高数基础知识(吐血推荐)
- 格式:pdf
- 大小:965.59 KB
- 文档页数:21
高数笔记大一基础知识点一、导数与微分在微积分中,导数和微分是非常基础的概念。
导数描述了函数在某一点上的变化率,而微分则表示函数在某一点上的近似线性变化。
1. 导数的定义对于函数f(x),在某一点x=a处的导数定义为:f'(a) = lim(x→a) [f(x) - f(a)] / (x - a)如果这个极限存在,那么函数在点x=a处是可导的。
2. 导数的计算法则- 常数法则:常数的导数为零- 幂函数法则:若f(x) = x^n,则f'(x) = nx^(n-1)- 指数函数法则:若f(x) = a^x,则f'(x) = (ln a) * a^x- 对数函数法则:若f(x) = log_a x,则f'(x) = 1 / (x * ln a)- 乘积法则:若f(x) = u(x) * v(x),则f'(x) = u'(x) * v(x) + u(x) * v'(x)- 商法则:若f(x) = u(x) / v(x),则f'(x) = [u'(x) * v(x) - u(x) *v'(x)] / [v(x)]^2- 链式法则:若f(x) = u(v(x)),则f'(x) = u'(v(x)) * v'(x)3. 微分的定义对于函数f(x),在某一点x=a处的微分定义为:df = f'(a) * dx其中,df表示函数在点x=a处的微小变化,dx表示自变量x的微小变化。
二、极限与连续极限是微积分中另一个重要的概念,它描述了函数在某一点上的值趋近于某个数的情况。
而连续则表示函数在某一区间内没有间断或跳跃。
1. 极限的定义设函数f(x)在点x=a的某一邻域内有定义,如果存在常数A,对于任意给定的ε,都存在正数δ,使得当0 < |x - a| < δ时,有|f(x) - A| < ε,则称A为f(x)当x趋于a时的极限,记作lim(x→a) f(x) = A。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数核心知识点高数(即高等数学)是大学教育中的重要学科之一,是培养学生分析问题、解决问题能力的基础数学课程。
本文将简要介绍高数的核心知识点,以帮助读者系统地理解和掌握这门学科。
1. 极限与连续极限是高数的核心概念之一,它可以理解为函数逼近某个值时的趋势。
极限的计算方法有很多,常用的有代数法、夹逼法和洛必达法则等。
极限的概念在微积分中起着重要的作用,是求导、积分等运算的基础。
连续是指函数在某一段区间内无间断地存在。
连续函数具有许多重要的性质,如介值定理和零点存在定理等。
在实际问题中,连续性的概念有助于分析和解决各种现象。
2. 导数与微分导数是描述函数变化率的概念,用于衡量函数在某一点附近的近似变化情况。
导数的计算方法包括基本求导公式、链式法则和隐函数求导等。
导数在几何中有重要的几何意义,可以表示函数曲线在某一点处的切线斜率。
微分是导数的微小变化量,用于描述函数在某一点的局部变化情况。
微分的概念常应用于极值、最优化等问题的求解中。
微分学是微积分的一个重要分支,与导数密切相关。
3. 积分与定积分积分是导数的逆运算,是将函数的局部变化累积为整体变化的过程。
积分的计算方法包括不定积分和定积分,其中不定积分是求函数的原函数,而定积分是计算函数在一定区间上的面积或曲线长度等。
定积分的计算方法包括基本积分公式、换元法和分部积分法等。
定积分在几何学中具有计算曲线长度、计算曲线下的面积等重要应用。
4. 一阶微分方程一阶微分方程是描述变量之间的关系的方程,包含未知函数及其导数的方程。
一阶微分方程的求解方法有很多,常见的有分离变量法、齐次方程的变量代换和一阶线性微分方程的常数变易法等。
一阶微分方程在物理、生物、经济等领域具有广泛的应用,可以用于描述和解决各种变化的现象和问题。
5. 多重积分多重积分是对多元函数在多维空间上的积分运算,与定积分类似,但积分区域和被积函数都需要考虑多维情况。
多重积分的计算方法包括二重积分和三重积分,其中二重积分用于计算平面区域上的面积,三重积分用于计算空间区域上的体积等。
高数大一知识点总结基础一、函数与极限1. 函数的定义与性质:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。
函数具有定义域、值域、奇偶性、周期性等性质。
2. 极限的概念与性质:极限是函数在某一点或无穷远处的趋近值。
极限的存在性与唯一性可以通过数列极限的定义来判定。
3. 函数的连续性:连续性是指函数在定义域内没有突变、间断点的性质。
连续函数具有局部性质及整体性质。
4. 导数与函数的凸凹性:导数是函数在某一点的切线斜率,可以表示函数的变化率。
凸凹性指函数图像在某一区间上的弯曲程度。
二、微分学1. 微分的定义与性质:微分是函数局部线性逼近的结果,是函数在某一点的变化量。
微分的计算可以使用导数。
2. 高阶导数:高阶导数是导数的导数,表示函数变化的快慢程度。
高阶导数的计算可以使用导数的性质和公式。
3. 微分中值定理:微分中值定理包括拉格朗日中值定理、柯西中值定理等,用于描述函数在某一区间的特性。
4. 泰勒展开:泰勒展开是将函数在某一点附近用无穷多项式逼近的结果,用于求函数的近似值。
三、积分学1. 定积分的定义与性质:定积分是函数在某一区间上的面积或有向长度,可以用无穷小分割与极限的思想进行计算。
2. 不定积分与积分常数:不定积分是求解函数的原函数过程,不定积分的结果存在积分常数。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式将定积分与不定积分联系起来,描述了两者的关系。
4. 微积分基本定理:微积分基本定理包括第一类与第二类,用于计算定积分与不定积分。
四、级数1. 数项级数的收敛性:数项级数是由无穷多个数相加而成的表达式,根据其通项的性质可以判断级数的收敛性。
2. 常用级数:常用级数包括等比级数、调和级数等,可以通过特定的方法求解其和。
3. 幂级数:幂级数是一种特殊的级数,具有收敛域与求解方法。
幂级数常用于函数展开与近似计算。
五、常微分方程1. 常微分方程的基本概念:常微分方程是描述未知函数的导数与自变量之间关系的方程。
考研高数知识点总结一、函数、极限与连续1. 函数的概念与性质- 有界性- 奇偶性- 单调性- 周期性- 复合函数- 反函数2. 极限的定义与性质- 数列极限- 函数极限- 极限的四则运算- 极限存在的条件- 无穷小与无穷大的比较3. 连续函数- 连续性的定义- 间断点的类型- 连续函数的性质- 闭区间上连续函数的性质(确界存在定理、零点定理、介值定理)二、导数与微分1. 导数的定义- 概念与几何意义- 左导数与右导数- 高阶导数2. 导数的计算- 基本初等函数的导数 - 导数的四则运算- 链式法则- 隐函数求导- 参数方程求导3. 微分- 微分的定义- 微分的几何意义- 微分形式的变换三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 最值问题- 曲线的凹凸性与拐点 - 函数的渐近线四、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法- 有理函数的积分2. 定积分- 定义与性质- 微积分基本定理- 定积分的计算- 定积分的应用(面积、体积、弧长、工作量等)3. 积分技巧- 特殊技巧(三角函数的积分、积分区间的变换等) - 积分证明五、多元函数微分学1. 多元函数的基本概念- 定义域- 偏导数- 全微分2. 多元函数的极值问题- 偏导数与极值- 拉格朗日乘数法六、重积分1. 二重积分- 直角坐标系下的二重积分- 极坐标系下的二重积分- 积分的换元法2. 三重积分- 直角坐标系下的三重积分- 柱坐标系与球坐标系下的三重积分七、级数1. 数项级数- 收敛性的判别- 无穷级数的性质- 级数的运算2. 幂级数- 幂级数的收敛半径- 泰勒级数- 函数展开成幂级数八、常微分方程1. 一阶微分方程- 可分离变量的微分方程- 齐次微分方程- 一阶线性微分方程2. 二阶微分方程- 二阶线性微分方程- 常系数线性微分方程- 变系数线性微分方程九、傅里叶级数与变换1. 傅里叶级数- 三角级数- 傅里叶级数的收敛性- 正弦级数与余弦级数2. 傅里叶变换- 傅里叶变换的定义- 傅里叶变换的性质- 快速傅里叶变换(FFT)以上是考研高数的主要知识点总结。
高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。
导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。
微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。
1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)〖(f(a+h)-f(a))/h〗。
- 导数的几何意义:导数表示曲线在某一点的切线斜率。
- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。
2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。
- 微分的性质:微分是线性近似,具有微分的小量运算法则。
3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。
- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。
二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。
它们是导数的逆运算。
1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。
- 定积分的性质:定积分具有线性性、加法性、估值性等。
2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。
- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。
3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。
高数基础知识的简明总结与归纳
高数,作为数学的一个分支,是许多学科的基础。
本文将简要概述和总结高数中的一些基本概念和定理,以帮助读者更好地理解和掌握这一学科。
一、极限论
极限论是高等数学的基础,它涉及到函数的变化趋势和无穷小量的概念。
极限的定义是:对于任意给定的正数ε,总存在一个正数δ,使得当x满足|x-a|<δ时,|f(x)-A|<ε成立,其中a是x的某一取值,A是f(x)在a处的极限。
二、导数与微分
导数是函数在某一点的切线的斜率,表示函数在该点的变化率。
微分则是函数值变化的近似值。
导数在几何上可以表示曲线在某一点处的切线,也可以用于求解函数的极值。
微分法则提供了计算近似值的方法,例如计算函数的增减性、极值等。
三、积分学
积分学包括不定积分和定积分。
不定积分是求函数的原函数的过程,而定积分则是计算曲线与x轴所夹的面积。
定积分的应用非常广泛,例如计算物体的重心、求解变速直线运动的位移等。
四、多元函数微积分
多元函数微积分是高数的又一重要分支,它涉及到多个变量的函数及其极限、连续、可微、可积等概念。
其中,方向导数和梯度表示
函数在多维空间中的变化率,而多元函数的积分则涉及到重积分、曲线积分和曲面积分等。
五、无穷级数与幂级数
无穷级数是无穷多个数相加的结果,它可以用来表示数学中的一些公式和定理。
幂级数是无穷级数的一种特殊形式,它可以用来近似表示一些复杂的函数。
幂级数的收敛性和函数性质是研究幂级数的重要内容。
高数考前必看知识点
高数是大学中一门重要的基础课程,涉及到极限、导数、积分、微分方程等多个知识点。
以下是高数考前必看的一些知识点:
1. 函数与极限:函数的定义、性质和分类,极限的概念、性质和计算方法,无穷小量和无穷大量的概念和性质。
2. 导数与微分:导数的概念、几何意义和计算方法,微分的概念和计算方法,导数的应用(如求曲线的切线方程、速度、加速度等)。
3. 积分:积分的概念、性质和计算方法,不定积分和定积分的概念和计算方法,换元积分法和分部积分法,积分的应用(如求平面图形的面积、体积等)。
4. 微分方程:微分方程的概念和分类,一阶微分方程的求解方法(如分离变量法、常数变易法等),二阶线性微分方程的求解方法。
5. 向量与空间解析几何:向量的概念、运算和坐标表示,平面向量的线性相关性和向量组的极大无关组,空间直角坐标系和向量的坐标表示,平面和空间曲线的方程。
6. 多元函数微分学:多元函数的概念、极限和连续性,偏导数和全微分的概念和计算方法,多元函数的极值和条件极值。
7. 重积分:二重积分和三重积分的概念和计算方法,重积分的应用(如求曲面的面积、体积等)。
8. 曲线积分和曲面积分:第一类曲线积分和第一类曲面积分的概念和计算方法,第二类曲线积分和第二类曲面积分的概念和计算方法,格林公式和高斯公式。
以上是高数考前必看的一些知识点,当然,高数的知识点还有很多,需要根据自己的学习情况进行有针对性的复习。
同时,要注重做题,通过做题来加深对知识点的理解和掌握。
高数基础知识总结,助你轻松掌握数学要点
一、函数与极限
1. 函数的概念及其性质,包括定义域、值域、单调性、奇偶性等。
2. 函数的极限,包括趋近于无穷大时的极限和趋近于某点的极限,以及极限的四则运算法则。
3. 无穷小量与阶的比较,包括无穷小量及其性质,以及阶的比较及其应用。
二、导数与微分
1. 导数的概念及其几何意义,包括导数的定义、几何意义、物理意义等。
2. 导数的运算法则,包括四则运算法则、复合函数求导法则等。
3. 微分概念及其运算,包括微分的定义、几何意义、运算性质等。
三、积分与级数
1. 定积分的概念及其性质,包括定积分的定义、几何意义、可积条件等。
2. 定积分的计算方法,包括直接法、换元法、分部积分法等。
3. 无穷级数的概念及其性质,包括无穷级数的定义、收敛性、绝对收敛与条件收敛等。
4. 无穷级数的求和运算,包括幂级数求和、交错级数求和等。
四、多元函数微积分
1. 多元函数的极限与连续性,包括极限的定义、性质,连续性的概念等。
2. 偏导数与全微分,包括偏导数的概念、全微分的概念及其计算方法等。
3. 二重积分,包括二重积分的概念、性质、计算方法等。
高等数学知识点
高等数学是大学理工科专业中的一门基础课程,它在数学分析、线性代数和概率论等方面提供了深入的理论知识和方法。
以下是高等数学的主要知识点总结:
1. 数学分析
- 极限的概念和性质
- 连续函数的定义和性质
- 导数和微分的定义、计算和应用
- 泰勒公式和麦克劳林公式
- 函数的极值和最值问题
- 曲线的凹凸性和拐点
- 不定积分和定积分的定义、计算和应用
- 广义积分和傅里叶级数
- 多元函数的偏导数和全微分
- 多元函数的极值和条件极值
- 重积分和曲线积分、曲面积分
2. 线性代数
- 矩阵的定义和基本运算
- 行列式的定义和性质
- 向量空间和子空间的概念
- 线性方程组的解法和理论
- 特征值和特征向量
- 二次型和正定矩阵
- 线性变换和矩阵对角化
- 欧几里得空间和内积
- 正交矩阵和酉矩阵
3. 概率论与数理统计
- 随机事件和概率的定义
- 条件概率和全概率公式
- 随机变量及其分布
- 期望值、方差和协方差
- 大数定律和中心极限定理
- 统计量和抽样分布
- 假设检验和置信区间
- 回归分析和方差分析
这些知识点构成了高等数学的核心内容,是理解和应用高等数学的基础。
通过学习这些内容,学生能够掌握数学分析的严密逻辑、线性代数的抽象思维以及概率论与数理统计的统计推断,为进一步的专业学习和科研工作打下坚实的基础。