食品冷杀菌技术
- 格式:doc
- 大小:36.00 KB
- 文档页数:10
杀菌(冷杀菌与热杀菌)冷杀菌技术冷杀菌(物理杀菌)是当代一类崭新的技术,物理杀菌条件易于控制,外界环境影响较小,由于杀菌过程中食品的温度并不升高或升高很低,即有利于保持食品功能成分的生理活性,又有利于保持色、香、味及营养成分,所以包装与食品机械的设计与制造上采用冷杀菌技术是非常必要的。
1.2超高压脉冲电场杀菌超高压脉冲电场杀菌是采用高压脉冲器产生的脉冲电场进行杀菌的方法。
其基本过程是用瞬时高压处理放置在两极间的低温冷却食品。
其机理基于细胞膜穿孔效应、电磁机制模型、粘弹极性形成模型、电解产物效应、臭氧效应等假设。
其作用主要有2个:(1)场的作用。
脉冲电场产生磁场,细胞膜在脉冲电场和磁场的交替作用下,通透性增加,振荡加剧,膜强度减弱从而使膜破坏,膜内物质容易流出,膜外物质容易渗入,细胞膜的保护作用减弱甚至消失。
(2)电离作用。
电极附近物质电离产生的阴阳离子与膜内生命物质作用,阻碍了膜内正常生化反应和新陈代谢过程等的进行同时,液体介质电离产生臭氧的强烈氧化作用,使细胞内物质发生一系列的反应。
通过场和电离的联合作用,杀灭菌体[3]。
超高压脉冲电场杀菌已在实验室水平上取得了显著的成效。
它可保持食品的新鲜及其风味,营养损失少。
但因其杀菌系统造价高,制约了它在食品工业上的应用,且超高压脉冲电场杀菌在黏性及固体颗粒食品中的应用还有待进一步的研究。
1.3强磁场脉冲杀菌该技术采用强脉冲磁场的生物效应进行杀菌,在输液管外面,套装有螺旋兴线圈,磁脉冲发生器在线圈内产生(2~10)T的磁场强度[4]。
当液体物料通过该段输液管时,其中的细菌即被杀死。
该技术具有以下特点:杀菌时间短且效率高。
杀菌效果好且温升小,能做到既能杀菌,又能保持食品原有的风味、滋味、色香、品质和组分(维生素、氨基酸等)不变,不污染产品,无噪音,适用范围广泛[5]。
1.4脉冲强光杀菌脉冲强光杀菌是采用脉冲的强烈白光闪照方法进行灭菌。
通过惰性气体发出与太阳光谱相反,但强度更强的紫外线至红外线区进行杀菌。
低温灭菌方法低温灭菌是一种常用的菌灭活方法,广泛应用于食品工业、医疗卫生等领域。
本文将介绍低温灭菌的原理、方法和应用。
一、低温灭菌的原理低温灭菌是指在相对较低的温度下,通过一定的时间和条件,将微生物灭活。
其原理是通过降低温度,使微生物的生命活动减缓甚至停止,从而达到杀灭微生物的目的。
二、低温灭菌的方法1. 冷冻灭菌冷冻灭菌是将待灭菌物品置于低温环境中,使其温度迅速下降至冰冻状态,并保持一定时间,使微生物失去活性。
常用的冷冻灭菌方法有低温冷冻、超低温冷冻等。
2. 冷冻干燥灭菌冷冻干燥灭菌是将待灭菌物品先冷冻,然后在低温下进行干燥处理,使水分从固态直接转化为气态,从而达到灭菌的目的。
该方法适用于灭菌对水敏感的物品。
3. 冷冻超滤灭菌冷冻超滤灭菌是将待灭菌物品通过超滤膜,使微生物无法通过膜孔,从而实现灭菌的目的。
该方法适用于灭菌对物品质量要求较高的场合。
4. 冷冻消毒灭菌冷冻消毒灭菌是通过将待灭菌物品置于低温环境中,使微生物失去活性。
该方法适用于对微生物要求不严格的物品。
三、低温灭菌的应用1. 食品工业低温灭菌在食品工业中应用广泛。
例如,冷冻食品常通过低温灭菌保持其质量和口感,延长其保质期。
2. 医疗卫生低温灭菌在医疗卫生领域也有重要应用。
例如,低温灭菌可以用于灭菌器械、医用敷料等的灭菌处理,确保医疗设备和物品的无菌状态,降低交叉感染的风险。
3. 实验室研究在实验室研究中,低温灭菌可以用于灭菌培养基、试剂和实验仪器等。
这有助于防止微生物污染,保证实验结果的准确性和可靠性。
四、低温灭菌的优势和注意事项1. 低温灭菌相比其他灭菌方法,操作简便,成本较低。
2. 低温灭菌可以保持物品的原有特性和质量,减少营养成分和活性物质的损失。
3. 在进行低温灭菌时,需要注意温度和时间的控制,以确保灭菌效果的达到。
低温灭菌是一种常用的菌灭活方法,通过降低温度使微生物失去活性。
其方法包括冷冻灭菌、冷冻干燥灭菌、冷冻超滤灭菌和冷冻消毒灭菌。
冷杀菌技术杀菌是保证食品安全,延长食品保质期的基本手段。
冷杀菌技术也称为非热杀菌技术.它与通常的加热杀菌技术相比,在杀菌过程中食品温度不升高或温升很小,可以避免高温对食品的营养、风味、质地、色泽的不良影响,特别是对于热敏性较强的果品、蔬菜制品的杀菌有非常重要的意义.冷杀菌技术主要包括超高压杀菌、辐照杀菌、高强度脉冲电场杀菌、微波杀菌、脉冲强光杀菌、超声波杀菌、紫外线杀菌、臭氧杀菌等,在食品加工中有广阔的应用前景.这里介绍用于果蔬加工的几种冷杀菌技术。
一、超高压杀菌超高压技术(ultra-high pressure processing,UHP)是目前受到广泛关注的一项食品加工高新技术,主要应用于食品的杀菌。
常用的压力范围是100~1000MPa。
其杀菌原理是强大的压力导致微生物的形态结构、生物化学反应、基因机制以及细胞壁、膜发生多方面的变化,从而影响微生物原有的生理活动机能,甚至使原有功能破坏或发生不可逆的变化.一般来说,细菌、霉菌、酵母菌在300 MPa下可致死,细菌的芽孢在600MPa以上的压力下可致死,酶在400 MPa以上的压力下可被钝化。
在杀菌的同时,能够较好地保持食品固有的色香味、质构特点和营养品质。
高压对食品中营养成分和品质的影响主要表现在以下几方面:1、对蛋白质的影响:蛋白质在高压下会凝固变性,这种现象称为蛋白质的压力凝固。
压力凝固的蛋白质消化性与热力凝固的相同。
2、对淀粉、糖的影响:常温下加压到400~600MPa,可使淀粉糊化,吸水量增加,形成不透明的粘稠糊状物。
高压对糖类几乎没有影响。
3、对油脂的影响:常温下加压到100~200MPa,油脂就会凝固,解压后能恢复原状。
4、由于超高压杀菌在较低温度下进行,因此食品中维生素、色素、香气、风味损失很小.酶作为一种蛋白质,在高压下变性失活,有利于保持食品的营养品质和感官品质。
日本、美国、欧洲在高压食品的研发方面处于领先地位.1990年4月日本的Meidi-Ya公司生产了第一个高压食品——果酱。
食品冷杀菌技术及应用研究摘要:杀菌在食品工业中占有极其重要的地位,它不仅关系到企业的兴衰成败,而且更关系到我们个人的自身健康问题。
随着生活水平的提高,人们对现代食品提出了更高的要求。
为满足人们对食品的品质和营养方面的期望,寻求替代传统热杀菌的新型杀菌技术极为重要,因此冷杀菌技术逐渐被关注和研究。
冷杀菌技术(非热杀菌)是-类新兴的杀菌技术,不同于传统食品加工中采用的热杀菌,他不但利于保护食品功能的生理活性,还有效的保持食品中的色、香、味及营养成分。
本文主要介绍高效、安全且能保持食品原有风味与营养的冷杀菌技术及其应用。
关键词:冷杀菌;食品;应用食品的腐败变质主要是由于微生物的污染及其繁殖代谢活动所引起的,因此,食品杀菌是食品加工中的一个重要环节。
近年来,随着消费者对食品营养与品质的要求越来越高,食品在保证新鲜的同时,还要保持其原有的风味,国内外不断开发了许多食品杀菌的新技术,冷杀菌技术(非热杀菌)是一类新兴的杀菌技术,和热杀菌杀死微生物、钝化酶类的特点相比,冷杀菌采用物理、化学或微生物的方法杀灭微生物,改善食品的品质和延长贮藏期的同时,最大程度的保留食品的营养、质构、色泽和风味等。
因此,冷杀菌又称非加热杀菌,此杀菌技术既能控制食品微生物数量,又能保持食品本身固有的品质,满足消费者对食品风味、食品营养和食品安全的要求。
1 单一冷杀菌技术1.1 物理冷杀菌物理冷杀菌即应用物理方式作用于食品,并进行杀菌保鲜的技术。
1.1.1 超高压杀菌超高压杀菌(UHP,ultrahigh pressure processingsterilization)又称为高压技术或高静水压技术。
将食品物料以某种方式包装完好后,放入液体介质(通常是食用水、油、甘油、油与水的乳液)中,在100~1000MPa压力下作用-段时间后达到灭菌要求。
其基本原理就是压力对微生物的致死作用,主要是通过破坏细胞膜、抑制酶的活性和影响DNA等遗传物质的复制来实现的。
冷杀菌技术及设备冷等静压食品安全操作及保养规程1. 冷杀菌技术概述冷杀菌技术是指将已经熟食的食品进行杀菌处理的方法。
与热灭菌不同的是,冷杀菌技术通过高压让细菌失去生长和繁殖的能力来达到杀菌效果。
目前,冷杀菌技术主要分为三种:高压处理技术、等静压技术和脉冲电场杀菌技术。
其中,等静压技术是一种利用恒压的方式来杀菌的技术。
这种技术是对部分热敏感性食品适用的一种技术,如果品、海产品等。
等静压杀菌技术能够在食物保持高品质和口感方面提供重要的优势。
2. 冷等静压技术设备冷等静压技术设备主要包括:高压发生器、水泵、水箱、冷却系统、恒温系统等。
胶囊式同轴式等静压处理器是其中其中常见的两种设备。
这些设备一般可以提供最高6万巴的压力,并采用冷却和恒温设备来对食品进行升温和降温控制。
同时,这些设备还可以根据生产工艺和工作场合的特殊要求进行定制和设计。
3. 高压处理食品的注意事项在进行高压处理食品的时候,需要注意以下几点:•食品必须是熟透的并符合卫生标准。
•在使用前,需要对设备进行检查。
•在进行高压处理前,需清洗设备。
•禁止在加热、加压和抽空的状态下操作设备。
•食品加工后不能过久,需要及时加工处理和存储。
4. 高压处理食品的保护措施在使用等静压静压处理器处理食品时,需要注意以下几点:•不要在温度过高的环境下运输设备。
•避免设备受到冲击和振动。
•在使用前对设备进行检查,并确保设备安全可靠。
•不要在不安全的环境下进行操作。
5. 食品加工操作在使用等静压静压处理器进行食品加工时,需要注意以下几点:•安全操作设备。
•使用电源停车按钮,停机前先排水。
•避免撞击和过度运载。
•在加工过程中不要用手触摸夹具。
6. 设备保养对于等静压静压处理器设备,需要定期进行维护和保养,以确保设备安全可靠、正常工作。
具体操作如下:•将设备保持干燥。
•设备经常进行检测,并及时替换需要更换的零件。
•定期检查设备电子线路部分是否安全可靠,其电源规格是否符合要求。
食品冷杀菌技术摘要:冷杀菌技术是一种新技术,既能杀灭食品中微生物,又能最大限度保持食品色泽、香味及营养成分。
依据冷杀菌作用原理不同,将其分为物理冷杀菌、化学冷杀菌、生物冷杀菌3大类,并就冷杀菌技术在食品领域的应用研究进行了综述。
关键词:食品;冷杀菌;物理;化学;生物食品腐败变质是由于微生物的代谢活动所引起的,因此杀菌工艺是食品加工过程中重要的一个环节。
食品杀菌包括热杀菌和冷杀菌,热杀菌可致死微生物、钝化酶及改善其品质,但对食品营养品质方面有较大影响;而为了迎合消费者对于食用安全、性质稳定和不加添加剂等需求,冷杀菌技术由此诞生。
冷杀菌技术不仅杀灭微生物,还能够保证食品营养成分的生理活性、对其固有的风味、色泽等方面的影响较小。
冷杀菌技术则包括超高压杀菌、高压脉冲电场杀菌、磁力杀菌、感应电子杀菌、辐照杀菌、微波杀菌、超声波杀菌、紫外线杀菌、臭氧杀菌、脉冲强光杀菌、酶法杀菌等。
而本文则综述了国内外冷杀菌技术的研究进展及现状,主要介绍了超高压杀菌、磁力杀菌和脉冲强光杀菌等技术基本原理和应用。
1.超高压杀菌技术1.1超高压杀菌技术的原理[1-2]食品超高压杀菌,即将包装好的食品物料放入液体介质(通常是食用油、甘油、油与水的乳液)中,在100~1000MPa压力下处理一段时间使之达到灭菌要求。
其基本原理就是利用压力对微生物的致死作用,主要通过破坏细胞膜、抑制酶的活性和影响DNA等遗传物质的复制来实现。
1.2超高压杀菌技术在食品科技中的运用1986年京都大学林力九教授首次开展高压食品实验,随后日本的Meidi-Ya公司于1990年生产了第一个高压食品—果酱,揭开了超高压技术运用的序幕。
明治屋食品公司将草莓、猕猴桃、苹果酱软包装后 ,在室温下以400~600 MPa的压力处理10~30 min后不仅起到了杀菌作用,还能保证产品原有的风味和色泽,且维生素C含量也大大得到提高。
此后在日本市场上随处可以发现许多超高压食品,包括口味像新鲜水果的果酱、果汁、色拉调味料、即食甜点、葡萄柚和具有”即榨”新鲜风味的橘子汁等。
冷冻食品杀菌工艺
冷冻食品杀菌工艺指的是在冷冻食品制造过程中采用的杀菌方法。
旨在消灭或抑制食品中存在的微生物,延长食品的货架期限,确保食品的安全性和卫生指标。
常见的冷冻食品杀菌工艺包括以下几种:
1. 低温冷冻杀菌法:通过将食品暴露在极低的温度下,一般为零下18度以下,以冷冻方式杀死或抑制微生物的生长。
低温
冷冻能够减缓微生物的代谢活动,降低细胞内酶的活性,达到杀菌的效果。
2. 快速冷冻杀菌法:通过迅速将食品的温度降低到足够低的温度,一般为零下30度以上,以快速冻结微生物,杀菌和抑制
微生物的生长。
快速冷冻能够形成较小的冰晶,减少对细胞的损伤,提高杀菌效果。
3. 高压冷冻杀菌法:采用高压力和低温相结合的方式进行冷冻。
高压力能够改变细胞内部的环境,破坏细胞膜结构和酶系统,进而杀灭或抑制微生物的生长。
与常规的冷冻方法相比,高压冷冻能够加快冷冻速度和提高杀菌效果。
4. 红外线辐射杀菌法:利用红外线辐射加热食品,使微生物的核酸和蛋白质发生变性,导致其死亡。
红外线辐射具有较强的穿透力,能够均匀加热食品,使得杀菌效果更为均匀和彻底。
以上是常见的冷冻食品杀菌工艺,不同的工艺方法可以根据食品的种类和具体要求进行选择和应用。
低温等离子体冷杀菌保鲜与冷链物流消杀关键技术及装备低温等离子体冷杀菌保鲜与冷链物流消杀关键技术及装备一、低温等离子体冷杀菌保鲜技术概述低温等离子体冷杀菌保鲜技术是一种利用等离子体的高能量和化学活性特性,对生鲜食品进行快速杀菌和保鲜的技术。
通过低温等离子体技术,能够高效杀灭食品中的细菌和真菌,延长食品的保鲜期,保持食品的新鲜度和营养价值。
这一技术在冷链物流中的应用,已经成为食品安全和质量保障的重要手段。
二、低温等离子体冷杀菌保鲜技术的原理及关键技术低温等离子体冷杀菌保鲜技术是通过在低温环境下产生等离子体,利用其高能量和化学活性特性,对食品表面和包装材料进行杀菌和保鲜。
这一过程主要依靠等离子体产生的UV光、Ozone、OH、O*等活性物质,对食品表面进行杀菌和降解残留农药等化学物质。
该技术的关键在于低温等离子体的稳定生成和有效作用,以及对食品的快速杀菌和保鲜处理。
三、低温等离子体冷杀菌保鲜技术在冷链物流中的应用低温等离子体冷杀菌保鲜技术在冷链物流中的应用,主要是针对生鲜食品的消杀和保鲜处理。
在食品采摘、加工、储存、运输和销售的各个环节,都可以通过低温等离子体技术进行快速杀菌和保鲜处理,有效避免食品腐败和污染,延长食品的货架期和保质期。
这种技术既可以保障食品的安全和质量,又能够降低食品损耗和环境污染。
四、低温等离子体冷杀菌保鲜技术的发展趋势和前景展望随着人们对食品安全和质量要求的提高,低温等离子体冷杀菌保鲜技术在食品行业的应用将会越来越广泛。
未来,随着该技术的不断创新和改进,它将更加高效、节能和环保,成为冷链物流中不可或缺的关键技术与装备。
相信通过不断努力,低温等离子体冷杀菌保鲜技术一定能够为食品产业和冷链物流带来新的发展机遇和挑战。
总结回顾低温等离子体冷杀菌保鲜技术作为食品安全和保鲜领域的一项重要技术,其在冷链物流中的应用前景广阔。
通过本文的介绍,我们了解了低温等离子体冷杀菌保鲜技术的概念、原理和关键技术,以及在冷链物流中的应用和发展趋势。
冷杀菌技术及设备冷等静压食品设备工艺原理引言随着时代的发展和人们生活水平的提高,对食品安全和卫生的要求也越来越高。
在食品加工生产过程中,杀菌技术是很重要的一环。
传统杀菌技术存在着许多问题,比如化学残留、营养成分流失等。
为了解决这些问题,目前出现了许多新型技术,其中冷杀菌技术得到了广泛的关注和应用。
本文就来详细介绍一下冷杀菌技术及设备冷等静压食品设备工艺原理。
冷杀菌技术的基本原理冷杀菌技术是利用高压等静压处理技术,将食品放在高压环境下对食品中的细胞结构、蛋白质等进行杀菌处理。
同时由于是在常温下进行处理,不会对食品中的营养成分产生破坏,能够有效保留食品的品质。
设备冷等静压食品设备工艺原理在冷等静压杀菌工艺中,主要是利用冷却的方式来控制温度,从而达到保持食品质量的目的。
技术应用要求是,在高压环境下通过冷却控制食品温度降低至低于4℃,以达到在高压下杀菌的效果。
其主要原理是通过冷却将高压等静压处理中所引起的温度上升控制在较低水平,从而使得应力加之低温具有协同作用,达到杀灭微生物的目的。
设备冷等静压食品设备的优点相对于传统杀菌方法,设备冷等静压杀菌具有许多优势。
1.没有化学污染设备冷等静压处理不需要使用化学药剂,比传统杀菌方法更加环保,没有化学污染。
2.营养成分流失少相对于高温煮沸的传统杀菌方法,设备冷等静压杀菌会对食品中的营养成分产生较少的破坏,保持食品原有的营养价值。
3.常温处理设备冷等静压处理在温度方面控制得比较低,不会导致食品的变性和焦糊。
同时在常温下进行处理,不会对食品的两性物质、色泽、口感以及关键的营养成分产生影响,口感更佳。
设备冷等静压食品设备的应用设备冷等静压杀菌技术已经广泛应用于生鲜果蔬、肉类、海鲜等方面的杀菌处理。
其主要应用领域如下:1.食品保质期延长通过设备冷等静压杀菌处理的食品,在储存和运输过程中的保质期要比传统杀菌方法下的食品长很多。
2.现代浓缩汤加工设备冷等静压杀菌也可以在现代浓缩汤加工中得到广泛应用,能够将杀菌处理效率提高到90%以上,增加浓缩汤的营养价值。
冷杀菌技术在食品生产中的应用【摘要】在经济迅猛发展的今天,我们在满足了基本的温饱问题之后,更多的,是追求更加丰富的营养、迷人的口感,以及食品的安全无公害。
在食品加工的过程中,少不了的是杀菌灭菌技术,为的是保证食品的安全性和耐储性。
本文就围绕着如今当代的一门崭新的技术——冷杀菌技术在我们食品生产当中的应用进行简要介绍。
【关键词】冷杀菌;食品;技术应用;【正文】冷杀菌技术,也叫非热杀菌技术,是新兴的一门杀菌技术。
在传统食品加工中主要采用热杀菌,从而导致营养物质破坏,变色加剧,挥发性成分损失。
而非热杀菌的条件易于控制,外界环境影响较小,由于杀菌过程中食品的温度并不升高或升高程度很小,即有利于保持食品功能成分的生理活性,又有利于保持色、香、味及营养成分,所以包装与食品机械的设计与制造上采用冷杀菌技术是非常必要的。
近几年,国内外已开发出一系列高效、安全且能保持食品原有风味与营养成分的冷杀菌新技术,其中一些有望部分取代现有的食品热杀菌方式。
下面我们就来具体介绍一下几种常用的冷杀菌技术。
一、超高压杀菌技术1.超高压杀菌的基本原理食品的超高压处理,是指利用压媒(通常是液体介质,例如水)使食品在极高的压力下产生酶失活、蛋白质变性、淀粉糊化和微生物灭活等物理化学及生物效应,从而达到灭菌和改性的物理过程。
其基本原理是利用了压力对微生物的致死作用。
高压导致微生物的形态结构、生物化学反应、基因机制及细胞壁膜发生多方面的变化,从而影响微生物原有的生理活动机能,甚至使原有功能破坏或发生不可逆变化。
2.超高压杀菌技术的特点是超高压技术可实现均匀、瞬时、高效杀菌;可使原物质的维生素、色素、香味成分等低分子化合物不会发生变化及产生异臭物等,保持其原有性质;蛋白质、淀粉类物质超高压处理后可获得新特性的食品,延长食品的储藏时间。
超高压处理过程是一个纯物理过程,瞬时压缩,作用均匀,操作安全,无化学添加剂,无需加热且在常温或低温下进行,工艺简化,节约能源,无“三废”污染。
食品的冷杀菌技术80年代以来,许多新兴工业技术,在现代食品工业中得到创造性地应用,以至于伴随食品工业的发展,这些技术的应用超越了开发这些技术的原有基础,从而形成独特的食品工程单元,构筑了食品工程新学科,为专业化生产奠定了基础。
这些新兴技术,按其功能可分为保藏技术、分离技术、组合技术、改性技术、检测技术,现分别列举一些在国内已被应用并且应用前景十分广阔的新技术———常见的食物腐败主要由腐败微生物引起。
为了保藏食物,首先要进行杀灭和抑制微生物的杀菌技术处理。
罐头工业的关键技术就是杀菌技术。
过去,应用加热杀死微生物的原理,发展了各种加热杀菌技术。
但是对于热敏感的食物在加热杀菌中会发生负面的影响,因为化学变化会导致营养组分的破坏、损失,或导致不良风味等。
为此,一方面发展了减少加热损害的杀菌技术,一方面则发展非加热的冷杀菌技术。
———阻抗加热杀菌这是90年代初开发的用于具有导电性的食品杀菌技术。
对食品通过一定的电流,在食品内部因阻抗产生热效应以达到杀菌的目的。
阻抗加热杀菌特别适用于粘滞的多相的带固形物而不适合采用常规热杀菌的食品,它具有直接加热、迅速升温、热效均一等优点。
这一技术在国内已试用于大豆食品的加工,得到初步的良好效果,应加速投入生产应用,以革新大豆食品生产技术。
———超高压杀菌技术这是80年代末开发的杀菌技术。
超高压杀菌是施加100Mpa~1000 Mpa的压力于特定包装的食品,达到杀菌的目的。
在400~600Mpa的压力下,可以杀灭细菌、酵母菌、霉菌,避免了一般高温杀菌带来的不良变化,因此,能更好地保持食品固有的色、香、味,达到延长保存期的效果。
日本首先应用于工业生产,开发了超高压杀菌的果酱商品,目前正在研究开发新的应用领域,试图用于泡菜、鱼酱等传统食品。
由于超高压装置需要较高的投入,因此尚须解决高成本的问题。
我国近年引进了一些试验设备,并通过相关工业部门移植了部分试验装置,进行一些食品(包括大豆蛋白食品)的试验。
食品冷杀菌技术摘要:冷杀菌技术是一种新技术,既能杀灭食品中微生物,又能最大限度保持食品色泽、香味及营养成分。
依据冷杀菌作用原理不同,将其分为物理冷杀菌、化学冷杀菌、生物冷杀菌3大类,并就冷杀菌技术在食品领域的应用研究进行了综述。
关键词:食品;冷杀菌;物理;化学;生物食品腐败变质是由于微生物的代谢活动所引起的,因此杀菌工艺是食品加工过程中重要的一个环节。
食品杀菌包括热杀菌和冷杀菌,热杀菌可致死微生物、钝化酶及改善其品质,但对食品营养品质方面有较大影响;而为了迎合消费者对于食用安全、性质稳定和不加添加剂等需求,冷杀菌技术由此诞生。
冷杀菌技术不仅杀灭微生物,还能够保证食品营养成分的生理活性、对其固有的风味、色泽等方面的影响较小。
冷杀菌技术则包括超高压杀菌、高压脉冲电场杀菌、磁力杀菌、感应电子杀菌、辐照杀菌、微波杀菌、超声波杀菌、紫外线杀菌、臭氧杀菌、脉冲强光杀菌、酶法杀菌等。
而本文则综述了国内外冷杀菌技术的研究进展及现状,主要介绍了超高压杀菌、磁力杀菌和脉冲强光杀菌等技术基本原理和应用。
1.超高压杀菌技术1.1超高压杀菌技术的原理[1-2]食品超高压杀菌,即将包装好的食品物料放入液体介质(通常是食用油、甘油、油与水的乳液)中,在100~1000MPa压力下处理一段时间使之达到灭菌要求。
其基本原理就是利用压力对微生物的致死作用,主要通过破坏细胞膜、抑制酶的活性和影响DNA等遗传物质的复制来实现。
1.2超高压杀菌技术在食品科技中的运用1986年京都大学林力九教授首次开展高压食品实验,随后日本的Meidi-Ya公司于1990年生产了第一个高压食品—果酱,揭开了超高压技术运用的序幕。
明治屋食品公司将草莓、猕猴桃、苹果酱软包装后,在室温下以400~600 MPa的压力处理10~30 min后不仅起到了杀菌作用,还能保证产品原有的风味和色泽,且维生素C含量也大大得到提高。
此后在日本市场上随处可以发现许多超高压食品,包括口味像新鲜水果的果酱、果汁、色拉调味料、即食甜点、葡萄柚和具有”即榨”新鲜风味的橘子汁等。
而在法国,这些果汁也可在市场上看到。
在美国,超高压处理鳄梨占据的市场份额正逐年增加。
王雪青(高压对猕猴桃酱质量的影响)等对猕猴桃酱进行了高压处理,经高压处理的猕猴桃酱较传统热处理的酱体色泽翠绿,维生素含量高,而且在700 MPa的高压下杀菌,稳定色泽和防止维生素C氧化的作用最佳。
Landl等人[3]发现在20℃下400MPa对苹果酱处理5min,对其维生素C和总酚含量的影响较小、对于其抗氧化方面具有显著效果。
付中民等[4]对蜂蜜进行高压处理,发现效果明显,但对于如何处理好压力对于菌类和酶类、氨基酸等方面需要进一步研究。
梁彦等[1]发现在400~600MPa的压力下,可以杀灭细菌、酵母菌、霉菌,避免了一般高温杀菌带来的不良变化。
冯艳丽等[5]证实了100~600MPa 的高压作用5~10min可以使一般的细菌和酵母菌减少直至杀灭,但孢子对压力有一定的耐受性,当压力达到600MPa,结合一定的温度处理(≦50℃)作用15~20min则可以实现完全灭菌。
张晓敏等人[6]利用高压进行牡蛎去壳及延长其货架寿命的研究,结果表明压力207~310MPa经不同时间处理后,贮藏在4℃以下,27 d后,样品的pH只降低0.5,水分含量略有上升,不仅可减少2~3个对数的微生物的数量,且牡蛎有较高的品质超高压技术解决了牡蛎产业的两大问题:消除牡蛎中有害致病菌和牡蛎脱壳。
相关研究表明高压技术和其他技术相结合,更能有效地杀灭微生物,破坏酶,延长货架寿命。
Jacky等人[7]通过PH和压力对于改善火鸡质地方面的影响发现PH对于蛋白的溶解度影响较小,50、100MPa 处理可提高低PH火鸡的持水能力,而200MPa处有助于肌纤维蛋白含量的提升。
Pedro等人[8]发现通过对鲜肉进行冷处理(-35℃)和高压处理(650MPa)10min后,可在保持色泽的基础上进行杀菌处理。
Landl等人[3]发现5℃下对整个流体蛋进行300MPa 、200S处理,并通过乳酸链球菌与高压的协同作用下可显著抑制其中的李斯特菌属。
Barba等人[9]发现经过高压处理(600MPa)与脉冲电场(36kv/cm)的共同处理后蓝莓果汁的维生素C含量降低较小且拥有较高的抗氧化性。
Wimalaratne等人[10]通过压力与热处理协同作用即在温和压力条件下对产品处理达到抑制孢子的效果,但效果不是很明显仍需进一步研究。
Pilar Trespalacios等人[11]利用谷氨酰胺转氨酶与高压(500MPa)协同作用下对于改善肉纤维结构方面有较大作用。
Park 等人[12]进一步利用高压CO2 和高压技术相结合的方法处理胡萝卜汁,结果表明4.9MPa二氧化碳和300MPa 高静水压结合处理可使需氧菌完全失活,多酚氧化酶、脂肪氧化酶、果胶甲酯酶残留活性分别低于11.3 %、8.3 %、35.1 % ,高静水压并不影响胡萝卜汁的浊度和色泽,但这种结合处理对胡萝卜汁的品质有些影响。
超高压加工食品的优点主要表现在于超高压处理不会使维生素、色素、香气成分等低分子物质发生变化及产生异臭物等,加压后食品仍能保持原有的生鲜风味和营养成分;超高压处理后,蛋白质的变性状态及淀粉的糊化状态与加热处理也有所不同,可以期待获得具有新物性的食品;高压加工可以同热加工组合进行,使食品加工过程多样化,能开发出各种未来新型食品及食品加工工艺;超高压处理是液体介质短时间内等同压缩过程,从而实现灭菌的均匀、瞬时、高效性,且跟加热法比较能耗要低很多。
随着超高压技术在国内的日益完善,我们仍需在借鉴国外现有条件的基础上对本地产品进行有效的开发。
此外,超高压技术与其它技术的联合运用在食品方面具有广阔前景,这也是我们前进的方向。
2.磁力杀菌[13]磁力杀菌是将食品放在N极和S极之间,用6000的磁力强度连续摆动,不需要加热,即可达100 %的灭菌效果,对食品的成分和风味无任何影响。
日本三井公司将食品放在0.6 T磁密度的磁场中,在常温下48h,达100 %灭菌效果。
1991年《日本酿造协会杂志》中报导磁力杀菌运用于清酒的酿造中,结果发现磁力作用时间越长杀菌效果越好。
磁杀菌可用于饮料、调味品及各种包装的固体食品的杀菌[14]。
目前国内已对水、酸奶等制品进行了磁场杀菌的研究。
由于食品中微生物的失活与磁场强度的关系,磁场与食品营养成分变性的关系,磁场能量效率与延长食品货架期的关系,磁场对食品质量的影响和微生物失活机理等等,目前尚不清楚,还有待于进一步研究与探索。
但利用磁场杀菌技术要求食品材料有较高的电阻率,一般大于10Ω·cm,以防材料内部产生涡流效应而导致磁屏蔽。
金属包装的食品不能用此法来杀菌。
因磁力杀菌对包装材料的要求高,因而限制了其应用范围。
3.脉冲强光杀菌技术脉冲强光杀菌是利用强烈白光闪照进行杀菌技术,其系统主要包括动力单元和灯单元。
动力单元为惰性气体灯提供能量,灯便放出只持续数百微秒,其波长由紫外光区域至近红外光区域强光脉冲,其光谱与太阳光相似,但比阳光强几千倍至数万倍。
研究表明,脉冲强光对枯草芽孢杆菌、酵母菌都有较强的致死效果,30余次闪照后,使这些菌由105个减少到0个;脉冲光中起杀菌作用波段可能是紫外光,其它波段起协同作用[15]。
由于细菌、酵母菌等微生物都系由水、蛋白质、碳水化合物、脂肪和无机物等复杂化合物构成一种凝聚态物质。
脉冲强光有一定穿透性,当闪照时,脉冲强光作用于其活性结构上,使蛋白质发生变性,从而使细胞失去生物活性,达到杀菌目的。
脉冲强光在杀菌和对食品进行保鲜同时能很好保持食品营养成分和风味不发生变化,且无有害物质残留。
此外,脉冲强光杀菌技术在处理食品时所需费用也不高,适于烘烤食品、海产品、肉类、水果和蔬菜等杀菌及保鲜[16]。
4.紫外线杀菌[17]紫外线杀菌主要是由于其辐射性能可以破坏有机物的分子结构。
微生物受紫外线照射时最容易受影响的是其体内的蛋白质和核酸。
尤其是可诱导DNA中的胸腺嘧啶二聚体的形成,从而抑制DNA的复制和细胞分裂,乃至使其受伤甚至死亡。
波长250~260 nm 的紫外线杀菌效果最佳,其杀菌效果比近紫外线(波长300~400 nm) 要大1000倍以上。
不同种类的微生物抗紫外线的能力不一样,酵母菌和丝状菌抗紫外线的能力比细菌强,病毒和细菌的抗紫外线的能力基本相同。
国内外紫外线杀菌的场合主要有食品厂用水的杀菌、液状食品杀菌、固体表面杀菌、食品包装材料杀菌及食品加工车间、设备器具、工作台的杀菌。
但在这些场合,对霉菌的杀菌效果较差,常需配合酒精消毒来加强杀菌效果。
由于紫外照射会破坏有机物分子结构,所以会给某些食品的加工带来不利的影响,特别是含脂肪和蛋白质丰富的食品经紫外线照射会促使脂肪氧化、产生异臭、蛋白质变性、食品变色等。
此外,食品中所含的有益成分如维生素、叶绿素等易受紫外线照射而分解,因此紫外线照射杀菌的应用受到一定程度的限制。
5.二氧化钛光催化杀菌[18]二氧化钛光催化以前用于水解水制氢、探讨光电化学理论、有机合成、矿化有机物及临床抗癌实践。
二氧化钛光催化杀菌时,当光照射到较大聚集体的TiO2 表面时,激发产生光电子和光生空穴对。
由于光生电子迁移速度比光生空穴快得多,所以可将光生电子和光生空穴分开。
光生空穴有很强的得电子能力,这样产生的光生电子-空穴对与细胞壁、细胞膜以及细胞内组分作用,导致酶失活。
另一方面光生电子-空穴对与水或水中溶解氧发生作用形成氢氧自由基,它们与细胞壁、细胞膜或细胞内物质作用,使细胞功能单元失活。
目前在食品工业领域中,二氧化钛光催化杀菌技术仅应用于水的处理,其它方面的应用有待于进一步探索。
与传统的杀菌技术相比,以上食品杀菌新技术对食品的营养成分、风味、质地、感官影响较小。
但单一的杀菌技术尚存在某一方面的欠缺或不足。
因此,为了进一步提高杀菌效率,把对食品的营养成分、风味、感官的有害作用降到最低,利用两种或两种以上的杀菌方式串联或并联使用或与天然杀菌剂配合使用是今后杀菌技术研究的一个重要方向。
6.臭氧杀菌[19]臭氧氧化力极强,仅次于氟,能迅速分解有害物质,杀菌能力是氯的600-3000倍,其分解后迅速还原成氧。
利用其性能的臭氧技术在欧美、日本等发达国家早就得到运用,是杀菌消毒、污水处理、水质净化、食品贮藏、医疗消毒等方面的首选技术。
美国华盛顿大学医学研究人员发现,臭氧可以抑制癌细胞的生长;日本石川岛播麻种工业公司证明,臭氧水有望成为最佳的果树杀菌剂,其杀菌效果明显优于次氯酸钠;中国医学科学院研究证明,臭氧可以有效地杀灭淋球菌,并且对水中的重金属有分解作用。
试验证明,臭氧水能在极短的时间内杀灭微生物,从而延长保鲜期。