子节点中。
此算法适用于分类和回归问题。
三、决策树分类方法的应用决策树分类方法广泛应用于各个领域,以下是几个常见的应用场景:1. 信用评估:通过构建决策树模型,根据客户的个人信息和历史数据预测其信用等级,用于信贷风险评估和贷款审批。
2. 疾病诊断:通过决策树模型,根据患者的病症和医学检测结果预测其患有何种疾病,用于辅助医生的诊断决策。
3. 电商推荐:通过决策树模型,根据用户的历史购买记录和个人喜好预测其对某些商品的偏好程度,从而进行个性化商品推荐。
4. 欺诈检测:通过构建决策树模型,根据用户的账户行为和交易记录预测其是否存在欺诈行为,用于金融等领域的欺诈检测。
四、决策树分类方法的优缺点决策树分类方法具有以下优点:1. 易于理解和解释:决策树模型的结果具有很好的可解释性,可以通过树形结构直观地看出预测结果的原因。
决策树的工作原理决策树是一种常见的机器学习算法,它可以用于分类和回归问题。
它的工作原理是基于对数据特征进行分析和判断,然后生成一棵树状结构,用于预测未知数据的分类或数值。
决策树算法可以很好地解释和理解,因此在实际应用中得到了广泛的应用。
下面将详细介绍决策树的工作原理,包括如何构建决策树、如何进行分类和回归预测以及决策树的优缺点等方面。
一、决策树的构建原理1. 特征选择在构建决策树之前,首先需要选择最优的特征来进行划分。
特征选择的目标是通过选择对分类结果有最好分离作用的特征,从而使得决策树的分支更具有代表性。
在特征选择中通常会使用信息增益(ID3算法)、增益率(C4.5算法)、基尼指数(CART算法)等指标来评估特征的重要性。
2. 决策树的构建决策树的构建是通过递归地对数据集进行分裂,直到满足某种停止条件。
在每次分裂时,选择最优的特征来进行分裂,并创建相应的分支节点。
这样逐步生成一棵树,直到所有样本都被正确分类或者子节点中的样本数小于设定的阈值。
3. 剪枝处理决策树的构建可能会导致过拟合问题,为了避免过拟合,通常需要对构建好的决策树进行剪枝处理。
剪枝是通过压缩决策树的规模和深度,去除对整体分类准确性贡献不大的部分,从而提高决策树的泛化能力。
二、决策树的分类预测原理1. 决策树的分类过程在已构建好的决策树上,对未知样本进行分类预测时,从根节点开始,逐层根据特征的取值向下遍历树,直到达到叶子节点。
叶子节点的类别即为决策树对该样本的分类预测结果。
2. 决策树的优势决策树算法具有很高的可解释性,可以清晰直观地展现数据的特征和分类过程,易于理解。
决策树对特征的缺失值和异常值具有较好的鲁棒性,对数据的处理要求相对较低。
三、决策树的回归预测原理决策树不仅可以用于分类问题,也可以用于回归问题。
在回归问题中,决策树用于预测连续型的数值输出。
决策树的回归预测过程也是通过递归地在特征空间中进行划分,每次划分选择对预测结果具有最大程度分离作用的特征。
决策树通俗解释决策树是一种常见的机器学习算法,它模拟了人类在做决策时的思考过程并提供了一种有效的方式来解决分类和回归问题。
决策树的结构类似于一个树状图,由一系列的决策节点和叶子节点组成。
首先,让我们来解释一下决策树的创建过程。
决策树的创建基于一个训练数据集,该数据集包含了一系列的特征和相应的目标值。
决策树通过对训练数据集进行分割,构建一系列的决策规则,以实现对目标值的预测。
在创建决策树的过程中,我们需要选择一个合适的特征来进行分割。
这个选择是基于一个衡量指标,比如信息增益或基尼系数。
这些指标衡量了特征的纯度和分类效果,帮助我们找到最好的分割点。
一旦我们选择了一个特征进行分割,我们就将训练数据集分成几个子集,每个子集对应于特征的一个取值。
然后,我们在每个子集上递归地重复这个过程,直到达到停止条件。
停止条件可以是达到了最大深度,子集的纯度已经足够高,或者没有更多的特征可供选择。
当我们创建完整的决策树后,我们可以使用它来进行预测。
对于一个新的输入样本,我们从根节点开始,根据每个决策节点的规则选择一个路径,最终到达一个叶子节点。
叶子节点包含了我们对输入样本的预测结果。
决策树的优点是易于理解和解释,可以处理多分类问题,并且对于缺失数据和异常值有一定的鲁棒性。
然而,决策树也有一些缺点,比如容易过拟合和对输入特征的变化敏感。
为了克服这些问题,人们发展了许多改进的决策树算法,比如随机森林和梯度提升树。
这些算法通过集成多个决策树的预测结果,减少了过拟合的风险,并提高了整体的准确率。
总结来说,决策树是一种强大的机器学习算法,可以帮助我们做出有效的决策和预测。
通过选择合适的特征和分割点,决策树可以根据给定的训练数据集构建出一棵树状结构,用于解决分类和回归问题。
遥感专题讲座——影像信息提取(三、基于专家知识的决策树分类)基于专家知识的决策树分类可以将多源数据用于影像分类当中,这就是专家知识的决策树分类器,本专题以ENVI中Decision Tree为例来叙述这一分类器。
本专题包括以下内容:∙ ∙●专家知识分类器概述∙ ∙●知识(规则)定义∙ ∙●ENVI中Decision Tree的使用概述基于知识的决策树分类是基于遥感影像数据及其他空间数据,通过专家经验总结、简单的数学统计和归纳方法等,获得分类规则并进行遥感分类。
分类规则易于理解,分类过程也符合人的认知过程,最大的特点是利用的多源数据。
如图1所示,影像+DEM就能区分缓坡和陡坡的植被信息,如果添加其他数据,如区域图、道路图土地利用图等,就能进一步划分出那些是自然生长的植被,那些是公园植被。
图1 专家知识决策树分类器说明图专家知识决策树分类的步骤大体上可分为四步:知识(规则)定义、规则输入、决策树运行和分类后处理。
1.知识(规则)定义规则的定义是讲知识用数学语言表达的过程,可以通过一些算法获取,也可以通过经验总结获得。
2.规则输入将分类规则录入分类器中,不同的平台有着不同规则录入界面。
3.决策树运行运行分类器或者是算法程序。
4.分类后处理这步骤与监督/非监督分类的分类后处理类似。
知识(规则)定义分类规则获取的途径比较灵活,如从经验中获得,坡度小于20度,就认为是缓坡,等等。
也可以从样本中利用算法来获取,这里要讲述的就是C4.5算法。
利用C4.5算法获取规则可分为以下几个步骤:(1)多元文件的的构建:遥感数据经过几何校正、辐射校正处理后,进行波段运算,得到一些植被指数,连同影像一起输入空间数据库;其他空间数据经过矢量化、格式转换、地理配准,组成一个或多个多波段文件。
(2)提取样本,构建样本库:在遥感图像处理软件或者GIS软件支持下,选取合适的图层,采用计算机自动选点、人工解译影像选点等方法采集样本。
(3)分类规则挖掘与评价:在样本库的基础上采用适当的数据挖掘方法挖掘分类规则,后基于评价样本集对分类规则进行评价,并对分类规则做出适当的调整和筛选。
使用决策树进行分类和回归的方法决策树是一种常见且简单易懂的机器学习算法,在数据分类和回归问题中经常被使用。
它通过构建树状结构来进行决策,将数据集分割成多个子集,每个子集对应一个决策节点。
本文将介绍使用决策树进行分类和回归的方法,并探讨其优缺点以及应用场景。
第一部分:决策树分类方法决策树分类方法是指利用决策树模型对给定数据进行分类的过程。
其基本原理是通过特征选择、节点划分、树构建和剪枝等步骤来生成一个高效、准确的分类器。
1. 特征选择:特征选择是决策树分类的第一步,它决定了每个节点应该选择哪个特征进行划分。
常用的特征选择算法包括信息增益、信息增益率和基尼系数等,这些算法都是通过计算特征的纯度或不确定性来选择最优的特征。
2. 节点划分:节点划分是指根据选择的特征将数据集分割成多个子集的过程。
划分过程一般根据特征的取值将数据分成多个不同的子集,直到所有数据都属于同一类别或达到停止条件。
3. 树构建:树构建是将选择的特征逐步添加到决策树中的过程。
树构建过程中,可以采用递归算法或迭代算法来生成一个完整的决策树。
4. 剪枝:剪枝是为了避免过拟合现象,提高决策树的泛化能力。
剪枝可以通过预剪枝和后剪枝两种方式进行,预剪枝是在树构建过程中,判断是否继续划分节点;后剪枝是在树构建完成后,通过剪枝来优化决策树模型。
第二部分:决策树回归方法决策树回归方法是指利用决策树模型对给定数据进行回归的过程。
与分类相比,回归问题更关注预测数值型数据。
1. 划分依据:决策树回归方法中,每个节点的划分依据不再是纯度或不确定性的度量,而是基于平方误差、均方差或平均绝对误差等度量指标。
划分依据是为了找到能够使子集数据的目标值尽量接近的特征。
2. 节点划分和树构建:节点划分和树构建的过程与分类问题类似,不同之处在于目标值的处理。
在回归问题中,节点划分过程应根据目标值的大小将数据集划分成多个子集。
3. 预测值计算:决策树回归模型的预测值是通过对决策树进行遍历,找到与待预测样本最匹配的叶子节点,并返回该节点的目标值作为预测结果。
决策树分类方法
决策树分类方法是一种基于树形结构进行分类的方法。
其思想是将数据按照特定的属性进行分割,使得每个子集的纯度增加,即同一子集中的类别相同。
该方法主要包括以下步骤:
1. 选择最佳属性作为根节点,将数据集按照该属性进行分割。
2. 对于每个子集,重复步骤1,选择最佳属性作为子节点,继续分割子集,直到满足终止条件。
3. 终止条件可以是所有实例属于同一类别,或者所有属性均已使用。
4. 对新数据进行分类时,按照决策树逐级分类,直至到达叶子节点。
优点:
1. 简单易懂,易于解释。
2. 可以处理非线性关系,不需要数据标准化。
3. 可以处理多分类问题。
4. 可以处理缺失值问题。
缺点:
1. 决策树容易过拟合,需要进行剪枝操作。
2. 对于多变量关系和缺失值处理能力不如其他模型。
3. 样本不平衡时,容易偏向于多数类别。
4. 对噪声和数据集中的错误敏感。
决策树分类决策树(Decision Tree)又称为判定树,是运用于分类的一种树结构。
其中的每个内部结点(internal node)代表对某个属性的一次测试,每条边代表一个测试结果,叶结点(leaf)代表某个类(class)或者类的分布(class distribution),最上面的结点是根结点。
决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。
构造决策树是采用自上而下的递归构造方法。
决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训练数据。
二叉树的内部结点(非叶结点)一般表示为一个逻辑判断,如形式为(a = b)的逻辑判断,其中a 是属性,b是该属性的某个属性值;树的边是逻辑判断的分支结果。
多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个属性值,就有几条边。
树的叶结点都是类别标记。
使用决策树进行分类分为两步:第1步:利用训练集建立并精化一棵决策树,建立决策树模型。
这个过程实际上是一个从数据中获取知识,进行机器学习的过程。
第2步:利用生成完毕的决策树对输入数据进行分类。
对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。
问题的关键是建立一棵决策树。
这个过程通常分为两个阶段:(1) 建树(Tree Building):决策树建树算法见下,可以看得出,这是一个递归的过程,最终将得到一棵树。
(2) 剪枝(Tree Pruning):剪枝是目的是降低由于训练集存在噪声而产生的起伏。
决策树方法的评价。
优点与其他分类算法相比决策树有如下优点:(1) 速度快:计算量相对较小,且容易转化成分类规则。
只要沿着树根向下一直走到叶,沿途的分裂条件就能够唯一确定一条分类的谓词。
(2) 准确性高:挖掘出的分类规则准确性高,便于理解,决策树可以清晰的显示哪些字段比较重要。
缺点一般决策树的劣势:(1) 缺乏伸缩性:由于进行深度优先搜索,所以算法受内存大小限制,难于处理大训练集。