高等数学基础知识点大全(94页完美打印版)
- 格式:doc
- 大小:1.52 MB
- 文档页数:69
高等数学知识点总结导数公式:基本积分表:三角函数的有理式积分:2222122tan 11cos 12sin u dudx x u u u x u u x +==+-=+=, , , ax x a a a x x x x x x x x c x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )tan (sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x C x dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=±μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦e xxxxx x =+=∞→→)11(l i m 1s i n l i m·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±= ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:x arc x x x cot 2arctan arccos 2arcsin -=-=ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
高数知识点总结电子版一、极限与连续1. 函数的极限(1) 函数极限的定义(2) 函数极限的性质(3) 无穷小量与无穷大量(4) 夹逼准则2. 连续与间断(1) 连续的定义(2) 连续函数的性质(3) 间断点的分类(4) 间断函数的构造二、导数与微分1. 导数的定义(1) 导数的几何意义(2) 导数的计算方法(3) 导数的性质(4) 高阶导数2. 微分的定义(1) 微分的几何意义(2) 微分的计算方法(3) 微分的性质(4) 隐函数求导三、微分中值定理与泰勒公式1. 罗尔中值定理(1) 罗尔中值定理的条件(2) 罗尔中值定理的应用2. 拉格朗日中值定理(1) 拉格朗日中值定理的条件(2) 拉格朗日中值定理的应用3. 柯西中值定理(1) 柯西中值定理的条件(2) 柯西中值定理的应用4. 泰勒公式(1) 泰勒公式的表述(2) 泰勒公式的应用四、不定积分与定积分1. 不定积分(1) 不定积分的概念(2) 不定积分的计算方法(3) 不定积分的性质(4) 不定积分的换元法2. 定积分(1) 定积分的概念(2) 定积分的计算方法(3) 定积分的性质(4) 定积分的应用五、微分方程1. 微分方程的基本概念(1) 微分方程的定义(2) 微分方程的类型(3) 微分方程的解的存在唯一性定理2. 一阶常微分方程(1) 可分离变量的微分方程(2) 齐次微分方程(3) 一阶线性微分方程3. 高阶常微分方程(1) 高阶线性微分方程(2) 常系数齐次线性微分方程六、多元函数微分学1. 多元函数的极限(1) 多元函数极限的定义(2) 多元函数极限的性质(3) 重要极限的计算2. 偏导数(1) 偏导数的定义(2) 偏导数的计算方法(3) 高阶偏导数3. 方向导数(1) 方向导数的定义(2) 方向导数的计算方法(3) 梯度4. 多元函数的微分(1) 多元函数的全微分(2) 多元函数的微分近似七、多元函数积分学1. 二重积分(1) 二重积分的定义(2) 二重积分的计算方法(3) 二重积分的性质(4) 二重积分的应用2. 三重积分(1) 三重积分的定义(2) 三重积分的计算方法(3) 三重积分的性质(4) 三重积分的应用3. 曲线积分与曲面积分(1) 曲线积分的定义(2) 曲线积分的计算方法(3) 曲面积分的定义(4) 曲面积分的计算方法八、向量分析1. 向量及其运算(1) 向量的基本概念(2) 向量的线性运算(3) 向量的数量积与叉积2. 曲线与曲面的方程(1) 曲线的参数方程(2) 曲线的一般方程(3) 曲面的参数方程(4) 曲面的一般方程3. 向量场与散度(1) 向量场的定义与性质(2) 散度的概念与计算(3) 散度的物理意义4. 向量场与旋度(1) 旋度的概念与计算(2) 旋度的物理意义(3) 欧拉公式以上就是高等数学的知识点总结,希望对你的学习有所帮助。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。
导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。
微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。
1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)〖(f(a+h)-f(a))/h〗。
- 导数的几何意义:导数表示曲线在某一点的切线斜率。
- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。
2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。
- 微分的性质:微分是线性近似,具有微分的小量运算法则。
3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。
- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。
二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。
它们是导数的逆运算。
1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。
- 定积分的性质:定积分具有线性性、加法性、估值性等。
2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。
- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。
3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。
高等数学基础知识大全一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。
如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a A 。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N ⑵、所有正整数组成的集合叫做正整数集。
记作N +或N +。
⑶、全体整数组成的集合叫做整数集。
记作Z 。
⑷、全体有理数组成的集合叫做有理数集。
记作Q 。
⑸、全体实数组成的集合叫做实数集。
记作R 。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A 、B 有包含关系,称集合A 为集合B 的子集,记作AB (或B A )。
⑵相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A =B 。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A ,我们称集合A 是集合B 的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作 ,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即AA②、对于集合A 、B 、C ,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
高等数学一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作∅,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A⊆A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B⊇A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作∅,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A⊆A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
高中数学知识点总结一、三角函数【1】以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=yr。
【2】同角三角函数平方关系:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;同角三角函数倒数关系:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;同角三角函数相除关系:αααcos sin =tg ,αααsin cos =ctg 。
【3】函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;对称轴是直线)(2Z k k x ∈+=+ππϕω,图象与直线B y =的交点都是该图象的对称中心。
【4】三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。
【5】=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1【6】二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -【7】三倍角公式是:sin3α=αα3sin 4sin 3-cos3α=ααcos 3cos 43-【8】半角公式是:sin2α=2cos 1α-±cos2α=2cos 1α+±tg2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。
高等数学知识点关键信息项1、函数与极限函数的概念与性质极限的定义与计算方法无穷小与无穷大2、导数与微分导数的定义与几何意义基本函数的导数公式微分的定义与运算3、中值定理与导数的应用罗尔定理、拉格朗日中值定理、柯西中值定理函数的单调性与极值曲线的凹凸性与拐点函数的最值问题4、不定积分不定积分的概念与性质基本积分公式换元积分法与分部积分法5、定积分定积分的定义与性质牛顿莱布尼茨公式定积分的计算与应用反常积分6、多元函数微分学多元函数的概念与极限偏导数与全微分多元函数的极值与最值7、重积分二重积分的概念与性质二重积分的计算方法三重积分8、曲线积分与曲面积分对弧长的曲线积分对坐标的曲线积分格林公式对面积的曲面积分对坐标的曲面积分高斯公式与斯托克斯公式9、无穷级数数项级数的概念与性质正项级数的审敛法任意项级数的审敛法幂级数函数展开成幂级数11 函数与极限111 函数的概念函数是数学中的一个基本概念,设集合 D 是实数集的子集,如果对于 D 中的每个实数 x ,按照某种确定的对应关系 f ,都有唯一确定的实数 y 与之对应,则称变量 y 是变量 x 的函数,记作 y = f(x) ,其中 x称为自变量,y 称为因变量,D 称为函数的定义域,值域是函数值的集合。
112 函数的性质函数具有单调性、奇偶性、周期性等性质。
单调性是指函数在某个区间上的增减性;奇偶性是指函数关于原点或 y 轴对称的性质;周期性是指函数在一定区间上重复出现的性质。
12 极限的定义极限是高等数学中的一个重要概念。
当自变量无限趋近于某个值时,函数值无限趋近于一个确定的常数,这个常数就是函数在该点的极限。
13 极限的计算方法极限的计算方法包括利用极限的四则运算法则、两个重要极限、等价无穷小替换、洛必达法则等。
14 无穷小与无穷大无穷小是以 0 为极限的变量,无穷大是绝对值无限增大的变量。
无穷小与无穷大之间存在着密切的关系。
21 导数与微分211 导数的定义导数是函数在某一点的变化率,它反映了函数在该点处的瞬时变化趋势。
高等数学常用基础知识点一、极限与连续极限是高等数学中的重要概念之一。
当自变量趋于某个确定值时,函数的极限描述了函数在这个点附近的表现。
极限的计算方法包括利用极限的四则运算法则、夹逼定理和洛必达法则等。
连续是指函数在某个点上无间断的性质。
如果函数在某个点上连续,那么其极限存在且与函数在该点的取值相等。
连续函数的性质包括介值定理、零点定理和罗尔定理等。
二、导数与微分导数是函数在某一点的变化率,可以理解为函数曲线在该点处的切线斜率。
导数的计算方法包括利用导数的四则运算法则、链式法则和隐函数求导等。
微分是函数在某一点的局部线性逼近。
微分的计算方法包括利用微分的四则运算法则、高阶导数和泰勒公式等。
三、不定积分与定积分不定积分是导数的逆运算。
不定积分的计算方法包括利用基本积分公式、换元积分法和分部积分法等。
定积分是函数在某一区间上的累积效应。
定积分的计算方法包括利用定积分的性质、换元积分法和分部积分法等。
四、级数与幂级数级数是无穷个数的和。
级数的收敛与发散是级数理论中的重要问题。
级数的测试方法包括比值判别法、根值判别法和积分判别法等。
幂级数是形如∑(a_n*x^n)的级数。
幂级数的收敛半径是幂级数理论中的重要概念。
幂级数的运算方法包括利用幂级数的性质、求和运算和乘法运算等。
五、常微分方程与偏微分方程常微分方程是描述物理、经济和工程等领域中变化规律的数学工具。
常微分方程的求解方法包括利用分离变量法、一阶线性微分方程的求解和二阶线性齐次微分方程的求解等。
偏微分方程是描述多变量函数的方程。
偏微分方程的求解方法包括利用分离变量法、变量代换和特征线法等。
六、空间解析几何与向量代数空间解析几何是研究空间中点、直线和平面的性质和关系的数学分支。
空间解析几何的内容包括点的坐标表示、向量的运算和平面的方程等。
向量代数是研究向量及其运算的数学分支。
向量代数的内容包括向量的加法、数量积和向量积等。
七、多元函数与多元函数微分学多元函数是多个自变量的函数。
高等数学知识点大全高考高等数学知识点篇一极限1、知识范围(1)数列极限的概念数列、数列极限的定义(2)数列极限的性质性、有界性、四则运算法则、夹通定理、单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义、左、右极限及其与极限的关系趋于无穷时函数的极限、函数极限的几何意义(4)函数极限的性质性、四则运算法则、夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的阶(6)两个重要极限2、要求(1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
篇二高考数学解答题部分主要考查七大主干知识:第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y =a x ),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
x 2+x x=lim =13、无穷小:高阶+低阶=低阶例如:lim x →0x →0xx sin x4、两个重要极限:(1)lim =1x →0x (2)lim (1+x )=ex →01x⎛1⎫lim 1+⎪=ex →∞⎝x ⎭g (x )x经验公式:当x →x 0,f (x )→0,g (x )→∞,lim [1+f (x )]x →x 0=e x →x 0lim f (x )g (x )例如:lim (1-3x )=e x →01x⎛3x ⎫lim -⎪x →0⎝x ⎭=e -35、可导必定连续,连续未必可导。
例如:y =|x |连续但不可导。
6、导数的定义:lim∆x →0f (x +∆x )-f (x )=f '(x )∆x x →x 0limf (x )-f (x 0)=f '(x 0)x -x 07、复合函数求导:df [g (x )]=f '[g (x )]•g '(x )dx例如:y =x +x ,y '=2x =2x +12x +x 4x 2+x x1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dxx 2+y 2=1,2x +2yy '=0⇒y '=-例如:解:法(1),左右两边同时求导xy dy x法(2),左右两边同时微分,2xdx +2ydy ⇒=-dx y9、由参数方程所确定的函数求导:若⎨⎧y =g (t )dy dy /dt g '(t )==,则,其二阶导数:dx dx /dt h '(t )⎩x =h (t )d (dy /dx )d [g '(t )/h '(t )]d y d (dy /dx )dt dt ===2dx dx dx /dt h '(t )210、微分的近似计算:f (x 0+∆x )-f (x 0)=∆x •f '(x 0)例如:计算sin 31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y =sin x(x=0x是函数可去间断点),y =sgn(x )(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f (x )=sin ⎪(x=0是函数的振荡间断点),y =数的无穷间断点)12、渐近线:水平渐近线:y =lim f (x )=cx →∞⎛1⎫⎝x ⎭1(x=0是函x 铅直渐近线:若,lim f (x )=∞,则x =a 是铅直渐近线.x →a斜渐近线:设斜渐近线为y =ax +b ,即求a =lim x →∞f (x ),b =lim [f (x )-ax ]x →∞x x 3+x 2+x +1例如:求函数y =的渐近线x 2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩ 四. 必备公式:1. 等价无穷小: 当()0u x →时,sin ()()u x u x :; tan ()()u x u x :; 211cos ()()2u x u x -:; ()1()u x eu x -:; ln(1())()u x u x +:; (1())1()u x u x αα+-:;arcsin ()()u x u x :; arctan ()()u x u x : 2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=V V V3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰L ,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑L ,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?nf x kx x →: (1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔L ()()!!n n na a f x x x x n n α=+: (2)()xxn f t dt kt dt ⎰⎰:2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++:(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-V V V ; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导)2. 微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=V V V V (1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx 5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C uv C u v --=+++L 注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++L L ()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =):(1) '()0()f x f x ≥⇒Z ; '()0()f x f x ≤⇒];(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计: '()f f x ξ=V V九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简):x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n ax nx e dx x xdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰ 三. 定积分:1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*2(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰,(4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰220sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x +∞⎰; (2)101p dx x⎰ 五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰ 2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds =(1)(),[,]y f x x a b =∈ as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩ 21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()baf a b f x dx b a =-⎰;(2)0()[0)limx x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰ (2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程:含双变量条件()f x y +=L 的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==L8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+V V V V (2)lim ,lim,lim y x x y f ff f f x y∆∆∆==∆∆(3),x y f x f y df +V V @ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y f x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =U ; *(,)f x y 分片定义; *(,)f x y 奇偶 2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++L ; (3)lim n n S →∞(如1(1)!n nn ∞=+∑) 注: (1)lim n n a →∞; (2)n q ∑(或1n a∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: n S Z ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n∑, (2)ln k n n α∑, (3)1ln k n n ∑3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):n p ka n:(估计), 如10()n f x dx ⎰;()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛?注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n p n+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0n n a a →]; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比 na∑;(1)n na-∑;na∑;2na∑之间的敛散关系四. 幂级数:1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域) 23111,2!3!xe x x x R =++++Ω=L 24111()1,22!4!x x e e x x R -+=+++Ω=L 35111(),23!5!x x e e x x x R --=+++Ω=L 3511sin ,3!5!x x x x R =-+-Ω=L 2411cos 1,2!4!x x x R =-++Ω=L ;211,(1,1)1x x x x =+++∈--L ; 211,(1,1)1x x x x=-+-∈-+L 2311ln(1),(1,1]23x x x x x +=-+-∈-L2311ln(1),[1,1)23x x x x x -=----∈-L3511arctan ,[1,1]35x x x x x =-+-∈-L (2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x @0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰@()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑ (2)'()S x =L ,(注意首项变化) (3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰L4. 题型: (注: ()(),?f x S x x =∈)(1)2T π=且(),(,]f x x ππ=∈-L (分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +r r ; (平行b a λ⇔=v v)2. a r ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=u u v v @v )3. a b ⋅r r ; (投影:()aa b b a⋅=v v vv v ; 垂直:0a b a b ⊥⇔⋅=v v v v ; 夹角:(,)a b a b a b⋅=v v v v S v v ) 4. a b ⨯r r ; (法向:,n a b a b =⨯⊥v v v v v ; 面积:S a b =⨯Y v v )二. 平面与直线 1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=v(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕=v(2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =)(2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒v (或(,1)x y n z z =--v)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t =r (或12s n n =⨯v u v u u v)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=, z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=v , 注: (,)(,1)x y z f x y n f f =⇒=-v(2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒=v(2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯v uv u u v六. 方向导与梯度(重点)1. 方向导(l v方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒v(2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==u r cos sin x y zf f lθθ∂⇒=+∂r(3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G u r:(1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==u v; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒==u v(2)结论()a u l∂∂0G l =⋅u r ur ; ()b 取l G =ur v 为最大变化率方向;()c 0()G M u r为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰u v v u v v4. 应用范围 (1)第一类积分 (2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点): (1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片 2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换: A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰u v v u v u v四: 第二类曲线积分(1):(,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: (1)()LDQ PPdx Qdy dxdy x y∂∂+=-∂∂⎰⎰⎰Ñ; (2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y∂∂≠⇒∂∂围路径(3)L⎰Ñ(xy QP =但D 内有奇点)*LL =⎰⎰蜒(变形)3. 推广(路径无关性):P Qy y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰u v v(Γ有向τv ,(,,)F P Q R =u v ,(,,)d r ds dx dy dz τ==v v ) 五. 第二类曲面积分: 1. 定义: Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项):(,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--v[()()]xyPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰(3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=v(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用:(1)散度计算: P Q RdivA x y z∂∂∂=++∂∂∂u v (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰u vÒ(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰Ò(含奇点)4. 通量与积分:A d S ∑Φ=⋅⎰⎰u v u v (∑有向n v ,(),,A P Q R =u v,(,,)d S ndS dydz dzdx dxdy ==u v v )六: 第二类曲线积分(2):(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =u v v 时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰u v v2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧)(1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂u v u v (2)交面式(一般含平面)封闭曲线: 0F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =v 或{,,}x y z G G G ;(3)Stokes 公式(选择): ()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰u v v u v vÑ(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰。
(完整版)大学全册高等数学知识点(全)高等数学是一门非常重要的学科,它是数学中最具有挑战性和深度的一门课程。
它的内容包括微积分、线性代数、微分方程和复变函数等专题,这些都是现代科学和技术的核心。
在本文中,我们将会详细介绍高等数学的知识点,以供学习和参考。
微积分微积分被称为数学的两个支柱之一,它是数学的一门核心课程。
微积分最早是由牛顿和莱布尼茨创立的,作为数学中求导和积分的基本工具,微积分与其他领域如物理、工程学和经济学等紧密相关。
微分学和积分学是微积分中最重要的两个分支。
微分学涉及单变量函数的导数和导数的应用,具体包括切线和曲线的斜率、极值和曲线的凹凸性等概念。
积分学则涉及单变量函数的定积分和不定积分,并且与微分学有紧密的联系,例如牛顿-莱布尼茨公式。
多元微积分也是微积分中的一个重要分支。
它包括了多元函数的求导和偏导数,以及多重积分的概念和应用。
多元积分常用于描述物理量在空间中的分布和相互作用关系,如在物理力学、统计学、流体力学和电磁学等领域中。
线性代数线性代数是一种数学分支,涉及线性方程组的解法,向量、矩阵和线性变换的概念及其应用。
线性代数在现代科学和技术中十分普遍,如应用在数学、物理、计算机科学、统计学、工程学等领域。
线性方程组求解是线性代数中的基础概念之一。
矩阵和行列式则是线性方程组求解的核心工具,它们用于表达系数、求解和判断方程组的解。
向量和矩阵在应用中常被用于表示和处理各种数据,如图像、音频、文本等。
除了矩阵和行列式,还有很重要的概念是对称矩阵、特征值和特征向量。
它们与线性变换及其特征相关联,在应用中常被用于描述各种对象的特征或性质。
微分方程微分方程是数学的一个重要分支,它涉及多元函数的微分和积分,具体解释为量的变化随时间或空间的变化规律。
微分方程在物理、生物、经济、工程学等领域中有广泛的应用。
微分方程可分为常微分方程和偏微分方程。
常微分方程只涉及单一自变量的函数和导数,可以分为一阶和二阶微分方程等不同的类型。
(完整版)高数知识点总结高等数学是大学中的一门必修课程,也是理工科学生必修的重要基础课程。
随着科技的飞速发展,高等数学的应用范围日益广泛,因此,掌握高等数学的知识点对于理工科学生来说至关重要。
本文将针对高等数学中的一些重要知识点进行总结和梳理,方便各位学习者进行整理和加深理解。
1. 极限极限是高等数学中最基础的概念之一。
在数学和物理学中,极限用来描述一个函数或序列中的值趋近于某一值的过程。
极限的求解需要掌握一些重要的公式,如等价无穷小替换、洛必达法则等。
2. 导数导数是描述函数变化率的概念,也是高等数学中非常基础的知识点。
在实际问题中,求导数可以帮助我们计算速度、加速度、斜率等物理量,因此,熟练掌握导数的计算方法非常重要。
3. 积分积分是高等数学中的重要知识点之一,可以用来求解曲线下面的面积以及求解函数的反导数。
在实际问题中,积分也是解决问题的常用工具之一。
4. 偏导数偏导数是描述多元函数变化率的概念,和一元函数的导数类似。
在实际问题中,偏导数可以用来计算函数在某个方向上的变化率,非常适用于物理学和工程学中的问题。
5. 微分方程微分方程是高等数学中的重要分支之一,广泛应用于物理学、工程学、生物学等学科领域。
解微分方程可以帮助我们预测自然现象的走势和发展趋势,对于实际问题的解决非常有帮助。
6. 泰勒公式泰勒公式是高等数学中的一条非常重要的定理,可以将一个函数在某个点周围展开成多项式的形式,用于近似计算函数的值和函数的导数值。
7. 多元函数极值多元函数极值是高等数学中的另一个非常重要的知识点,用于寻找函数的最大值和最小值,并且可以应用于物理学和工程学的实际问题中。
8. 傅里叶级数傅里叶级数是高等数学中非常重要的一个分支,可以将一个固定周期的函数表示为若干个正弦函数和余弦函数的线性组合,应用于各种信号处理、噪声抑制的领域中。
9. 线性代数线性代数是高等数学中非常重要的一个分支,涉及矩阵、行列式、线性方程组、向量空间等概念,广泛应用于计算机科学、工程学、物理学等领域。
第 1 页 共 69 页 一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:aA。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作 ,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。 ②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作CUA。 即CUA={x|x∈U,且x A}。 集合中元素的个数 ⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 ⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。 ⑶、一般地,对任意两个集合A、B,有 card(A)+card(B)=card(A∪B)+card(A∩B) 我的问题: 1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。 第 2 页 共 69 页
2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。 3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A=B成立? 4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢? 5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗? 2、常量与变量 ⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 ⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。 区间的名称 区间的满足的不等式 区间的记号 区间在数轴上的表示
闭区间 a≤x≤b [a,b]
开区间 a<x<b (a,b)
半开区间 a<x≤b或a≤x<b (a,b]或[a,b) 以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2
b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 第 3 页 共 69 页
3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的.
⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2
时,有 ,则称函数在区间(a,b)内是单调增加的。如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。 例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。 ⑶、函数的奇偶性
如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数对于定义域内
的任意x都满足=-,则叫做奇函数。 注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。 ⑷、函数的周期性
对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都成立,则叫
做周期函数,l是的周期。 注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。 4、反函数
⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一
值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.
注:由此定义可知,函数也是函数的反函数。
⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为 R,则它的反函数必然在R上确定,且严格增(减). 注:严格增(减)即是单调增(减) 第 4 页 共 69 页
例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。如果我们加上条件,要求x≥0,
则对y≥0、x=就是y=x2在要求x≥0时的反函数。即是:函数在此要求下严格增(减). ⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。 例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。如右图所示:
5、复合函数 复合函数的定义:若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分
在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。 注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。
例题:函数与函数是不能复合成一个函数的。
因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使都没有定义。 6、初等函数 ⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下: 函数名称
函数的记号 函数的图形 函数的性质
指数函数
a):不论x为何值,y总为正数; b):当x=0时,y=1.