无刷直流电机转速-电流双闭环控制策略
- 格式:pdf
- 大小:1.19 MB
- 文档页数:54
无刷直流电机的电流闭环控制作者:赵念科来源:《数字技术与应用》2013年第03期摘要:分析了BLDCM的换相转矩脉动,指出了引起转矩脉动的主要原因是:关断相电流的下降速度大于开通相电流的上升速度,得到了减小电机低速运行时非换相电流脉动的方法,该方法的原理是令换相期间脉宽调制信号的占空比等于两倍的稳定运行时脉宽调制信号的占空比α1 (2α1=α法)。
在此基础上,提出了基于三相电流的相电流闭环控制。
指出只有三相电流控制才能有效控制相电流。
分别通过仿真验证了基于三相电流的相电流闭环控制能够有效的减小非换相电流的脉动。
关键词:BLDCM 相电流控制转矩脉动中图分类号:TM351 文献标7识码:A 文章编号:1007-9416(2013)03-0003-021 引言理想情况下,BLDCM的三相反电势是互差120°电角度的梯形波,该梯形波的平顶宽度为120°电角度,三相电流为互差120°电角度的矩形波,该矩形波的宽度也为120°电角度。
此时,BLDCM的输出转矩脉动较小。
但是,在实际情况中,反电势和相电流并非理想的梯形波和矩形波。
因此,根据转矩脉动产生的根源,可以将BLDCM的转矩脉动分为齿槽转矩脉动、斩波转矩脉动和换相转矩脉动三种[1]。
在BLDCM调速中,一般采用PWM技术[2]。
在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
该原理称为面积等效原理,它是PWM控制技术的重要理论基础。
即通过一系列脉冲的宽度进行调制,来等效地获得所需要的电压波形,以改变施加在电机绕组上的相电压。
BLDCM的驱动器其实就是三相逆变器,PWM控制技术在逆变电路中的应用最广泛,对逆变器的影响也最深刻。
现在大量应用的逆变电路中,绝大部分都是PWM型逆变电路[3]。
不同的PWM开关状态将导致电机相绕组上施加不同的外加电压,不同的外加电压将产生不同的电流上升或下降速度,从而引起转矩随开关状态的变化而脉动,即斩波转矩脉动[4]。
转速、电流双闭环直流调速系统介绍自动化0811班肖小波08115073摘要本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明介绍了电流调节器和转速调节器的设计以及一些参数的选择和计算,使其满足工程设计参数指标。
从直流电动机的工作原理入手,建立双闭环直流调速系统的数学模型,并详细分析系统的工作原理及其静态性能。
关键词:双闭环直流调速系统1前言许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求具有良好的稳态、动态性能。
而直流调速系统调速范围广、静差率小、稳定性好以及具有良好的动态性能,在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。
双闭环直流调速系统是直流调速控制系统中发展得最为成熟,应用非常广泛的电力传动系统。
直流双闭环调速系统的性能很好,具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。
直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。
2双闭环直流调速系统的工作原理2.1双闭环直流调速系统的介绍双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。
它具有动态响应快、抗干扰能力强的优点。
我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。
但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。
这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。
在单闭环系统中,只有电流截止负反馈环节是专门用来控制电流的。
但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。
带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图2-1a所示。
BLDC无刷直流电动机闭环控制策略研究无刷直流电动机(BLDC)是一种采用电子换向器而不是机械刷子进行换向的电动机。
它具有高效率、高功率密度、长寿命等优点,因此在许多应用领域得到了广泛应用。
在BLDC电动机的控制中,闭环控制策略对于确保电机的稳定运行、提高系统响应速度和准确性至关重要。
本文将对BLDC无刷直流电动机的闭环控制策略进行研究,并探讨其优势和应用。
首先,我们将介绍BLDC无刷直流电动机的基本原理以及其结构。
BLDC电动机是一种同步电动机,其转子由一组永磁体构成。
与传统的直流电动机相比,BLDC电动机无需机械刷子进行换向,而是通过电子换向器控制转子的位置和电流的方向。
这种结构使得BLDC电动机具有更高的效率和寿命。
在BLDC电动机的控制中,闭环控制是一种常用的策略。
闭环控制通过测量电机的实际运行状态,例如转速、转子位置和电流,然后根据这些实际状态进行控制,实现期望的运动轨迹和性能。
闭环控制可以通过PID控制器来实现,其中P代表比例控制、I代表积分控制、D代表微分控制。
PID控制器将根据实际测量值与期望值之间的差异来调整电机的输出。
闭环控制策略在BLDC电动机控制中的优势主要体现在以下几个方面:1. 提高系统的响应速度和准确性:闭环控制可以通过及时调整电机的输出来满足期望的运动轨迹。
通过反馈控制,系统可以根据实际状态进行修正,从而提高响应速度和准确性。
2. 抵抗外界干扰:闭环控制可以通过实时测量电机的实际状态,从而抵抗外界干扰。
例如,在荷载突变或环境温度变化的情况下,闭环控制可以及时调整电机的输出,以满足系统的需求。
3. 减小稳态误差:闭环控制可以通过精确测量电机的实际状态来减小稳态误差。
稳态误差是指系统在达到期望状态时与期望状态之间的差异。
闭环控制可以通过PID控制器来调整系统的输出,以减小稳态误差并使系统更加稳定。
除了闭环控制策略,还有一些其他的控制策略可以用于BLDC电动机的控制,例如开环控制和预测控制。
直流电机的转速电流双闭环控制The final edition was revised on December 14th, 2020.直流电机的转速电流双闭环控制摘要:本设计主要采用模拟电路实现直流电机控制的整流电源,转速调PI调节器,电流PI调节器的设计。
来实现对电机转速的控制,包括快速起动、恒速运行、堵转截止三大目标。
该设计的主要电路均采用模拟电路实现,电流环的PI 调节器用于保证快速起动,即保证电机起动时以最大负载电流起动,也即实现以最大加速度实现。
而转速调节器则用于在运行时实现转速恒定,保证带负载的能力。
两个PI调节器都采用集成运放实现。
其主要优点是克服传统意义上单环控制只能满足一方面的要求的缺陷。
关键词:电流环;转速环;PI调节器The Rotate Speed and Current Double Closed LoopFeedback Control for DC MotorAbstract: The major tasks of this design is utilizing simulating circuits to produce the rectifiering power source ,current PI regulator and rotate speed PI regulator for the DC major object of this desigen is making the DC motor started rapidly,rotating making the DC motor started rapidly with the largest load is the same to starting rapidly with the largest ,The rotate speed PI regulator make the DC mortor retated stably to any the change of the load .Both of the PI regulators use the integrated amplifier operator to accomplish the priority of this design are overcoming the defect of traditional single feedback loop.Key word: current feedback loop; rotate speed feedback loop;PI regulator目录摘要…………………………………………………………………………………错误!未定义书签。
无刷直流方波电动机的双闭环控制永磁无刷直流电动机在机械和电力系统方面是一种很引人注目的电动机。
这种机器结构的简单和它的控制特性类似于交流电机,它在商业,军事等其他领域的应用里是非常受欢迎的选择。
在普遍的无刷直流电动机的计划里,时间和空间的分布是按照磁力线的密度来考虑的,但是驱动环节的曲线是相差120度的。
巨大而细微的转矩是度量无刷电动机效率和低速执行的重要准则,它的直接效果就是在大转矩和细微转矩之间造成一种干扰。
一种引人注目的电动机的配置被人认为是方波电动机。
方波电动机来自于它的方波控制,主要在它的方波时空的磁通干扰中产生控制指令。
因此方波永磁电动机有很让人羡慕的前景,特别在机器人和商业服务中得到广泛重视。
这都是在方波永磁电动机产生的时候所不曾想过的。
2. 方波永磁电动机驱动系统方波永磁电动机驱动系统由三个部分组成:转换器,逻辑控制环节(包括速度调节器,时间调节器,和能量逻辑转换控制单元),详述如下下面是硬件执行器和操作的细节2.1 方波永磁电动机带有双结构方波永磁电动机是由六个小结构组成的。
电机额定电流和机械数据是:200v额定电压,18A的额定电流,3.0k的额定功率,1500转每秒的额定转速,0.0388千克没平方厘米。
2.2 IGBT 变换器一个变换器对频率/电压的三个阶段的组成适应IGBT 变换器的选择是非常重要的,其结果是他们中和了各种高介的性能。
变换器被六个IGBT支配着,没个包括60A的IGBT和一个反馈信号。
2.3 能量转换控制逻辑位置反馈信号被用于同时发生的相位变化的检测。
为了这样做,三个位置反馈信号,来源于PT,他们是在PSP环节被加工的,他们也受六个控制逻辑信号的控制来开/关IGBT、在IGBT变换器里。
在BLDCM的控制分布里有两个IGBT 工作在PWM的模式里,并且两个IGBT应该依靠于这样的逻辑控制信号。
虽然直流能量的频率被变换器的供给,依据这样的关系为IGBT提供信号的PWM信号是来源于三角波和触发控制信号Ui越大,U也就越大,所以BLDCM的速度也就越大。
转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。
在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。
转速环用于控制电机转速,电流环用于控制电机电流。
本文将对转速、电流双闭环直流调速系统进行详细设计。
二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。
转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。
通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。
2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。
电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。
通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。
2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。
具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。
2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。
在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果.通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。
一、设计要求设一个转速、电流双闭环直流调速系统,采用双极式H桥PWM方式驱动,已知电动机参数为:二、电流环、转速环设计仿真过程双闭环直流调速系统的设计及其他多环控制系统的设计原则一样:先设计内环(即电流环),在将内环看成外环的一个环节,进而设计外环(即转速环)。
1. 稳态参数计算电流反馈系数:*im 10= 1.25/24nom U V A I βλ==⨯转速反馈系数:*nm 10=0.02min/500nom U V r I αλ==2. 电流环设计1) 确定时间常数s 110.110T ms f kHz ===由电流滤波时间常数0.0002oi T s =,按电流环小时间常数环节的近似处理方法,取i 0.00010.00020.0003s oi T T T s =+=+=∑2) 选择电流调节器结构电流环可按典型Ⅰ型系统进行设计。
电流调节器选用PI 调节器,其传递函数为1(s)i ACR ii s G K sττ+= 3) 选择调节器参数超前时间常数: i 0.008l T s τ== 由于i 5%σ≤,故l 0.5i K T =∑故1l 0.50.51666.66670.0003i K s T -==≈∑电流调节器比例系数为:i 0.00881666.717.781.25 4.8i lS R K K K τβ⨯==⨯≈⨯ 4) 检验近似条件电流环的截止频率:11666.6667ci l w K s -==i.近似条件一:113333.3333330.0001ci s w T =≈>⨯(满足近似条件) ii.近似条件二:3ci w =(满足近似条件) iii.近似条件三:13ci =(满足近似条件)3. 转速环设计1) 确定时间常数电流环等效时间常数:20.0006i T s =∑小时间常数近似处理:0.00060.0010.0016on i T T s +=+=∑2) 选择转速调节器结构由于转速稳态无静差要求,转速调节器中必须包含积分环节,又根据动态要求,应按典型Ⅱ型系统校正转速环,因此转速调节器应选择PI 调节器,其传递函数为:1()n ASR nn s G s K sττ+= 3) 选择调节器参数按跟随型和抗扰性能均比较好的原则,取h=5,则转速调节器的超前时间常数为:50.00160.008n nhTs τ==⨯=∑转速环开环增益:22222151468752250.0016N n h K s h T -++==≈⨯⨯∑于是,转速调节器比例系数为:(1)6 1.250.040.558.592250.0280.0016e m n n h C T K h RT βα+⨯⨯⨯==≈⨯⨯⨯⨯∑4) 校验近似条件转速环开环截止频率:11468750.008375Ncn N n K K s ωτω-===⨯≈i. 近似条件一:15cn iT ω>∑11666.67550.0003cn i T ω=≈>⨯∑(满足近似条件) ii. 近似条件二:1132cn oni T T ω>∑1111430.333230.00060.001cn on i T T ω==>⨯∑(满足近似条件)三、 MATLAB 仿真1. 电流环仿真 1) 频域分析在matlab/simulink 中建立电流环动态结构图及校正成典型Ⅰ型系统的电流环开环动态结构图(如图1—1、1-2、所示),建模结果如下:2) 图1-1 经过小参数环节合并近似后的电流开环动态结构图3)图1-2 未经过小参数环节合并近似处理的电流开环动态结构图命令窗口分别输入以下命令分别得到Bode图%MATLAB PRGRAM L584。
无刷直流电机的电流闭环控制无刷直流电机是较为常见的一种电机,可以应用于许多领域,例如机器人、无人机、车辆、电器等。
无刷直流电机被广泛应用的原因之一是其控制方式相比于传统的直流电机,更为灵活、有效率更高,以及其具有较高的功率密度,因此在有限的空间内可以输出更大的功率。
本文旨在阐述无刷直流电机的电流闭环控制,介绍该控制方式的工作原理和优点以及实现过程。
一、无刷直流电机的电流控制无刷直流电机的控制方式主要分为速度控制和电流控制。
对于大多数应用而言,电流控制是其最基本的控制方式。
因为在实际使用中,无刷直流电机的载荷通常是不稳定的,如果采用速度控制来控制负载,则电机的性能稳定性会受到一定的限制。
因此,采用电流控制是保证无刷直流电机性能及安全的重要手段。
简单来说,电流控制就是通过控制电机的输入电压和电机内部的控制器电路,使其输出恰当大小的电流数值,来控制电机的动力系统。
通过实时测量电机的电流,利用反馈回路来调节输入电压大小,从而实现稳定的输出电流,并控制电机的转速和输出功率。
这样,无刷直流电机就可以在负载发生变化时,通过电流控制来稳定输出并避免发生过载。
二、电流闭环控制的原理和优点作为一种常见的电流控制方式,电流闭环控制主要通过测量电机实时的电流值来实现控制。
具体而言,电流闭环控制分为两类,即速度电流闭环控制和电流电流闭环控制。
其中速度电流闭环控制主要的目的是控制电机的转速,根据测量的电机转速并反馈到程序中,调节电机的输入电压。
而电流电流闭环控制的主要目的则是控制电机的输出电流。
相比于其他的无刷直流电机控制方式,采用电流闭环控制具有多个优点:1. 较高的控制精度通过实时测量电机电流值,可以更为准确地调节电机的输入电压,在电机运行过程中及时修正电机的误差,从而实现更为准确的电机控制。
2. 节能在实际使用中,许多应用中的电机并不是一直处于工作状态,而是在间歇性的负载中运行。
此时,采用电流闭环控制能够更快速地适应负载变化,从而更有效地节省能源消耗。
直流电机的转速电流双闭环控制摘要:本设计主要采用模拟电路实现直流电机控制的整流电源,转速调PI调节器,电流PI调节器的设计。
来实现对电机转速的控制,包括快速起动、恒速运行、堵转截止三大目标。
该设计的主要电路均采用模拟电路实现,电流环的PI 调节器用于保证快速起动,即保证电机起动时以最大负载电流起动,也即实现以最大加速度实现。
而转速调节器则用于在运行时实现转速恒定,保证带负载的能力。
两个PI调节器都采用集成运放实现。
其主要优点是克服传统意义上单环控制只能满足一方面的要求的缺陷。
关键词:电流环;转速环;PI调节器The Rotate Speed and Current Double Closed LoopFeedback Control for DC MotorAbstract: The major tasks of this design is utilizing simulating circuits to produce the rectifiering power source ,current PI regulator and rotate speed PI regulator for the DC motor.The major object of this desigen is making the DC motor started rapidly,rotating stably.yields making the DC motor started rapidly with the largest load current.It is the same to starting rapidly with the largest accerelation.Simultaneous,The rotate speed PI regulator make the DC mortor retated stably to any the change of the load .Both of the PI regulators use the integrated amplifier operator to accomplish the task.The priority of this design are overcoming the defect of traditional single feedback loop.Key word: current feedback loop; rotate speed feedback loop;PI regulator目录摘要 (1)1 引言 (3)2电机的供电电源 (5)2.1三相桥式整流电源 (5)3转速、电流双闭环系统的静态结构 (9)3.1转速、电流双闭环直流调速系统的构成 (9)3.1.1 双闭环系统的结构框图 (9)3.1.2 稳态结构框图和静态特性 (10)4双闭环直流调速系统的数学模型和动态性能分析 (12)4.1 双闭环直流调速系统的数学模型 (12)4.1.1 直流电机的动态数学模型 (12)4.1.2 双闭环直流调速系统的完整的动态结构框图 (14)4.2 动态性能的时域分析 (14)4.2.1 起动过程分析 (15)4.2.2动态抗扰性能分析 (16)4.3 调节器的工程设计方法 (16)4.3.1工程设计方法的基本思路 (17)4.3.2 典型系统 (17)4.4控制系统的动态性能指标 (20)4.4.1 跟随性能指标 (20)4.4.2 抗扰性能指标 (21)4.4.3典型Ⅰ型系统性能指标和参数的关系 (22)4.4.4典型Ⅱ型系统性能指标和参数的关系 (27)5.按工程设计方法设计双闭环系统的调节器 (32)5.1 电流调节器的设计 (33)5.1.1电流环结构图的化简 (33)5.1.2电流调节器结构的选择 (34)5.1.4电流调节器的实现 (36)5.2 转速调节器的设计 (36)5.2.1 电流环的等效闭环传递函数 (36)5.2.2转速调节器结构的选择 (37)5.2.3转速调节器的参数计算 (39)5.2.4 转速调节器的实现 (36)6系统仿真 (38)6.1 系统动态结构的MATLAB仿真 (38)6.2 系统的整体结构的仿真 (40)7总结 (44)参考文献 (44)1 引言直流电机由于其调速的控制方法简易而获得了广泛的应用,其控制规律容易理解,并且便于通过线性控制系统的分析方法去解决工程设计的实际问题。
电流转速双闭环的逻辑无环流直流调速系统设计1.系统概述直流调速系统是将电动机的转速通过控制电流的大小来实现调节的装置。
一般来说,调速系统分为单闭环和双闭环两种。
单闭环系统通过对电机转速进行反馈控制来调节输出转速,而双闭环系统不仅对转速进行反馈控制,还对电流进行反馈控制,以提高系统的稳定性和动态性能。
2.系统结构电流转速双闭环的逻辑无环流直流调速系统由电源、整流器、逆变器、电机、电流反馈环、转速反馈环和控制器等组成。
其中,电源提供稳定的直流电源,整流器将交流电转化为直流电,逆变器将直流电转化为交流电以供电机使用,电流反馈环用于测量电机的输出电流,转速反馈环用于测量电机的输出转速,控制器则根据电流和转速信号进行控制。
3.控制策略3.1电流控制电流控制采用PID控制器进行控制,控制器根据电流反馈信号和设定电流信号误差进行控制计算,并将控制信号发送给逆变器。
通过控制器的反馈调节,可以使电流信号快速达到预定值,并保持在设定范围内,实现对电机输出电流的控制。
3.2转速控制转速控制采用PID控制器进行控制,控制器根据转速反馈信号和设定转速信号误差进行控制计算,并将控制信号发送给电流控制器。
通过控制器的反馈调节,可以使转速信号快速达到预定值,并保持在设定范围内,实现对电机输出转速的控制。
4.性能优化为了提高系统的稳定性和动态性能,可以采取以下措施进行性能优化。
4.1损耗最小化在逆变器的设计中,应采用高效的功率开关器件,同时优化控制策略,减小逆变过程中的功率损耗,提高系统的效率。
4.2控制参数的调整根据实际情况,通过实验和仿真分析,合理调整控制器的参数,以提高系统的控制精度和响应速度。
4.3抗干扰能力的提高引入滤波器和去耦电路,减小电源和负载带来的干扰,提高系统的抗干扰能力。
5.结论电流转速双闭环的逻辑无环流直流调速系统设计是一种高级别的直流调速系统,通过同时对电流和转速进行反馈控制,可以实现对电机输出电流和转速的精确控制。
江苏科技大学本科毕业设计(论文)学院电气与信息工程学院专业电气工程及其自动化学生姓名赵琛班级学号*********7指导教师魏海峰二零一四年六月江苏科技大学本科毕业论文无刷直流电机转速-电流闭环控制策略Brushless DC Motor speed-current Loop Control Strategy江苏科技大学毕业设计(论文)任务书学院名称:电气与信息工程学院专业:电气工程及其自动化学生姓名:赵琛学号:1045533237指导教师:魏海峰职称:副教授2014年3月1日摘要在一个世纪以来,电动机的发展已经得到了许多的变革,种类也呈现多样性,但现在最常见也是最主要的是同步电动机、异步电动机和直流电动机这三类。
电动机的作用也就是充当转换装置,来进行机电能量的转换。
在三种电动机之中,大家都深知直流电动机具有运行效率高以及调速性能好等很多优点,但任何事物都要一分为二来看待,直流电动机还存在一些不足之处。
传统直流电机以机械形式进行换向,存在火花、无线电干预、噪声和寿命短等严重弊端,还有一些缺陷是这些传统直流电机的结构制造、材料选取使得其进行产品生产的成本很高和维护修理也较为麻烦,不管是工业还是民用方面都有很大的限制。
在这种情况下,使得目前许多的工工业、农业、制造业等一些生产活动中使用少有直流电动机的身影,取而代之的是三相异步电动机。
无刷直流电机是是永磁电机的一种,如果换个角度看,它将是一个非线性、多变量的集成系统,与微电子元器件、电力电子元器件有着精密联系,无刷直流电机正是伴随前两者出现的。
无刷直流电动机优点很多,跟交流电动机一样,基本结构简单、工作运行可靠、维护修理方便等一系列优点都具备,而又与交流电动机的许多特性相似,如其工作运行效率高、没有励磁损耗以及调节速度的性能好等,故广泛应用于当今国民经济的各个领域,中小功率的调速系统正逐步被无刷直流电机调速系统所取代。
无刷直流电机的关键技术之一是控制策略。
NOT1 转速电流双闭环控制方案1、众多资料显示SRD调速电机采用转速、电流双闭环控制方案。
两环采用内外环方案而非并联方案。
曾尝试过两环并联,转速环在低速小电流时起作用,电流环在过电流时其作用,估计会有效果,但仅调节了转速环,未接着调试电流环。
2、关于转速为外环,电流为内环的解释说明资料一:双闭环调速系统设计速度电流双闭环控制的调速系统是最典型的调速系统,其原理结构图如图3.3所示。
电动机的速度和电流分别由两个独立的调节器分别控制,速度调节器的输出就是电流调节器的给定,因此电流环能够随转速的偏差调节电动机电枢的电流。
起动时,让转速外环饱和不起作用,电流内环起主要作用,调节启动电流保持最大值,使转速线性变化,迅速达到图:3.2 双闭环调速模型给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。
当转速低于给定转速时,速度调节器的积分作用使输出增加,即电流给定上升,并通过电流环调节使电动机电流增加,从而使电动机获得加速转矩,电动机转速上升。
当实际转速高于给定转速对,转速调节器的输出减小即电流给定减小,并通过电流环调节使电动机电流下降,电动机将因为电磁转矩减小而减速。
当转速调节器饱和输出达到限幅值时,电流环即以最大电流实现电动机的加速,使电动机的起动时间最短,在可逆调速系统中实现电动机的快速制动。
转速调节器的作用:①使转速n跟随给定电压变化,稳态无静差;②对负载变化起抗扰作用;③其输出限幅值决定允许的最大电流。
电流调节器的作用:①电动机起动时,保证获得最大电流,起动时间短,使系统具有较好的动态特性:②在转速调节过程中,使电流跟随其给定电压U变化;③当电动机过载时,限制电枢电流的最大值,起到安全保护作用,故障消失后,系统能够自动恢复正常。
3.4.1 电流环的设计如图3.3所示,电流环由电流调节器(ACR),PWM同步控制器和直流母线电流检测组成,采用典型I型系统来校正。