解直角三角形的应方位角 、坡角
- 格式:ppt
- 大小:494.00 KB
- 文档页数:28
专题1.11解直角三角形(2)——仰角与俯角、方位角、坡角(比)问题(知识讲解)【学习目标】1.理解用三角函数解决实际问题的有关概念;2.理解并解决实际问题中转化为三角函数模型解决实际问题。
【要点梳理】解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.特别说明:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形的应用——仰角和俯角问题1.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B 的仰角为60°,沿山坡向上走20m 到达D 处,测得建筑物顶端B 的仰角为30°.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助该小组计算建筑物的高度AB .(结果精确到0.1m 1.732≈)在Rt CDE △中,90E ∠=︒∴222DE CE CD +=∴222(3)(4)20x x +=∴4x =(负值舍去)∴12DE =,16CE =举一反三:【变式1】如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB ,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30°(点A ,B ,C ,D 在同一平面内).(1)求C ,D 两点的高度差;(2)求居民楼的高度AB .(结果精确到1m 1.7≈)AFDF 4三角函数的定义是解答本题的关键.【变式2】如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度为12.88米的白杨树EF,且其底端B,D,F在同一直线上,BF=FD=40米.在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为9°,点E的俯角为16°.问小明能否运用以上数据,得到综合楼的高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由.(解答过程中可直接使用表格中的数据哟!)【答案】能,综合楼的高度约是37.00米.【分析】在Rt△AEG中,利用正切函数求得AG的长,在Rt△ACH中,利用正切函数求得CH的长,据此求解即可得到综合楼的高度.解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:·类型二、解直角三角形的应用——方位角问题2.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15︒方向上,他沿西北方向前进D,此时测得点A在他的东北方向上,端点B在他的北偏西60︒方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)举一反三:【变式1】如图,我国某海域有A,B,C三个港口,B港口在C港口正西方向33.2nmile (nmile是单位“海里”的符号)处,A港口在B港口北偏西50°方向且距离B港口40nmile 处,在A港口北偏东53°方向且位于C港口正北方向的点D处有一艘货船,求货船与A港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)由题意得:EF=BC=33.2海里,【变式2】如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68︒的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40︒的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D 处的距离.(参考数据:sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈,sin 680.93︒≈,cos680.37︒≈,tan 68 2.48︒≈)类型三、解直角三角形的应用——坡度坡比问题来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:︒︒︒)≈≈≈≈sin370.60,cos370.80,tan37 1.73【答案】约为1.9米【分析】根据正弦的定义求出AC,根据余弦的定义求出BC,根据正切的定义求出CD,结合图形计算,得到答案.举一反三:【变式1】如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B 之间的距离. 1.41≈ 1.73≈.结果精确到0.1m)【变式2】宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1≈)1.7≈ 1.4【点拨】本题考查了解直角三角形的实际应用,掌握三角形中的边角关系是解题的关键.类型四、解直角三角形的应用——其他问题4.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 2.24≈)【答案】(1)6.7m(2)4.5m【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题..∴==m.OD AG4.5答:OD的长为4.5m.【点拨】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解【变式1】某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留≈).1.7∠=︒FDB45,∴=,DF FB【变式2】小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN ,MN 与墙面AB 所成的角∠MNB =118°,厂房高AB =8m ,房顶AM 与水平地面平行,小强在点M 的正下方C 处从平面镜观察,能看到的水平地面上最远处D 到他的距离CD 是多少?(结果精确到0.1m ,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)【答案】11.8m【分析】过M 点作ME ⊥MN 交CD 于E 点,证明四边形ABCM 为矩形得到CM=AB =8,∠NMC =180°-∠BNM=62°,利用物理学入射光线与反射光线之间的关系得到∠EMD =∠EMC ,且∠CME =90°-∠CMN =28°,进而求出∠CMD =56°,最后在Rt △CMD 中由tan ∠CMD 即可求解.解:过M 点作ME ⊥MN 交CD 于E 点,如下图所示:∵C点在M点正下方,∴CM⊥CD,即∠MCD=90°,∵房顶AM与水平地面平行,∴四边形AMCB为矩形,【点拨】本题借助平面镜入射光线与反射光线相关的物理学知识考查了解直角三角形,解题的关键是读懂题意,利用数形结合的思想解答.。
解直角三角形及其应用——方位角和坡度问题在前面我们学习了直角三角形及其应用关于仰角和俯角的问题,我们在解决这类实际问题的时候,首先是要画出平面图形,然后转化为解直角三角形。
那我们今天继续进行解直角三角形及其应用的学习。
现在请看问题1:问题1:一艘轮船在大海上航行,当航行到A处时,观测到小岛B的方向是北偏西35°,那么同时从B处观测到轮船在什么方向?若轮船从A处继续往正西方向航行到C处,此时,C 处位于小岛B 的南偏西40°方向,你能确定C的位置吗?试画图说明.1当航行到A处时,观测到小岛B的方向是北偏西35°。
由这句话知谁是坐标原点?怎样建立直角坐标系?生:A是坐标原点。
上北下南左西又东。
2那么同时从B处观测到轮船在什么方向?由这句话你想到什么呢?谁是坐标原点?B还需满足什么条件?在同一图形中怎样建立直角坐标系?生:需另建立直角坐标系。
以B是坐标原点。
在A的北偏西35°3若轮船从A处继续往正西方向航行到C处,此时,C 处位于小岛 B 的南偏西40°方向,师:由这句话知轮船现在的航行路线?你能确定C的方向吗?你能确定C的具体位置吗?你是怎样想到的?生:往正西方向航行。
B是坐标原点。
正西方向与小岛B的南偏西40方向的交点,就是C点的位置。
我们经过这几个步骤,就把图形画出来了,也把这个问题解决了。
我们回过头来看看,从这个问题中我们学到了什么?生:将实际问题抽象为数学问题:画出平面图形,转化为解直角三角形的问题。
师:解决这个问题的关键就是能画出平面图形。
平面图形一经画出,所有问题就迎刃而解了。
如何画出这样的平面图形呢?生:1 找准坐标原点。
2 能准确地确定问题中提出的各个方位。
刚才同学们总结得很好,这就是今天我们要研究的第一个问题:解直角三角形的应用——方位角的问题。
出示课题。
刚才同学们都表现得非常不错,那我们再来继续下一个问题,看能不能解决呢?问题2 一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80 n mile 的 A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的 B 处,这时, B 处距离灯塔P 有多远(结果取整数)?(1)根据题意,你能画出示意图吗?画出图形后,你想到什么呢?(用哪个知识点解决这个问题呢?)生:可以用解直角三角形的知识解决问题(2)结合题目的条件,你能确定图中哪些线段和角?求什么?怎样求?师:在图上标出已知条件,需要求的量.怎样求?抽学生回答解题思路生:AP=80n mile; ∠APC=90-65=25; ∠A=65 ; ∠B=34;AB⊥PC。
解直角三角形的实际应用一、知识要点1.仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图(1).2.坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l =,坡面与水平面的夹角记作α,叫做坡角,则tan h i l α==.坡度越大,坡面就越陡.如图(2).3.方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图(3).二、例题讲解例1.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB )是1.7米,看旗杆顶部E 的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD )是0.7米,看旗杆顶部E 的仰角为45°.两人相距5米且位于旗杆同侧(点B 、D、F 在同一直线上).(1)求小敏到旗杆的距离DF .(结果保留根号) (2)求旗杆EF 的高度.(结果保留整数,参考数据:≈1.4,≈1.7)图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线迁移练习1.数学活动课上老师让学生以小组为单位测量学校旗杆AB的高度,如图所示,“希望小组”在教学楼一楼地面D处测得旗杆顶部仰角为60°,在教学楼三楼地面C处测得旗杆顶部仰角为30°,已知旗杆底部于教学楼一楼地面在同一水平线上,每层楼高为3米,求旗杆AB高度.例2.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)迁移练习2.如图,某数学兴趣小组为了测量学校旗杆AB的高度,他们在旗杆对面的实验楼的顶部C处测得旗杆顶端A的仰角为46°,测得旗杆底端B的俯角为32°,同时测量了旗杆底端与实验楼的地面距离BD长为9.5米.求旗杆AB的高.(结果精确到0.1米).【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62,sin46°=0.72,cos46°=0.69,tan46°=1.04】例3.金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)迁移练习3.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()例4.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)迁移练习4.如图,某河大堤上有一颗大树ED,小明在A处测得树顶E的仰角为45°,然后沿坡度为1:2的斜坡AC攀行20米,在坡顶C处又测得树顶E的仰角为76°,已知ED⊥CD,并且CD与水平地面AB平行,求大树ED的高度.(精确到1米)(参考数据:sin76°≈0.97,cos76°=0.24,tan76°≈4.01,=2.236)例5.中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1∶2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76°(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27°.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为(参考数据:tan76°≈4.0,tan27°≈0.5,sin76°≈0.97,sin27°≈0.45)()A. 262B. 212C. 244D. 276迁移练习5.气魄雄伟的大礼堂座落在渝中区学田湾,它是一座仿古民族建筑.“五一”期间,小明和妈妈到重庆大礼堂参观游玩.参观结束后,穿过人民广场到达A处,回望礼堂,更显气势雄伟,金碧辉煌.此时,在A点观察到礼堂顶端的仰角为31,沿着坡度为1:3的斜坡AB 走一段距离到达B点,观察到礼堂顶端的仰角是22,测得点B与地面的高度9BC=米,则大礼堂的高度DE为()米.(精确到1米.参考数据:2tan225≈,3tan315≈)A.56 B.59 C.62 D.65跟踪训练1.一艘货轮以20海里/时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B.货轮继续向北航行1小时后到达C处,发现灯塔B在它北偏东75°方向,那么此时货轮与灯塔B的距离为()海里(结果不取近似值)2.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.253.今年北京市大规模加固中小学校舍,房山某中学教学楼的后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡度i=:1,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号)4.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为()(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)A. 29.1米B. 31.9米C. 45.9米D. 95.9米5.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N 的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH 的坡度i=1∶1.75.施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)6.如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,现计划在斜坡中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为30°,求平台DE的长.(结果保留根号).(2)斜坡AB正前方一座建筑物QM上悬挂了一幅巨型广告MN,小明在D点测得广告顶部M 的仰角为26.5°,他沿坡面DA走到坡脚A处,然后向大楼方向维续行走10米来到P处,测得广告底部N的仰角为53°,此时小明距大楼底端Q处30米.已知B、C、A、M、Q在同一平面内,C、A、P、Q在同一条直线上,求广告MN的长度.(参考数据:sin26.5°≈0.45,cos26.5°=0.89,tan26.5°=0.50,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33°)7.如图,一幢居民楼OC临近山坡AP,山坡AP的坡度为i=1:,小亮在距山坡坡脚A处测得楼顶C的仰角为60°,当从A处沿坡面行走10米到达P处时,测得楼顶C的仰角刚好为45°,点O,A,B在同一直线上,求该居民楼的高度.(结果保留整数,≈1.73)。
解直角三角形方位角、坡度角讲课精品教案一、教学内容本节课选自《初中数学》八年级下册,第九章《直角三角形的应用》,具体内容包括:直角三角形方位角与坡度角的计算。
通过本章学习,学生将掌握实际情境中直角三角形的应用,特别是在计算方位角和坡度角方面的知识。
二、教学目标1. 知识与技能:掌握直角三角形方位角和坡度角的计算方法,能运用所学知识解决实际问题。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高逻辑思维和空间想象能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养团队协作精神。
三、教学难点与重点教学重点:直角三角形方位角和坡度角的计算方法。
教学难点:如何将实际问题抽象成直角三角形,运用数学知识解决问题。
四、教具与学具准备1. 教具:多媒体教学设备、直角三角形模型、量角器、计算器。
2. 学具:直角三角形图纸、量角器、计算器。
五、教学过程1. 实践情景引入利用多媒体展示实际生活中与直角三角形相关的建筑、地理等图片,引导学生关注直角三角形在实际问题中的应用。
2. 知识讲解(1)方位角的计算结合教材内容,讲解直角三角形中方位角的定义,以及计算方法。
(2)坡度角的计算介绍坡度角的概念,以及如何利用直角三角形计算坡度角。
3. 例题讲解(1)方位角例题给出具体问题,引导学生运用所学知识解决问题。
(2)坡度角例题结合实际问题,讲解如何计算坡度角。
4. 随堂练习发给学生直角三角形图纸,让学生分组进行计算,巩固所学知识。
六、板书设计1. 方位角的定义及计算方法2. 坡度角的定义及计算方法3. 例题解答步骤七、作业设计1. 作业题目:(2)结合实际情境,设计一道与直角三角形方位角或坡度角有关的题目。
2. 答案:(1)见教材课后习题解答。
(2)根据实际情况自拟答案。
八、课后反思及拓展延伸1. 反思:本节课学生对方位角和坡度角的计算掌握情况,以及在实际问题中的应用能力。
2. 拓展延伸:引导学生关注生活中直角三角形的应用,提高学生运用数学知识解决实际问题的能力。
解直角三角形方位角、坡度角讲课教案一、教学内容本节课的内容选自《初中数学》八年级下册第九章“勾股定理及其应用”的第三节“解直角三角形”。
具体包括:直角三角形的定义及性质,解直角三角形的概念,利用三角函数解直角三角形,以及方位角和坡度角的实际应用。
二、教学目标1. 知识目标:学生能够理解并掌握解直角三角形的基本概念,熟练运用三角函数求解直角三角形的未知边和角。
2. 技能目标:培养学生运用数学知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生学习数学的兴趣,培养学生合作交流、积极参与的学习态度。
三、教学难点与重点教学难点:解直角三角形的实际应用,特别是方位角和坡度角的计算。
教学重点:熟练运用三角函数解直角三角形,以及在实际问题中求解方位角和坡度角。
四、教具与学具准备教具:三角板、直尺、量角器、多媒体课件。
学具:直角三角形模型、计算器、练习本。
五、教学过程1. 导入:通过实际情景引入,如建筑工地上的方位角和坡度角问题,让学生了解解直角三角形在实际生活中的应用。
2. 新课导入:讲解直角三角形的定义及性质,引导学生回顾勾股定理,为解直角三角形打下基础。
3. 新知讲解:(1)介绍解直角三角形的定义及方法,如正弦、余弦、正切函数的定义和应用。
(2)通过例题讲解,让学生掌握解直角三角形的方法。
(3)讲解方位角和坡度角的概念,以及在实际问题中的应用。
4. 随堂练习:布置相关练习题,让学生独立完成,巩固所学知识。
5. 小组讨论:针对练习题中的问题,组织学生进行小组讨论,互相交流解题思路。
六、板书设计1. 直角三角形的定义及性质2. 解直角三角形的方法:(1)正弦函数:sin A = 对边/斜边(2)余弦函数:cos A = 邻边/斜边(3)正切函数:tan A = 对边/邻边3. 方位角和坡度角的计算方法七、作业设计1. 作业题目:(1)已知直角三角形的两个角和一条边,求其他未知边和角。
三⾓函数学习⽅位⾓坡度坡⾓
3.解直⾓三⾓形★★★
解直⾓三⾓形在直⾓三⾓形中,由已知元素求出所有未知元素的过程,叫做解直⾓三⾓形.
⽔平线与⽔平⾯平⾏的直线.
铅垂线与⽔平⾯垂直的直线.
视线由观测点为端点引出的,通过观测⽬标的射线.
视⾓从观测点发出的两条视线的夹⾓.
⽅位⾓以正北⽅向为始边,按顺时针⽅向旋转到观测⽬标的⽅向线的⾓.它的数值在0o与360o之间,如图,A点的⽅位⾓为30o,B点的⽅位⾓为250o.
⽅向⾓★★以正北或正南⽅向为始边,旋转到观测⽬标的⽅向线的锐⾓称为⽅向⾓(或象限⾓).如图,⽬标⽅向线OA、OB、OC、OD的⽅向⾓分别为北偏东60o、北偏西30o、南偏
西45o、南偏东15o.
仰⾓★★在视线与⽔平线所成的⾓中,视线在⽔平线上⽅的⾓叫做仰⾓,
俯⾓★★在视线与⽔平线所成的⾓中,视线在⽔平线下⽅的⾓叫做俯⾓.
坡度★★坡⾯的铅垂⾼度h和⽔平宽度l的⽐叫做坡⾯的坡度(或坡⽐),记作i,即i=h/l.坡度通常写成的形式,如.
坡⾓★★坡⾯与⽔平⾯的夹⾓叫做坡⾓.
坡度i与坡⾓α之间的关系:i=h/l=tanα.
要点解析
1.直⾓三⾓形中的边⾓关系
①三边之间的关系:a2+b2=c2
②锐⾓之间的关系:∠A+∠B=90o.
③边⾓之间的关系:。
解直角三角形中的“五角”在解直角三角形问题中,经常遇到与仰角、俯角、方位角和坡角相关的问题。
本文结合08年中考数学试题,对这类问题作了如下归纳,供同学们学习时参考。
1、仰角与直角三角形例1、如图1,山顶建有一座铁塔,塔高30m CD =,某人在点A 处测得塔底C 的仰角为20,塔顶D 的仰角为23,求此人距CD 的水平距离AB .(08年南京市)(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)分析:正确理解仰角的意义是问题获得解答的关键。
所谓的仰角就是视线与水平线在同向上成的夹角,仰角是一个锐角。
所以,点A 处测得塔底C 的仰角为20,就是视线AC 与水平线AB 成的夹角,即∠CAB=20°,塔顶D 的仰角为23,就是视线AD 与水平线AB 成的夹角,即∠DAB=23°;将已知的仰角对号入座到三角形中后,接下来就是选择合理的三角形和设合理的未知数, 通常是求什么设什么;完成这些工作后,就是要再选择合理的三角函数,建立等式,完成问题的解答。
解:设此人距CD 的水平距离AB 为xm , 在直角三角形ABC 中, 因为,∠CAB=20°, 所以,︒=20tan AB CB ,即︒=20tan xCB, 所以,CB=xtan20°,在直角三角形ABD 中, 因为,∠DAB=23°, 所以,︒=23tan AB DB ,即︒=23tan xDB, 所以,DB=xtan23°,因为,CD=BD-BC ,所以,30= xtan23°- xtan20°,所以,x==︒-︒20tan 23tan 30364.0424.030-=500,因此,此人距CD 的水平距离AB 为500米。
2、俯角与直角三角形例2、汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒,如图3.求A 、B 两个村庄间的距离.(结果精确到米,参考数据1.414 1.732==)(郴州市08年)分析:正确理解俯角的意义是问题获得解答的关键。