高数基础知识(吐血推荐)
- 格式:pdf
- 大小:965.59 KB
- 文档页数:21
高数笔记大一基础知识点一、导数与微分在微积分中,导数和微分是非常基础的概念。
导数描述了函数在某一点上的变化率,而微分则表示函数在某一点上的近似线性变化。
1. 导数的定义对于函数f(x),在某一点x=a处的导数定义为:f'(a) = lim(x→a) [f(x) - f(a)] / (x - a)如果这个极限存在,那么函数在点x=a处是可导的。
2. 导数的计算法则- 常数法则:常数的导数为零- 幂函数法则:若f(x) = x^n,则f'(x) = nx^(n-1)- 指数函数法则:若f(x) = a^x,则f'(x) = (ln a) * a^x- 对数函数法则:若f(x) = log_a x,则f'(x) = 1 / (x * ln a)- 乘积法则:若f(x) = u(x) * v(x),则f'(x) = u'(x) * v(x) + u(x) * v'(x)- 商法则:若f(x) = u(x) / v(x),则f'(x) = [u'(x) * v(x) - u(x) *v'(x)] / [v(x)]^2- 链式法则:若f(x) = u(v(x)),则f'(x) = u'(v(x)) * v'(x)3. 微分的定义对于函数f(x),在某一点x=a处的微分定义为:df = f'(a) * dx其中,df表示函数在点x=a处的微小变化,dx表示自变量x的微小变化。
二、极限与连续极限是微积分中另一个重要的概念,它描述了函数在某一点上的值趋近于某个数的情况。
而连续则表示函数在某一区间内没有间断或跳跃。
1. 极限的定义设函数f(x)在点x=a的某一邻域内有定义,如果存在常数A,对于任意给定的ε,都存在正数δ,使得当0 < |x - a| < δ时,有|f(x) - A| < ε,则称A为f(x)当x趋于a时的极限,记作lim(x→a) f(x) = A。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数核心知识点高数(即高等数学)是大学教育中的重要学科之一,是培养学生分析问题、解决问题能力的基础数学课程。
本文将简要介绍高数的核心知识点,以帮助读者系统地理解和掌握这门学科。
1. 极限与连续极限是高数的核心概念之一,它可以理解为函数逼近某个值时的趋势。
极限的计算方法有很多,常用的有代数法、夹逼法和洛必达法则等。
极限的概念在微积分中起着重要的作用,是求导、积分等运算的基础。
连续是指函数在某一段区间内无间断地存在。
连续函数具有许多重要的性质,如介值定理和零点存在定理等。
在实际问题中,连续性的概念有助于分析和解决各种现象。
2. 导数与微分导数是描述函数变化率的概念,用于衡量函数在某一点附近的近似变化情况。
导数的计算方法包括基本求导公式、链式法则和隐函数求导等。
导数在几何中有重要的几何意义,可以表示函数曲线在某一点处的切线斜率。
微分是导数的微小变化量,用于描述函数在某一点的局部变化情况。
微分的概念常应用于极值、最优化等问题的求解中。
微分学是微积分的一个重要分支,与导数密切相关。
3. 积分与定积分积分是导数的逆运算,是将函数的局部变化累积为整体变化的过程。
积分的计算方法包括不定积分和定积分,其中不定积分是求函数的原函数,而定积分是计算函数在一定区间上的面积或曲线长度等。
定积分的计算方法包括基本积分公式、换元法和分部积分法等。
定积分在几何学中具有计算曲线长度、计算曲线下的面积等重要应用。
4. 一阶微分方程一阶微分方程是描述变量之间的关系的方程,包含未知函数及其导数的方程。
一阶微分方程的求解方法有很多,常见的有分离变量法、齐次方程的变量代换和一阶线性微分方程的常数变易法等。
一阶微分方程在物理、生物、经济等领域具有广泛的应用,可以用于描述和解决各种变化的现象和问题。
5. 多重积分多重积分是对多元函数在多维空间上的积分运算,与定积分类似,但积分区域和被积函数都需要考虑多维情况。
多重积分的计算方法包括二重积分和三重积分,其中二重积分用于计算平面区域上的面积,三重积分用于计算空间区域上的体积等。
高数大一知识点总结基础一、函数与极限1. 函数的定义与性质:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。
函数具有定义域、值域、奇偶性、周期性等性质。
2. 极限的概念与性质:极限是函数在某一点或无穷远处的趋近值。
极限的存在性与唯一性可以通过数列极限的定义来判定。
3. 函数的连续性:连续性是指函数在定义域内没有突变、间断点的性质。
连续函数具有局部性质及整体性质。
4. 导数与函数的凸凹性:导数是函数在某一点的切线斜率,可以表示函数的变化率。
凸凹性指函数图像在某一区间上的弯曲程度。
二、微分学1. 微分的定义与性质:微分是函数局部线性逼近的结果,是函数在某一点的变化量。
微分的计算可以使用导数。
2. 高阶导数:高阶导数是导数的导数,表示函数变化的快慢程度。
高阶导数的计算可以使用导数的性质和公式。
3. 微分中值定理:微分中值定理包括拉格朗日中值定理、柯西中值定理等,用于描述函数在某一区间的特性。
4. 泰勒展开:泰勒展开是将函数在某一点附近用无穷多项式逼近的结果,用于求函数的近似值。
三、积分学1. 定积分的定义与性质:定积分是函数在某一区间上的面积或有向长度,可以用无穷小分割与极限的思想进行计算。
2. 不定积分与积分常数:不定积分是求解函数的原函数过程,不定积分的结果存在积分常数。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式将定积分与不定积分联系起来,描述了两者的关系。
4. 微积分基本定理:微积分基本定理包括第一类与第二类,用于计算定积分与不定积分。
四、级数1. 数项级数的收敛性:数项级数是由无穷多个数相加而成的表达式,根据其通项的性质可以判断级数的收敛性。
2. 常用级数:常用级数包括等比级数、调和级数等,可以通过特定的方法求解其和。
3. 幂级数:幂级数是一种特殊的级数,具有收敛域与求解方法。
幂级数常用于函数展开与近似计算。
五、常微分方程1. 常微分方程的基本概念:常微分方程是描述未知函数的导数与自变量之间关系的方程。
考研高数知识点总结一、函数、极限与连续1. 函数的概念与性质- 有界性- 奇偶性- 单调性- 周期性- 复合函数- 反函数2. 极限的定义与性质- 数列极限- 函数极限- 极限的四则运算- 极限存在的条件- 无穷小与无穷大的比较3. 连续函数- 连续性的定义- 间断点的类型- 连续函数的性质- 闭区间上连续函数的性质(确界存在定理、零点定理、介值定理)二、导数与微分1. 导数的定义- 概念与几何意义- 左导数与右导数- 高阶导数2. 导数的计算- 基本初等函数的导数 - 导数的四则运算- 链式法则- 隐函数求导- 参数方程求导3. 微分- 微分的定义- 微分的几何意义- 微分形式的变换三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 最值问题- 曲线的凹凸性与拐点 - 函数的渐近线四、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法- 有理函数的积分2. 定积分- 定义与性质- 微积分基本定理- 定积分的计算- 定积分的应用(面积、体积、弧长、工作量等)3. 积分技巧- 特殊技巧(三角函数的积分、积分区间的变换等) - 积分证明五、多元函数微分学1. 多元函数的基本概念- 定义域- 偏导数- 全微分2. 多元函数的极值问题- 偏导数与极值- 拉格朗日乘数法六、重积分1. 二重积分- 直角坐标系下的二重积分- 极坐标系下的二重积分- 积分的换元法2. 三重积分- 直角坐标系下的三重积分- 柱坐标系与球坐标系下的三重积分七、级数1. 数项级数- 收敛性的判别- 无穷级数的性质- 级数的运算2. 幂级数- 幂级数的收敛半径- 泰勒级数- 函数展开成幂级数八、常微分方程1. 一阶微分方程- 可分离变量的微分方程- 齐次微分方程- 一阶线性微分方程2. 二阶微分方程- 二阶线性微分方程- 常系数线性微分方程- 变系数线性微分方程九、傅里叶级数与变换1. 傅里叶级数- 三角级数- 傅里叶级数的收敛性- 正弦级数与余弦级数2. 傅里叶变换- 傅里叶变换的定义- 傅里叶变换的性质- 快速傅里叶变换(FFT)以上是考研高数的主要知识点总结。
高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。
导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。
微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。
1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)〖(f(a+h)-f(a))/h〗。
- 导数的几何意义:导数表示曲线在某一点的切线斜率。
- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。
2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。
- 微分的性质:微分是线性近似,具有微分的小量运算法则。
3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。
- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。
二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。
它们是导数的逆运算。
1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。
- 定积分的性质:定积分具有线性性、加法性、估值性等。
2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。
- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。
3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。
高数基础知识的简明总结与归纳
高数,作为数学的一个分支,是许多学科的基础。
本文将简要概述和总结高数中的一些基本概念和定理,以帮助读者更好地理解和掌握这一学科。
一、极限论
极限论是高等数学的基础,它涉及到函数的变化趋势和无穷小量的概念。
极限的定义是:对于任意给定的正数ε,总存在一个正数δ,使得当x满足|x-a|<δ时,|f(x)-A|<ε成立,其中a是x的某一取值,A是f(x)在a处的极限。
二、导数与微分
导数是函数在某一点的切线的斜率,表示函数在该点的变化率。
微分则是函数值变化的近似值。
导数在几何上可以表示曲线在某一点处的切线,也可以用于求解函数的极值。
微分法则提供了计算近似值的方法,例如计算函数的增减性、极值等。
三、积分学
积分学包括不定积分和定积分。
不定积分是求函数的原函数的过程,而定积分则是计算曲线与x轴所夹的面积。
定积分的应用非常广泛,例如计算物体的重心、求解变速直线运动的位移等。
四、多元函数微积分
多元函数微积分是高数的又一重要分支,它涉及到多个变量的函数及其极限、连续、可微、可积等概念。
其中,方向导数和梯度表示
函数在多维空间中的变化率,而多元函数的积分则涉及到重积分、曲线积分和曲面积分等。
五、无穷级数与幂级数
无穷级数是无穷多个数相加的结果,它可以用来表示数学中的一些公式和定理。
幂级数是无穷级数的一种特殊形式,它可以用来近似表示一些复杂的函数。
幂级数的收敛性和函数性质是研究幂级数的重要内容。
高数考前必看知识点
高数是大学中一门重要的基础课程,涉及到极限、导数、积分、微分方程等多个知识点。
以下是高数考前必看的一些知识点:
1. 函数与极限:函数的定义、性质和分类,极限的概念、性质和计算方法,无穷小量和无穷大量的概念和性质。
2. 导数与微分:导数的概念、几何意义和计算方法,微分的概念和计算方法,导数的应用(如求曲线的切线方程、速度、加速度等)。
3. 积分:积分的概念、性质和计算方法,不定积分和定积分的概念和计算方法,换元积分法和分部积分法,积分的应用(如求平面图形的面积、体积等)。
4. 微分方程:微分方程的概念和分类,一阶微分方程的求解方法(如分离变量法、常数变易法等),二阶线性微分方程的求解方法。
5. 向量与空间解析几何:向量的概念、运算和坐标表示,平面向量的线性相关性和向量组的极大无关组,空间直角坐标系和向量的坐标表示,平面和空间曲线的方程。
6. 多元函数微分学:多元函数的概念、极限和连续性,偏导数和全微分的概念和计算方法,多元函数的极值和条件极值。
7. 重积分:二重积分和三重积分的概念和计算方法,重积分的应用(如求曲面的面积、体积等)。
8. 曲线积分和曲面积分:第一类曲线积分和第一类曲面积分的概念和计算方法,第二类曲线积分和第二类曲面积分的概念和计算方法,格林公式和高斯公式。
以上是高数考前必看的一些知识点,当然,高数的知识点还有很多,需要根据自己的学习情况进行有针对性的复习。
同时,要注重做题,通过做题来加深对知识点的理解和掌握。
高数基础知识总结,助你轻松掌握数学要点
一、函数与极限
1. 函数的概念及其性质,包括定义域、值域、单调性、奇偶性等。
2. 函数的极限,包括趋近于无穷大时的极限和趋近于某点的极限,以及极限的四则运算法则。
3. 无穷小量与阶的比较,包括无穷小量及其性质,以及阶的比较及其应用。
二、导数与微分
1. 导数的概念及其几何意义,包括导数的定义、几何意义、物理意义等。
2. 导数的运算法则,包括四则运算法则、复合函数求导法则等。
3. 微分概念及其运算,包括微分的定义、几何意义、运算性质等。
三、积分与级数
1. 定积分的概念及其性质,包括定积分的定义、几何意义、可积条件等。
2. 定积分的计算方法,包括直接法、换元法、分部积分法等。
3. 无穷级数的概念及其性质,包括无穷级数的定义、收敛性、绝对收敛与条件收敛等。
4. 无穷级数的求和运算,包括幂级数求和、交错级数求和等。
四、多元函数微积分
1. 多元函数的极限与连续性,包括极限的定义、性质,连续性的概念等。
2. 偏导数与全微分,包括偏导数的概念、全微分的概念及其计算方法等。
3. 二重积分,包括二重积分的概念、性质、计算方法等。
高等数学知识点
高等数学是大学理工科专业中的一门基础课程,它在数学分析、线性代数和概率论等方面提供了深入的理论知识和方法。
以下是高等数学的主要知识点总结:
1. 数学分析
- 极限的概念和性质
- 连续函数的定义和性质
- 导数和微分的定义、计算和应用
- 泰勒公式和麦克劳林公式
- 函数的极值和最值问题
- 曲线的凹凸性和拐点
- 不定积分和定积分的定义、计算和应用
- 广义积分和傅里叶级数
- 多元函数的偏导数和全微分
- 多元函数的极值和条件极值
- 重积分和曲线积分、曲面积分
2. 线性代数
- 矩阵的定义和基本运算
- 行列式的定义和性质
- 向量空间和子空间的概念
- 线性方程组的解法和理论
- 特征值和特征向量
- 二次型和正定矩阵
- 线性变换和矩阵对角化
- 欧几里得空间和内积
- 正交矩阵和酉矩阵
3. 概率论与数理统计
- 随机事件和概率的定义
- 条件概率和全概率公式
- 随机变量及其分布
- 期望值、方差和协方差
- 大数定律和中心极限定理
- 统计量和抽样分布
- 假设检验和置信区间
- 回归分析和方差分析
这些知识点构成了高等数学的核心内容,是理解和应用高等数学的基础。
通过学习这些内容,学生能够掌握数学分析的严密逻辑、线性代数的抽象思维以及概率论与数理统计的统计推断,为进一步的专业学习和科研工作打下坚实的基础。
高数知识点汇总第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ⊂B。
⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A 。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。
高等数学常用基础知识点一、极限与连续极限是高等数学中的重要概念之一。
当自变量趋于某个确定值时,函数的极限描述了函数在这个点附近的表现。
极限的计算方法包括利用极限的四则运算法则、夹逼定理和洛必达法则等。
连续是指函数在某个点上无间断的性质。
如果函数在某个点上连续,那么其极限存在且与函数在该点的取值相等。
连续函数的性质包括介值定理、零点定理和罗尔定理等。
二、导数与微分导数是函数在某一点的变化率,可以理解为函数曲线在该点处的切线斜率。
导数的计算方法包括利用导数的四则运算法则、链式法则和隐函数求导等。
微分是函数在某一点的局部线性逼近。
微分的计算方法包括利用微分的四则运算法则、高阶导数和泰勒公式等。
三、不定积分与定积分不定积分是导数的逆运算。
不定积分的计算方法包括利用基本积分公式、换元积分法和分部积分法等。
定积分是函数在某一区间上的累积效应。
定积分的计算方法包括利用定积分的性质、换元积分法和分部积分法等。
四、级数与幂级数级数是无穷个数的和。
级数的收敛与发散是级数理论中的重要问题。
级数的测试方法包括比值判别法、根值判别法和积分判别法等。
幂级数是形如∑(a_n*x^n)的级数。
幂级数的收敛半径是幂级数理论中的重要概念。
幂级数的运算方法包括利用幂级数的性质、求和运算和乘法运算等。
五、常微分方程与偏微分方程常微分方程是描述物理、经济和工程等领域中变化规律的数学工具。
常微分方程的求解方法包括利用分离变量法、一阶线性微分方程的求解和二阶线性齐次微分方程的求解等。
偏微分方程是描述多变量函数的方程。
偏微分方程的求解方法包括利用分离变量法、变量代换和特征线法等。
六、空间解析几何与向量代数空间解析几何是研究空间中点、直线和平面的性质和关系的数学分支。
空间解析几何的内容包括点的坐标表示、向量的运算和平面的方程等。
向量代数是研究向量及其运算的数学分支。
向量代数的内容包括向量的加法、数量积和向量积等。
七、多元函数与多元函数微分学多元函数是多个自变量的函数。
高等数学基本知识大全
高等数学是现代数学中的重要分支,是大学本科阶段的核心学科,提供了一种强有力
的工具和方法,用于理解和解决科学和工程问题。
以下是高等数学中的一些基本知识:
1. 函数和极限
函数是输入和输出之间的映射关系,其中每个输入对应一个唯一的输出。
极限是一个
数列趋近于一个固定值的过程,当数列逐渐接近该值时,称其趋近于该值,并用符号“→”表示。
2. 导数和微分
导数是函数的斜率,表示函数在某一点的变化率。
微分是一种数学工具,用于计算函
数在某一点的微小变化。
3. 积分和定积分
积分是在一个区间内求一个函数的总面积的过程。
定积分是一个函数在一个区间内的
积分。
4. 三角函数
三角函数是一类定义在角度上的函数。
常见三角函数包括正弦、余弦和正切函数。
5. 矢量和矢量空间
矢量是带有大小和方向的量,可以用几何元素来表示。
矢量空间是一组满足特定条件
的向量的集合。
6. 矩阵和行列式
矩阵是一个二维数组,由行和列组成。
行列式是一个与矩阵相关的值,用于解决线性
方程组。
7. 偏导数
偏导数是多元函数中的一种变量导数,其中只考虑其中一个变量的变化,其他变量保
持不变。
8. 多元积分
多元积分是在多维空间中求解一个函数在一个体积内的积分。
9. 常微分方程
常微分方程是描述某个变量对其本身的一阶或高阶导数的关系的方程。
高数基础知识总结与重点概念整理
一、导数与微分
导数:描述函数在某一点附近的变化率,是函数值的极限。
可导性:函数在某点可导,当且仅当该点附近存在一个定义恰当的导数。
微分:一个近似值,表示函数在某点附近的小变化所引起的函数值的大致变化。
二、积分
不定积分:求一个函数的原函数(或反导数),即求函数的不定积分。
定积分:对一个区间上函数的值的总和的量度,即求函数的定积分。
微积分基本定理:定积分可化为不定积分的计算。
三、级数
数列:一个数字序列。
无穷级数:无穷多个数的和,即数列的和。
收敛性:无穷级数趋于一个有限的和的性质称为收敛性。
发散性:无穷级数不收敛的性质称为发散性。
四、多元函数
多元函数:定义在多个变量上的函数。
偏导数:多元函数对一个变量的导数。
方向导数:描述函数在某点处沿某一方向的变化率。
梯度:方向导数的最大值,表示函数在某点处沿梯度方向的增长最快的方向。
五、微分方程
微分方程:包含未知函数的导数或微分的方程。
初值问题:给定初始条件的微分方程问题。
通解与特解:满足微分方程的解称为通解,满足特定初始条件的解称为特解。
高数必掌握的50个基础知识点第一章函数、极限与连续函数的有界性极限的定义(数列、函数)极限的性质(有界性、保号性)极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)函数的连续性间断点的类型渐近线的计算第二章导数与微分导数与微分的定义(函数可导性、用定义求导数)导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)三大微分中值定理(重点)(罗尔、拉格朗日、柯西)积分中值定理泰勒中值定理费马引理第四章一元函数积分学原函数与不定积分的定义不定积分的计算(变量代换、分部积分)定积分的定义(几何意义、微元法思想(数一、二))定积分性质(奇偶函数与周期函数的积分性质、比较定理)定积分的计算定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)变限积分(求导)广义积分(收敛性的判断、计算)第五章空间解析几何(数一)向量的运算(加减、数乘、数量积、向量积)直线与平面的方程及其关系各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学二重极限和二元函数连续、偏导数、可微及全微分的定义二元函数偏导数存在、可微、偏导函数连续之间的关系多元函数偏导数的计算(重点)多元函数的极值(无条件极值和条件极值)空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)三重积分的计算(“先一后二”、“先二后一”、球坐标)第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)高斯公式(重点)(不满足条件时的处理(类似格林公式))斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)场论初步(散度、旋度)第八章微分方程各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解线性微分方程解的性质(叠加原理、解的结构)应用(由几何及物理背景列方程)第九章级数(数一、数三)收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)正项级数的判别法(比较、比值、根值,p级数与推广的p级数)交错级数的莱布尼兹判别法绝对收敛与条件收敛幂级数的收敛半径与收敛域幂级数的求和与展开傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
大一上高数基础知识点
大一上的高等数学主要包括以下几个基础知识点:
1.实数与函数
-实数的基本性质:有理数与无理数、实数的大小比较、实数的稠密
性等。
-函数的概念:自变量、因变量、定义域、值域等。
-函数的表示与性质:显函数、隐函数、参数方程等。
2.三角函数与函数的性质
-三角函数的定义:正弦函数、余弦函数、正切函数等。
-三角函数的性质:周期性、奇偶性、单调性等。
-三角函数的图像与性质:正弦函数图像、余弦函数图像、正切函数
图像等。
3.一元函数的极限与连续性
-函数的极限:极限的定义、极限的性质、极限的计算等。
-连续函数:连续的概念、连续函数的性质、连续函数的计算等。
4.一元函数的导数与微分
-函数的导数:导数的定义、导数的性质、导数的计算、高阶导数等。
-函数的微分:微分的定义、微分的性质、微分的计算等。
5.函数的应用
-函数的极值与最值:极大值、极小值、最大值、最小值等。
-函数的图像与曲线的描绘:对称性、渐近线、拐点等。
-函数与导数的应用:函数的单调性、函数的凸凹性、最优化等。
6.一元函数的不定积分
-不定积分的概念与性质:不定积分的定义、不定积分的性质、常用积分公式等。
-不定积分的计算:基本积分公式、换元积分法、分部积分法等。
以上是大一上高等数学的基础知识点,理解并掌握这些知识点是学好高等数学的基础。
在学习过程中,需要进行大量的练习以加深对这些知识的理解和应用能力的培养。