第四章 食品的杀菌技术
- 格式:ppt
- 大小:2.36 MB
- 文档页数:48
食品高温杀菌工艺
1、热水循环式杀菌:
杀菌时锅内食品全部被热水浸泡,这种方式热分布比较均匀。
2、蒸汽式杀菌:
食品装到锅里后不是先加水,而是直接进蒸汽升温,由于在杀菌过程中锅内存在空气会出现冷点,所以这种方式热分布不是最均匀。
3、淋水式杀菌:
这种方式是采用喷嘴或喷淋管将热水喷到食品上,杀菌过程是通过装设在杀菌锅内两侧或顶部的喷嘴中,喷射出雾状的波浪型热水至食品表面,所以不但温度均匀无死角,而且升温和冷却速度迅速,能全面、快速、稳定的对锅内产品进行杀菌,特别适合软包装食品的杀菌。
4、水汽混合式杀菌:
这种方式杀菌由法国推出,巧妙的把蒸汽式和水淋式相结合,锅内加入少量的水以满足循环喷淋使用,蒸汽直接进入国内,真正实现短时高效、节能环保并适合特殊产品的杀菌。
在食品中常用杀菌方法(1)超高压杀菌技术:食品超高压杀菌(高静水压杀菌)就是食品物料以某种方式包装完好后,放人液体介质(通常是食用油、甘油、油与水的乳液)中,100~1000 MPa压力下作用一定时间后,使之达到灭菌的要求。
其灭菌的基本原理就是压力对微生物的致死作用,主要是通过破坏细胞膜抑制酶的活性和影响DNA等遗传物质的复制来实现的。
在400~600 MPa的压力下,可以杀灭细菌、酵母菌、霉菌,避免了一般高温杀菌带来的不良变化,因此,能更好地保持食品固有的色、香、味,达到延长保存期的效果。
(2)低温杀菌:低温杀菌是对食品中存在的微生物进行部分杀菌的加热方法。
通常使用100℃以下的温度。
由于低温杀菌后,食品中的菌残存较多,为了延长产品的货架期,再使用冷藏、发酵、加入添加剂、脱氧等加工技术。
该法主要适用于pH 4.5以下的酸性食品及采用较强加热处理会明显导致品质降低的食品。
在近几年,对牛奶及保存期较短的商品也采用该法。
(3)巴氏杀菌法:巴氏杀菌是指温度比较低的热处理方式,一般在低于水沸点温度下进行。
它是一门古老的技术,由19世纪法国医生巴斯德首创,至今仍有一定的应用价值。
巴氏杀菌是最早的杀菌方法,利用热水作为传热介质。
杀菌条件为61~63 ℃,30 min,或72~75 ℃,10~15 min。
加热时应注意物料表面温度较内部温度低4~5 ℃;此外,当表面产生气泡时,泡沫部分难以达到杀菌要求。
这种杀菌方法,由于所需时间长,生产过程不连续,长时间受热容易使某些热敏成分变化,杀菌也不够理想。
目前在大中型食品厂中已很少采用。
(4)超高温瞬间杀菌:超高温杀菌简称UHT杀菌。
一般加热温度为125~150 ℃,加热时间2~8 s,加热后产品达到商业无菌要求的杀菌过程称为UHT杀菌。
这种杀菌方法,能在瞬间达到杀菌目的,杀菌效果特别好,几乎可以达到或接近灭菌要求,而引起的化学变化很小。
它具有提高处理能力、节约能源、缩小设备体积、稳定产品质量,并可实行设备原地无拆卸循环清洗。
食品加工中的杀菌技术与应用随着人类生产和生活水平的提高,对食品的需求和要求也越来越高,新型的食品加工技术和生产方式不断涌现,而食品的安全问题也日益受到重视。
在食品生产和加工中,杀菌技术发挥了重要作用。
本文将介绍食品加工中常用的杀菌技术及其应用。
一、高温杀菌技术高温杀菌是指利用高温的方式抑制食品中的微生物,达到杀菌的效果。
常见的高温杀菌方式有几种:1.液态加热杀菌:将食品加热到100℃,在高温下保持一定时间,达到杀菌的效果。
2.干热加热杀菌:将食品加热到140℃以上,使食品内的水分迅速蒸发,直接杀死微生物。
3.蒸汽杀菌:用蒸汽将食品加热到100℃以上杀菌。
高温杀菌广泛应用于奶制品、饮料、罐头食品等领域,虽然该技术可有效杀死绝大部分细菌,但也有一定局限性,如难以杀灭芽孢菌。
二、辐射杀菌技术辐射杀菌是利用电离辐射或非电离辐射对食品内的细菌进行杀死的方法。
目前常用的辐射杀菌技术主要有电子射线和紫外线。
1.电子射线杀菌:利用电子射线照射食品进行杀菌。
该技术在杀菌效果上非常强大,可以杀死包括芽孢在内的几乎所有细菌,但该技术在应用过程中需要极高的安全要求。
2.紫外线杀菌:利用紫外线在食品表面进行照射来进行杀菌。
该技术通常应用于食品日常卫生上,如医院食堂的餐具、厨房设备等。
但辐射杀菌技术的合法性和安全性一直存在争议,且在实际应用中使用较少。
三、化学杀菌技术化学杀菌是指利用化学物质抑制微生物生长的技术,常用的化学杀菌剂有二氧化氯、臭氧、次氯酸钠等。
常见的化学杀菌方式有:1.表面处理:将化学杀菌剂喷洒在食品表面进行处理。
2.浸泡处理:将食品浸泡在含有化学杀菌剂的溶液中处理。
化学杀菌技术可以在较短时间内有效杀死微生物,但同样具有一定的局限性,如对人体健康的风险。
四、低温杀菌技术低温杀菌是指利用低温的方式抑制食品中的微生物。
该技术包括干法和湿法两种:1.干法低温杀菌:将食品置于干燥冷藏室中,在低温环境中降低微生物的繁殖速度,使其失去活力。
食品杀菌技术的发展现状摘要:基于人民生活质量的不断提高,对食品的要求也在不断追求更高标准。
本文简述了新型食品杀菌技术的原理及发展现状。
关键词:食品杀菌一、引言民以食为天,食品的品质对于生命健康具有重要的影响。
现阶段人们对于食品存储过程一方面要求其存储的时间足够长,特别是在新冠病毒的后疫情时期,另一方面对食品存储期间品质要有保障,安全是首要关注的问题,这两个方面均与食品杀菌技术有着密切的关系,食品杀菌技术越来越受到人民的关注。
二、食品杀菌技术微生物是具有细胞构造的生命体,加热会使它的蛋白质变性、直至死亡,利用该原理的杀菌技术就是加热杀菌技术。
一般地,通过65~80℃的加热就能部分杀灭微生物的营养细胞,达到延长冷藏保质期的效果,通过100℃以上高温杀菌,可以达到杀灭芽孢的效果,进而实现常温保存。
由于传统的热杀菌技术存在食品风味减弱、口感软烂、蒸煮味重的缺陷,近年来出现了大量新型的杀菌技术。
1、微波杀菌微波杀菌机理有很多种解释,如选择性的加热、细胞膜电穿孔破裂和细胞内物质的磁场耦合[1]。
微波选择性加热,细胞膜的温度比周围流体更高,导致微生物更快的死亡;对于电穿孔机理,细胞膜内外电势不同,在细胞上产生小孔,导致细胞物质的泄露[2-3]。
微波杀菌具有以下优点:①时间短,加热速度快。
比传统加热热量传递的速度快很多。
②能量损耗低,微波在加热过程中主要作用于食品介质,微波设备本身几乎不吸收能量,因此整个加热过程中微波能量的损失很少。
2、低温等离子杀菌低温等离子体杀菌的机理主要是在放电过程中产生的带电粒子和高能电子的物理破坏作用、活性氧自由基(ROS)和活性氮自由基(RNS)的氧化作用、紫外光的辐射作用及电磁场和冲击波效应等。
如下图所示:在放电过程中,平均电场强度达到一定值时,细菌的细胞膜会被击穿。
等离子体装置产生高浓度的正负离子在微生物表面产生的剪切力大于其细胞膜表面张力,在能量释放的过程中,细菌的细胞壁因此而受到严重破坏,离子穿透细胞壁,破坏细胞膜,渗透至细胞内部,进而直接破坏细胞内的生物大分子如蛋白质、核酸等,细胞失活,从而导致微生物死亡。
食品中致病菌的检测与杀菌技术食品安全一直备受人们关注,食品中的致病菌是导致食品安全问题的重要原因之一。
致病菌如果进入人体,可能引发食物中毒等严重后果。
因此,对食品中的致病菌进行检测和杀菌工作显得尤为重要。
本文将介绍食品中常见的致病菌、检测方法以及杀菌技术,帮助读者更好地了解和保障食品安全。
一、常见的食品中致病菌在食品中,常见的致病菌主要包括大肠杆菌、沙门氏菌、金黄色葡萄球菌、霉菌等。
这些致病菌如果存在于食品中且数量超标,就会对人体健康造成威胁。
大肠杆菌是最为常见的一种致病菌,其存在可能源自粪便污染;沙门氏菌则主要存在于动物及其产品中;金黄色葡萄球菌则多寄生在人和动物的鼻腔、喉部、皮肤等处;霉菌则容易在潮湿环境下滋生,对食品也构成潜在威胁。
二、食品中致病菌的检测方法1. 常规培养法常规培养法是一种传统的检测方法,通过将样品接种在含有适宜营养成分的培养基上,利用细菌在不同培养条件下的生长特性来鉴定和计数致病菌。
这种方法简单易行,但需要较长时间来获取结果。
2. 分子生物学方法分子生物学方法包括PCR(聚合酶链式反应)、实时荧光定量PCR等技术,可以对食品样品中的致病菌进行快速准确的检测。
这些方法具有高灵敏度和特异性,能够有效地检测出微量的致病菌,并且可以区分不同种类的细菌。
3. 免疫学方法免疫学方法主要包括ELISA(酶联免疫吸附试验)等技术,通过检测样品中特定抗原与抗体结合来判断是否存在致病菌。
这种方法操作简便,且对于某些特定的致病菌具有较高的敏感性和准确性。
三、食品中致病菌的杀菌技术1. 高温灭菌高温灭菌是常见的杀菌技术之一,通过加热使食品中的细菌失活。
例如,常见的巴氏杀菌法就是利用高温(通常在摄氏70-100度之间)处理牛奶等食品,达到灭活细菌的目的。
2. 辐射灭菌辐射灭菌是利用辐射能对食品进行处理,达到杀灭细菌的目的。
常见的辐射方式包括紫外线辐射和γ射线辐射等,这些辐射能会损伤细菌的DNA结构,从而使其失活。
食品产业中的新型杀菌技术在食品加工及制造行业,产品的质量和安全至关重要。
然而,由于细菌和其它微生物会在传统的加工方式中繁殖,因此传统的杀菌方法可能无法完全消除所有的污染和细菌。
新型杀菌技术在改善食品安全方面有着巨大的潜力。
一、高压灭菌技术
研究表明,高压灭菌已成为一种新型杀菌技术,在食品加工行业上得到了很好的应用。
高压灭菌,就是使用非常高的压力来杀死食品中的细菌和其他微生物。
在食品的制造过程中,使用高压灭菌技术能够更好地保留产品原有的营养成分,同时杀灭细菌、病毒和霉菌等污染物质。
二、紫外线杀菌技术
紫外线杀菌一般是以比较短波长的紫外线为介质,对细菌、病毒和微生物进行杀灭。
相对于传统的杀菌方法,紫外线杀菌技术更具有优势,它没有使用任何化学物质,不会给食品带来任何的化学残留;同时,在杀菌过程中不会改变原有的食品口感。
三、微波杀菌技术
微波杀菌技术,是将食物放入特殊的微波设备中,经过微波的
辐射和加热,将细胞内蛋白质的平衡打乱,并破坏其细胞结构,
进而杀死一些细菌和微生物,能够消除多种污染物质。
四、等离子杀菌技术
等离子杀菌,利用等离子体发生器器产生的高能量等离子,通
过多种反应机制杀灭各类细菌、病毒、霉菌和其它微生物,对食
品进行杀菌处理。
此方法在杀菌效果上都表现出了其独有的优点。
综上所述,无论是高压灭菌、紫外线杀菌,微波杀菌,还是等
离子杀菌,都是新型的杀菌技术,在食品加工制造过程中都是十
分有效和安全的选择。
随着科技的不断发展,新型杀菌技术将会
更加地成熟,食品安全及优质的口感将会变得更加普遍。
在食品中常用杀菌方法(1)超高压杀菌技术:食品超高压杀菌(高静水压杀菌)就是食品物料以某种方式包装完好后,放人液体介质(通常是食用油、甘油、油与水的乳液)中,100~1000 MPa压力下作用一定时间后,使之达到灭菌的要求。
其灭菌的基本原理就是压力对微生物的致死作用,主要是通过破坏细胞膜抑制酶的活性和影响DNA等遗传物质的复制来实现的。
在400~600 MPa的压力下,可以杀灭细菌、酵母菌、霉菌,避免了一般高温杀菌带来的不良变化,因此,能更好地保持食品固有的色、香、味,达到延长保存期的效果。
(2)低温杀菌:低温杀菌是对食品中存在的微生物进行部分杀菌的加热方法。
通常使用100℃以下的温度。
由于低温杀菌后,食品中的菌残存较多,为了延长产品的货架期,再使用冷藏、发酵、加入添加剂、脱氧等加工技术。
该法主要适用于pH 4.5以下的酸性食品及采用较强加热处理会明显导致品质降低的食品。
在近几年,对牛奶及保存期较短的商品也采用该法。
(3)巴氏杀菌法:巴氏杀菌是指温度比较低的热处理方式,一般在低于水沸点温度下进行。
它是一门古老的技术,由19世纪法国医生巴斯德首创,至今仍有一定的应用价值。
巴氏杀菌是最早的杀菌方法,利用热水作为传热介质。
杀菌条件为61~63 ℃,30 min,或72~75 ℃,10~15 min。
加热时应注意物料表面温度较内部温度低4~5 ℃;此外,当表面产生气泡时,泡沫部分难以达到杀菌要求。
这种杀菌方法,由于所需时间长,生产过程不连续,长时间受热容易使某些热敏成分变化,杀菌也不够理想。
目前在大中型食品厂中已很少采用。
(4)超高温瞬间杀菌:超高温杀菌简称UHT杀菌。
一般加热温度为125~150 ℃,加热时间2~8 s,加热后产品达到商业无菌要求的杀菌过程称为UHT杀菌。
这种杀菌方法,能在瞬间达到杀菌目的,杀菌效果特别好,几乎可以达到或接近灭菌要求,而引起的化学变化很小。
它具有提高处理能力、节约能源、缩小设备体积、稳定产品质量,并可实行设备原地无拆卸循环清洗。
食品杀菌技术种类汇总巴氏灭菌采用较低温度(一般在60~82℃),在规定的时间内,对食品进行加热处理,达到杀死微生物营养体的目的,是一种既能达到消毒目的又不损害食品品质的方法。
由法国微生物学家巴斯德发明而得名。
巴氏杀菌热处理程度比较低,一般在低于水沸点温度下进行加热,加热的介质为热水。
巴氏杀菌热处理程度比较低,一般在低于水沸点温度下进行加热,加热的介质为热水。
不同的食品采用巴氏杀菌,有着不同的目的。
某些食品,特别是牛乳、全蛋、蛋清和蛋黄,巴氏杀菌主要是破坏可能存在的病原菌,如结核杆菌和沙门氏菌。
另外,大多数食品,如啤酒、果酒(葡萄酒)和果汁等采用巴氏杀菌的目的是从微生物和酶的角度来延长产品的货架寿命。
一般经过巴氏杀菌的食品仍会含有许多能够生长的微生物,通常每毫升或每克中有几千个活菌,比商业杀菌的产品的贮藏期有所缩短。
巴氏杀菌技术除用于液态食品(果汁、牛乳)、酸性食品和果酱罐头等外,还向其他领域渗透,如处理带壳牡蛎时用蒸汽处理法会降低牡蛎的含菌数。
它的优点就是在较低温度、较短时间内处理食品,最大限度地使食品的色、香、味以及营养成分免受高温长时间处理的破坏。
超高温瞬时杀菌技术(UHT)超高温瞬时杀菌技术可分为间接杀菌和直接杀菌两大类,它是使物料迅速升温至130℃以上。
然后保持几秒钟而实现对料液瞬间杀菌的目的。
超高温瞬时杀菌技术的杀菌效果特别好,几乎可以达到或接近灭菌的要求,而且杀菌时间短,物料中营养物质破坏少,成分保持率达92%以上,大大优越于传统的巴氏杀菌、高温短时杀菌。
配合食品无菌包装技术的超高温式杀菌装备在国内外发展很快,目前这种杀菌技术已广泛用于灭菌乳、果汁及各种饮料、豆乳、酒等产品的生产过程中。
超高压杀菌技术超高压技术是将100~1000 MPa的静态液体压力施加于液态或固态食品、生物制品等物料并保持一定时间,从而起到杀菌、破坏酶及改善物料结构和特性的作用。
在超高压处理过程中,压力快速、均匀地传递到整个食品,处理温度远低于热处理温度,不仅可以防止食品中热敏性成分遭到破坏、抑制褐变反应的发生,还可以延长食品货架期,较大程度地保持食品的原有风味、色泽和营养价值。