解直角三角形的应用(方位角)
- 格式:ppt
- 大小:2.51 MB
- 文档页数:9
解直角三角形及方向角的应用教课目的【知识与技术】在理解解直角三角形的含义、直角三角形五个元素之间关系的基础上, 会运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.【过程与方法】经过综合运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形 , 逐渐培育学生剖析问题、解决问题的能力 .【感情、态度与价值观】在研究学习的过程中 , 培育学生合作沟通的意识, 使学生认识到数与形相结合的意义与作用 , 领会到学好数学知识的作用, 并提升学生将数学知识应用于实际的意识 , 进而体验“从实践中来 , 到实践中去”的辩证唯心主义思想, 激发学生学习数学的兴趣 . 让学生在学习过程中感觉到成功的愉悦, 产生后继学习激情 , 增强学好数学的信心 .要点难点【要点】直角三角形的解法 .【难点】灵巧运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形 .、教课过程一、复习回首师: 你还记得勾股定理的内容吗?生: 记得.学生表达勾股定理的内容.师: 直角三角形的两个锐角之间有什么关系呢?生: 两锐角互余 .师: 直角三角形中 ,30 °的角所对的直角边与斜边有什么关系?生:30 °的角所对的直角边等于斜边的一半.师: 很好!二、共同研究 , 获得新知1.观点 .师: 由 sinA=, 你能获得哪些公式 ?生甲 :a=c · sinA.生乙 :c=.师: 我们还学习了余弦函数和正切函数 , 也能获得这些式子的变形 . 这些公式有一个共同的特色 , 就是式子的右端起码有一条边 , 为何会是这样的呢 ?学生思虑 .生: 由于左侧的也是边 , 依据右侧边与角的关系计算出来的应是长度.师: 对! 解三角形就是由已知的一些边或角求另一些边和角 , 我们此刻看看解直角三角形的观点 .教师板书 :在直角三角形中 , 由已知的边角关系 , 求出未知的边与角 , 叫做解直角三角形 .2.练习教师多媒体课件出示 :(1) 如图 (1) 和(2), 依据图中的数据解直角三角形 ;师: 图(1) 中是已知一角和一条直角边解直角三角形的种类 , 你如何解决这个问题呢 ?生 1: 依据 cos60°=, 获得 AB=,而后把 AC边的长和 60°角的余弦值代入 , 求出 AB边的长 , 再用勾股定理求出 BC边的长 , ∠B 的度数依据直角三角形两锐角互余即可获得 .生2: 先用直角三角形两锐角互余获得∠B为30°, 而后依据30°的角所对的直角边等于斜边的一半 , 求出 AB的值 , 再由 sin60 °=获得 BC=AB· sin60 °, 进而获得 BC边的长 .师: 你们回答得都对 ! 还有没有其余的方法了 ?生 3: 能够求出 AB后用 AB的值和∠ B 的余弦求 BC的长 .生 4: 能够在求出 AB后不用三角函数 , 用勾股定理求出 BC.师: 同学们说出这几种做法都是对的. 下边请同学们看图 (2), 并解这个直角三角形 .学生思虑 , 计算 .师: 这两个题目中已经给出了图形, 此刻我们再看几道题 .教师多媒体课件出示 :【例 1】在 Rt △ABC中, ∠ C=90°, ∠B=42°6',c=287.4,解这个直角三角形.师: 你如何解答这道题呢 ?先做什么 ?生: 先画出图形 .师: 很好 ! 此刻请同学们画出大概图形.学生绘图 .教师找一世谈谈解这个直角三角形的思路 , 而后让同学们自己做 , 最后集体订下 .解: ∠A=90°-42 °6'=47 ° 54'.由 cosB=,得a=ccosB=287.4× 0.7420 ≈213.3.由 sinB= 得b=csinB=287.4 × 0.6704 ≈192.7.教师多媒体课件出示 :【例 2】在△ ABC中 , ∠ A=55° ,b=20 cm,c=30 cm. 求△ ABC的面积 S△ABC.( 精准到 0.1 cm 2 )师: 这道题是已知了三角形的两条边和一个角, 求三角形的面积 . 要先如何 ?学生思虑 .生: 先画出图形 .师: 对, 题中没有已知图形时 , 一般都要自己画出图形 . 而后呢 ?你能给出解这道题的思路吗 ?生 1: 先计算 AB边上的高 , 以 AB为底 ,AB 边上的高为三角形的高 , 依据三角形的面积公式 , 就能计算出这个三角形的面积了 .生 2: 还能够先计算 AC边上的高 , 而后用三角形的面积公式计算这个三角形的面积 .师: 很好 ! 我们此刻议论以 AB为底时求三角形面积的方法 , 如何求 AB边上的高呢 ?教师找一世回答 , 而后集体校正 .解: 如图 , 作 AB上的高 CD.在 Rt△ACD中,CD=AC·sinA=bsinA,∴S△ABC=AB· CD=bcsinA.当∠ A=55° ,b=20 cm,c=30 cm 时 , 有S△ABC=bcsinA= × 20×30sin55 °=×20×30× 0.8192≈245.8(cm 2).教师多媒体课件出示 :【例 3】如图 , 东西两炮台 A、 B 相距 2 000 米, 同时发现入侵敌舰 C,炮台 A测得敌舰 C 在它的南偏东 40°的方向 , 炮台 B 测得敌舰 C在它的正南方 , 试求敌舰与两炮台的距离 .( 精准到 1 米 )师: 这是一个与解直角三角形相关的实质问题, 你能将它转变为数学模型吗?学生思虑后回答 : 会.师: 这相当于已知了哪些条件, 让你求什么量 ?生: 已知直角三角形的一个锐角和一条直角边, 求它的斜边和另向来角边.师: 你回答得很好 ! 此刻请同学们计算一下.学生计算 , 教师巡视指导 , 最后集体校正 .解: 在 Rt△ABC中 ,∵∠ CAB=90°- ∠ DAC=50°,=tan ∠ CAB,∴BC=AB·tan ∠CAB=2 000×tan50 °≈ 2 384( 米)又∵ =cos50°,∴AC==≈3 111( 米).答: 敌舰与 A、B 两炮台的距离分别约为 3 111 米和 2 384 米.三、练习新知师: 此刻请同学们看课本第125 页练习 1 的第 (1) 、 (2) 题.教师找两生各板演 1 题, 其余同学在下边做 , 而后集体校正 .解:(1)∠A=90°-80 °=10° ,AB=≈≈ 172.81,AC=≈≈ 170.16,(2)BC===≈ 7.42.cosA===0.375,∠A≈67.976 °≈ 67°58'32 ″,∠B=90°- ∠A=22°1'28 ″.教师找一世板演课本第125 页练习的第 3 题, 其余同学在下边做 , 而后集体订正 .解:过点 A 向 DC作垂线 , 与 DC交于一点 E.AE=ADsin43°=6×sin43 °≈6× 0.682=4.092.S=(AB+DC)×AE=(4+8) × 4.092≈24.55.答: 梯形的面积为 24.55.四、稳固提升师: 同学们 , 经过方才的学习 , 相信大家都掌握了必定的解直角三角形及其应用题的方法 , 此刻我出几道习题来检测下大家学得怎么样 !教师多媒体课件出示习题:1.在△ ABC中, ∠C=90°, 以下各式中不正确的选项是 ( ) A.b=a· tanB B.a=b ·cosAC.c=D.c=【答案】 B2. 在 Rt△ABC中, ∠C=90°,a=35,b=28, 则 tanA= ,tanB=.【答案】3. 在 Rt△ABC中, ∠C=90°,c=10,b=5, 则∠ A= ,S △ABC=.【答案】 30°4.已知在 Rt △ABC中 , ∠ C=90° ,a=104,b=20.49, 求∠ A 和∠ B.( 可利用计算器进行运算 , 精准到 1° )【答案】∠ A=79°, ∠B=11°5.如图 , 在 Rt△ ABC中,BC=7.85,AB=11.40, 解这个直角三角形 .( 边长保存三个有效数字 , 角度精准到 1°)【答案】 AC=8.27,∠ A=44° , ∠ B=46°五、讲堂小结师: 本节课 , 我们学习了什么内容 ?学生回答 .师: 你还有什么不懂的地方吗?学生发问 , 教师解答 .教课反省本节课在教课过程中 , 能灵巧办理教材 , 敢于松手让学生经过自主学习、合作研究 , 达到理解并掌握知识的目的 , 并能运用知识解决问题 . 在本章开头 , 我率领学生复习了与解直角三角形相关的知识点 , 使学生在解决问题时能想到并能娴熟运用 . 在解有特别角的三角形时有不只一种解法 , 我鼓舞学生勇于讲话 , 给了他们展现自我的时机 , 锻炼他们表达自己想法的能力 , 而且加强了他们的自信心 .。
1.如下图,某船以每小时36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B 测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁。
(1)说明点B 是否在暗礁区域内;(2)若继续向东航行有无触礁的危险?请说明理由。
2.如图,海岛A 四周20海里周围内为暗礁区,一艘货轮由东向西航行,在B 处见岛A 在北偏西60˚,航行24海里到C ,见岛A 在北偏西15˚,货轮继续向西航行,有无触礁的危险3.如图所示,A 、B 两城市相距100km .现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3 1.7322 1.414≈,≈)4.为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A 北偏西45°并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60°的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C 处?(结果精确到个位)5.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.6.如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时10千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域。
在线分享文档用解直角三角形解方位角的应用一、教学目标(一)知识与技能巩固直角三角形中锐角的三角函数,学会解关于方位角的问题.(二)过程与方法逐步培养学生分析问题解决问题的能力,进一步渗透数形结合的数学思想和方法.(三)情感态度与价值观培养学生用数学的意识;渗透数学来源于实践又反过来作用于实践的辩证唯物主义观点.二、重、难点重点:能熟练运用有关三角函数知识.难点:解决实际问题.三、教学过程(一)明确目标讲评上课节课后作业(二)重点、难点的学习与目标完成过程教师出示例题.例1 如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).分析:1.例题中出现许多术语——株距,倾斜角,这些概念学生未接触过,比较生疏,而株距概念又是学生易记错之处,因此教师最好准备教具:用木板钉成一斜坡,再在斜坡上钉几个铁钉,利用这种直观教具更容易说明术语,符合学生的思维特点.2.引导学生将实际问题转化为数学问题画出图形(上图(2)).已知:Rt△ABC中,∠C=90°,AC=5.5,∠A=24°,求AB.3.学生运用解直角三角形知识完全可以独立解决例1.教师可请一名同学上黑在线分享文档板做,其余同学在练习本上做,教师巡视.答:斜坡上相邻两树间的坡面距离约是6.0米.教师引导学生评价黑板上的解题过程,做到全体学生都掌握.例2 如图6-30,沿AC方向开山修渠,为了加快施工速度,要从小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=52cm,∠D=50°,那么开挖点E离D多远(精确到0.1m),正好能使A、C、E成一条直线?这是实际施工中经常遇到的问题.应首先引导学生将实际问题转化为数学问题.由题目的已知条件,∠D=50°,∠ABD=140°,BD=520米,求DE为多少时,A、C、E在一条直线上。
25.4 解直角三角形的应用(2)[方位角]第一组 25-151、某轮船沿正北方向航行,在A 点处测得灯塔C 在北偏西30º处,下图25-15-1正确的是( )2、海面上有A 、B 两个灯塔,已知灯塔A 位于B 的北偏东30º方向,那么灯塔B 位于灯塔A 的( )A 、南偏西60ºB 、南偏西30ºC 、北偏东30ºD 、北偏东60º3、某人在离水平面a m 的山上测得地面B 点的俯角为α,此时此人与地面B 点之间的水平距离是( )m 。
A 、a cot α B 、a sin αC 、a tan αD 、acos α4、如图25-15-2,已知小明外婆家在小明家的正东方,学校在外婆家的北偏西40º,外婆家到学校与小明家到学校的距离相等,则学校在小明家的( ) A 、南偏东50º B 、南偏东40º C 、北偏东50º D 、北偏东40º5、如图25-15-3,当太阳光线与地面成30º时,测得旗杆AB 在地面上的影子BC 长为15m ,那么旗杆AB 的高度是 m 。
(保留根号)图 25 - 15 - 1(D)A CA C CA CA 图 25 - 15 - 2小明家学校北北图 25 - 15 - 3BA太阳光C6、某人从A 点出发,向北偏东45º方向走到B 点,再从B 点出发,向南偏西15º方向走到C 点,那么∠ABC= 。
7、如图25-15-4,点B 在点A 北偏西30º方向,且AB=5km ,点C 在点B 北偏东60º方向,且BC=12km ,则A 到C 的距离是 。
8、如图25-15-5,一轮船以每小时20海里的速度沿正东方向航行,上午8时,该船在A 处测得某灯塔位于它的北偏东30º的B 处,上午9时行至C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里。
:i h l=hlα基础知识2解直角三角形的应用举例1.仰角与俯角:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
2.坡度与坡角:坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等. 把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα== 3.方位角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方位角.如图,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向).【题型1】仰角与俯角如图,两幢建筑物AB 和CD ,AB ⊥BD ,CD ⊥BD ,AB =15m ,CD =20m ,AB 和CD 之间有一观景池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B 、E 、D 在同一直线上),求两幢建筑物之间的距离BD (结果精确到0.1m ).(参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)【变式训练】1.如图,宁宁在家里楼顶上的点A处,测量建在与自家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为多少米(精确到0.1).2.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m).(参考数据:≈1.414,≈1.732)3.如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°,热气球A的高度为240米,求这栋大楼的高度.4.如图,曦曦在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度.【题型2】坡度与坡角如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则应水坡面AB的长度是多少?【变式训练】1.如图,在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是多少米?2.如图,为了缓解交通拥堵,方便行人,在某街道计划修建一座横断面为梯形ABCD的过街天桥,若天桥斜坡AB的坡角∠BAD为35°,斜坡CD的坡度为i=1∶1.2(垂直高度CE与水平宽度DE的比),上底BC=10 m,天桥高度CE=5 m,求天桥下底AD的长度.(结果精确到0.1 m,参考数据:sin35°≈ 0.57,cos35°≈ 0.82,tan35°≈ 0.70)3.如图,一楼房AB后有一假山,其坡度为i=1∶3,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比).4.如图,曦曦在山坡坡脚A 处测得电视塔尖点C 的仰角为60° ,沿山坡向上走到P 处再测得点C 的仰角为45° ,已知OA=100米,山坡坡度为i=1:2, 且O 、A 、B 在同一条直线上。