MR波谱分析
- 格式:ppt
- 大小:634.00 KB
- 文档页数:8
MR波谱技术MR波谱(MRS)是无创伤、无辐射危害进行活体组织化学物质检测的唯一方法。
研究的是一定体积的组织中化学物质的含量和浓度。
它的扫描单位是体积,称为体素。
根据每次MRS扫描时设置的体素数量,可分为单体素成像和多体素成像(化学位移成像)。
一、MRS的基本原理1.化学位移现象因所处分子结构不同造成同一磁性原子核进动频率差异的现象被称为化学位移。
2.MRS简要原理以1H为例,首先对某目标区域施加带宽较宽的射频脉冲,其频率范围涵盖所要检测代谢产物中质子的进动频率,然后采集该区域发出的MR信号,由于受化学位移的影响,不同的代谢产物质子的进动频率有轻微差别,通过傅立叶转换得一系列谱线代表不同的代谢物质。
其横坐标表示不同物质中质子的进动频率,通常用百万分几(ppm)来标示代谢产物中质子进动频率与标准物质进动频率的差别,波峰下面积与目标区域内某特定代谢产物的含量成正比。
3.MRS的特点:①提供组织的代谢信息;②可用数值或谱线来表示;③对磁场均匀度的要求更高;④其对比分辨力与主磁场强度成正比;⑤信号较弱,常需进行多次平均,检查时间较长;⑥可用两种或两种以上代谢产物含量之比来反映组织的代谢变化;⑦可利用不同的磁性原子核(1H、31P、12C、23Na和19F)进行MRS检查;⑧常选择一种比较稳定的化学物质作为标准参照物。
二、MRS的常用技术临床上1H-MRS多用激励回波采集模式( STEAM)和点解析波谱( PRESS)两种技术STEAM : 通过3个不同方法的层面选择梯度场,将3个90°脉冲分别施加在相互垂直的层面上,三者相交得到一个点状容积信号。
优点是TE较短;缺点是信噪比较低。
PRESS:采用1个90°脉冲和2个180°相位重聚脉冲,其施加层面选择梯度场与STEAM相同,得到的是自旋回波信号。
优点是信噪比较高;缺点是TE较长。
三、MRS的临床应用MRS的临床应用:①脑肿瘤的诊断和鉴别诊断;②代谢性疾病的脑改变;③脑肿瘤治疗后复发与肉芽组织的鉴别;④脑缺血疾病的诊断和鉴别诊断;⑤前列腺癌的诊断和鉴别诊断;⑥弥漫性肝病;⑦肾脏功能检测和肾移植排斥反应等。
磁共振波谱分析MRSMRS 为目前唯一能无创性观察活体组织代谢及生化变化的技术。
在相同的磁场环境下,处于不同化学环境中的同一种原子核,由于受到原子核周围不同电子云的磁屏蔽作用,而具有不同的共振频率。
波谱分析就是利用化学位移研究分子结构,化学位移的程度具有磁场依赖性、环境依赖性。
NAA:N-乙酰天门冬氨酸,神经元活动的标志位于:2.02ppmCreatine:Cr肌酸,脑组织能量代谢的提示物,峰度相对稳定,常作为波谱分析时的参照物,位于:3.05ppm Choline:Cho胆碱,细胞膜合成的标志位于:3.20ppm Lipid:脂质,细胞坏死提示物位于:0.9-1.3ppm Lactate:乳酸,无氧代谢的标志位于:1.33-1.35ppm Glutamate:Glx谷氨酰氨,脑组织缺血缺氧及肝性脑病时增加位于:2.1-2.4ppmmI:肌醇代表细胞膜稳定性,判断肿瘤级别位于:3.8ppmN-乙酰基天门冬氨酸(NAA)·正常脑组织1H MRS中的第一大峰,位于2.02-2.05ppm ·与蛋白质和脂肪合成,维持细胞内阳离子浓度以及钾、钠、钙等阳离子通过细胞和维持神经膜的兴奋性有关·仅存在于神经元内,而不会出现于胶质细胞,是神经元密度和生存的标志·含量多少反映神经元的功能状况,降低的程度反映了其受损的大小肌酸(Creatine)·正常脑组织1H MRS中的第二大峰,位于3.03ppm附近,有时在3.94ppm 处可见其附加峰(PCr)·此代谢物是脑细胞能量依赖系统的标志·能量代谢的提示物,在低代谢状态下增加,在高代谢状态下减低·峰值一般较稳定,常作为其它代谢物信号强度的参照物。
胆碱(Choline)·位于3.2 ppm附近,包括磷酸胆碱、磷酯酰胆碱和磷酸甘油胆碱·细胞膜磷脂代谢的成分之一,参与细胞膜的合成和蜕变,从而反映细胞膜的更新·Choline 峰是评价脑肿瘤的重要共振峰之一,快速的细胞分裂导致细胞膜转换和细胞增殖加快,使Cho峰增高·Cho峰在几乎所有的原发和继发性脑肿瘤中都升高·恶性程度高的肿瘤中,Cho/Cr比值显示增高· 同时Cho是髓鞘磷脂崩溃的标志,在急性脱髓鞘疾病,Cho水平显著升乳酸(Lac)·位于1.32ppm,由两个共振峰组成·TE=144,乳酸双峰向下;TE=288,乳酸双峰向上;·正常情况下,细胞代谢以有氧代谢为主,检测不到Lac峰,或只检测到微量·此峰出现说明细胞内有氧呼吸被抑制,糖酵解过程加强·脑肿瘤中,Lac出现提示恶性程度较高,常见于多形胶质母细胞瘤中·Lac也可以积聚于无代谢的囊肿和坏死区内,脑肿瘤、脓肿及梗塞时会出现乳酸峰。
mr 波谱临床应用MR波谱(Magnetic Resonance Spectroscopy,简称MR Spectroscopy)是一种基于核磁共振技术的无创成像技术,用于研究生物组织内各种化学成分的浓度和分布。
MR波谱在临床医学领域有着广泛的应用,能够提供更加详细的信息,帮助医生做出准确的诊断和治疗方案。
一、原理及技术特点MR波谱是利用核磁共振技术通过测定生物体内一定体积内各种核磁共振谱信号的相对强度,来确定物质的浓度和组织的代谢状态。
相较于传统的影像学技术如CT、MRI,MR波谱具有以下技术特点:1. 提供更多的生物化学信息:MR波谱可以测定组织内关键代谢产物的浓度,如肌酸、胆碱等,帮助医生评估组织的代谢状态和疾病情况。
2. 非侵入性:MR波谱无需注射造影剂或放射性同位素,对患者无任何伤害,是一种安全的成像技术。
3. 定量化分析:MR波谱能够提供定量化的化学信息,可以精确测定各种代谢物的浓度,有助于疾病的诊断和监测。
二、临床应用1. 脑部疾病诊断:MR波谱在神经科学领域有着重要的应用,可用于脑肿瘤、脑卒中、脑损伤等疾病的早期诊断和监测。
通过检测脑内代谢产物的浓度变化,可以了解病变部位的代谢状态,指导临床治疗。
2. 肝脏疾病评估:MR波谱可以用于评估肝脏脂肪代谢、肝纤维化程度等信息。
通过测定脂肪、葡萄糖等代谢产物的浓度,可以帮助医生了解患者的肝脏状况和代谢状况,进而指导治疗方案。
3. 心肌代谢研究:MR波谱可以用于评估心肌代谢和心功能,了解心肌组织的能量代谢状态。
在心肌梗死、心肌病等心脏疾病中有重要的应用,可以帮助医生评估病情严重程度,指导治疗选择。
4. 肿瘤代谢分析:MR波谱可以用于评估肿瘤组织的代谢状态,如乳腺癌、前列腺癌等肿瘤的代谢活性。
通过测定乳酸、胆碱、丙二醇等代谢物的浓度,可以帮助医生了解肿瘤细胞的代谢特点和生长状态,指导治疗方案的选择。
三、发展趋势随着医学技术的不断进步和MR波谱技术的不断完善,MR波谱在临床医学中的应用前景更加广阔。
磁共振波谱分析
磁共振波谱分析(MRS)是测定活体内某一特定组织区域化学成分的唯一的无损伤技术,是磁共振成像和磁共振波谱技术完美结合的产物,是在磁共振成像的基础上又一新型的功能分析诊断方法。
检查过程:组织内的一些化合物和代谢物的含量以及它们的浓度,由于各组织中的原子核质子是以一定的化合物的形式存在,在一定的化学环境下这些化合物或代谢物有一定的化学位移,并在磁共振波谱中的峰值都会有微小变化,它们的峰值和化学浓度的微小变化经磁共振扫描仪采集,使其转化为数值波谱。
这些化学信息代表组织或体液中相应代谢物的浓度,反映组织细胞的代谢状况。
即磁共振波谱是从组织细胞代谢方面来表达其病理改变的。
磁共振波谱分析摘要:磁共振波谱(MRS)是一种新的脑功能检查技术和唯一无创性检测活体组织器官能量代谢、生化改变和特定化合物定量分析的技术。
MRS是在MRI形态学诊断的基础上,从代谢方面对病变进一步研究。
【MRS的定义与基本原理】磁共振波谱(MRS)是一种新的脑功能检查技术和唯一无创性检测活体组织器官能量代谢、生化改变和特定化合物定量分析的技术。
MRS是在MRI形态学诊断的基础上,从代谢方面对病变进一步研究。
MRS的原理在某些方面与MRI相同,要求短的射频脉冲以激励原子核,采集到的信号称为自由感应衰减信号,将这种信号通过傅立叶转换变成波谱。
MRS成像的基本原理是依据化学位移和J-耦合两种物理现象。
由于化学位移不同,不同化合物可以根据其在MRS上共振峰的位置不同加以区别。
化学位移采用磁场强度的百万分之一为单位(part per million,ppm)。
共振峰的面积与共振核的数目成正比,反映化合物的浓度,因此可用来定量分析。
峰值在横轴上的位置代表物质的种类,波峰的高度或波峰下的面积代表物质的数量,化合物的含量亦可用图谱色阶表示。
【人脑常见的代谢物及其意义】1.N-乙酰天门冬氨酸(NAA)在正常脑1HMRS中NAA是最高的峰,位于2.02ppm。
它主要存在于成熟的神经元内,是神经元的内标物,其含量的多少可反映神经元的功能状态。
NAA含量的降低代表神经元的缺失。
肿瘤、多发性硬化、梗死、缺氧、神经细胞变性疾病、代谢性疾病及脱髓鞘疾病等均可引起NAA浓度的下降;不含神经元的脑部肿瘤(如脑膜瘤、转移瘤)MRS显示NAA缺失。
在婴儿脑发育、成熟过程中以及神经损伤后轴索恢复中NAA会升高。
Canavan病(中枢神经系统海绵状变性)是唯一可以引起NAA增高的疾病,是由于该病人体内缺乏NAA水解酶。
2.胆碱(Cho)包括磷酸胆碱、磷脂酰胆碱及磷酸甘油胆碱,反映脑内总胆碱储备量,波峰位于3.2ppm。
Cho是乙酰胆碱和磷脂酰胆碱的前体,是细胞膜磷脂代谢的成分之一,参与细胞膜的合成与代谢,Cho峰的高低可以作为肿瘤细胞增殖的指标。
简单认识磁共振波谱(MRS)
磁共振波谱(MR spectroscopy,MRS)是⽬前唯⼀能⽆创伤地探测活体组织化学特性的⽅法。
磁共振波谱研究⼈体细胞代谢的病理⽣理改变,⽽常规MRI则是研究⼈体器官组织⼤体形态的病理⽣理改变,但⼆者的物理学基础都是核共振现象。
正常⼈的脑MRS
MR波谱变化可反映神经元⽣长分化,脑能量代谢和髓鞘分化⽡解过程改变。
通过定量分析脑组织代谢产物的MRS,可了解脑组织的发育成熟度,同时也提⽰我们在观察病理性波谱时,应考虑到年龄相关性变化。
在许多疾病中,代谢改变先于病理形态改变,⽽MRS对这种代谢改变的潜在敏感性很⾼,故能提供信息以早期检测病变。
正常⼈有很⾼的NAA/Cr值,NAA下降提⽰神经元的缺失和破坏。
Cho和Cr在神经元和神经胶质细胞内均被发现,但细胞研究证明,星形胶质和少突胶质细胞内Cho和Cr含量明显⾼于神经元,故Cho和 Cr增加提⽰有神经胶质增⽣。
由于NAA减少或Cho、Cr增加,导致了 NAA/(Cho +Cr)上值降低,上值常作为反映神经元功能的指标。
磁共振波谱成像的基本原理、序列设计与临床应用磁共振波谱(MR Spectroscopy, MRS)是医学影像学近年来发展的新的检查手段,作为一种无创伤性研究活体器官组织代谢、生化变化及化合物定量分析的方法,随着MRI、MRS装置不断改进,软件开发及临床研究的不断深入,人们通过MRS对各种疾病的生化代谢的认识将不断提高,为临床的诊断、鉴别、分期、治疗和预后提供更多有重要价值的信息。
1H MRS可对神经元的丢失、神经胶质增生进行定量分析,31P磁共振波谱可对心肌梗塞能量代谢变化进行评价。
MRS以分子水平了解人体生理上的变化,从而对疾病的早期诊断、预后及鉴别诊断、疗效追踪等方面,做出更明确的结论。
本文从MRS波谱成像的基本原理和序列设计方面简要作一介绍。
一磁共振波谱的基本原理在理想均匀的磁场中,同一种质子(如1H)理论上应具有相同的共振频率。
事实上,当频率测量精度非常高时会发现,即使同一种核处在相同磁场中,它们的共振频率也不完全相同,而是在一个有限的频率范围内。
这是由于原子核外的电子对原子核有磁屏蔽作用,它使作用于原子核的磁场强度小于外加磁场的强度,其屏蔽作用大小用屏蔽系数s来表示,被这种屏蔽作用削弱掉的磁场为sB,与外加磁场方向相反。
外加磁场越强sB越大,原子核实际感受到的磁场强度与外加磁场强度之差越大。
此外,s还与核的特性和化学环境有关。
核的化学环境指核所在的分子结构,同一种核处在不同的分子中,甚至在同一分子的不同位置或不同的原子基团中,它周围的电子数和电子的分布将有所不同。
因而,受到电子的磁屏蔽作用的程度不同,如图1所示。
考虑到电子的磁屏蔽作用,决定共振频率的拉莫方程应表示为:w=gBeff=gB0(1-s)由上式可知,在相同外加磁场作用下,样品中有不同化学环境的同一种核,由于它们受磁屏蔽的程度(s的大小)不同,它们将具有不同的共振频率。
如在MRS中,水、NAA(N-乙酰天门冬氨酸)、Cr(肌酸)、Cho(胆碱)、脂肪的共振峰位置不同,这种现象就称为化学位移(Chemical Shift)。
第八节MR波谱分析MR波谱(MRspectroscopy,MRS)是目前能够进行活体组织内化学物质无创性检测的唯一方法。
MRI提供的是正常和病理组织的形态信息,而MRS则可提供组织的代谢信息。
大家都知道,在很多疾病的发生和发展过程中,代谢改变往往早于形态学改变,因此MRS所能提供的代谢信息无疑有助于疾病的早期诊断。
但是目前在临床应用方面还处于研究和摸索阶段。
一、MRS的原理MRS的原理比较复杂,这里仅作简单介绍。
(一)化学位移现象在MRI原理中我们知道,磁性原子核在外磁场中的进动频率取决于两个方面:(1)磁性原子核的磁旋比;(2)磁性原子核所感受的外磁场强度。
对于一个确定的磁性原子核,其磁旋比是不变的。
而磁性原子核所感受的外磁场强度除了受外加静磁场影响外,还受原子核周围的电子云和周围其他原子电子云的影响,这些电子云将会对磁场起屏蔽作用,使磁性原子核所感受的磁场强度略低于外加静磁场的强度,因而其进动频率也略有降低。
同一种磁性原子核如果处于不同的分子中,由于分子化学结构的不同,电子云对磁性原子核的磁屏蔽作用的大小也存在差别,因而将表现出其进动频率的差别。
这种由于所处的分子结构不同造成同一磁性原子核进动频率差异的现象被称为化学位移现象。
(二)MRS的简要原理下面以1H为例简述MRS的原理。
通过对某组织的目标区域施加经过特殊设计的射频脉冲,这种射频脉冲往往带宽较宽,其频率范围必须含盖所要检测代谢产物中质子的进动频率。
然后采集该区域发出的MR信号(可以是FID信号或回波信号),该MR 信号来源于多种代谢产物中质子,由于化学位移效应,不同的代谢产物中质子进动频率有轻微差别,通过傅里叶转换可得到不同物质谱的信息,通常采用谱线来表示。
谱线包括一系列相对比较窄的波峰。
其横坐标表示不同物质中质子的进动频率,通常用PPM表示(以标准物的质子进动频率为基准,其他代谢物中质子进动频率与标准物中质子进动频率的差别,以百万分几(PPM)来表示)。
磁共振波谱(MR spectroscopy,MRS)磁共振波谱(MR spectroscopy,MRS)是目前唯一能无创伤地探测活体组织化学特性的方法。
在许多疾病中,代谢改变先于病理形态改变,而MRS对这种代谢改变的潜在敏感性很高,故能提供信息以早期检测病变。
磁共振波谱mRS)研究人体细胞代谢的病理生理改变,而常规MRI则是研究人体器官组织大体形态的病理生理改变,但二者的物理学基础都是核共振现象。
一、MRS的原理磁共振信号的共振频率由两个因素决定①旋磁比r,即原子的内在特性②核所处位置的磁场强度。
核所受的磁场主要由外在主磁场(B。
)来诀定,但是核所受的磁场强度也与核外电子云及邻近原子的原子云有关。
电子云的作用会屏蔽主磁场的作用,使着核所受的磁场强度小于外加主磁场。
这种由于电子云的作用所产生的磁场差别被称为化学位移。
因此,对于给定的外磁场,不同核所处的化学环境不一样,从而产生共振频率的微小差别,导致磁共振谱峰的差别,从而识别不同代谢产物及其浓度。
MRS可检测许多重要化合物的浓度,根据这些代谢物含量的多少可以分析组织代谢的改变,1H-MRS可测定12种脑代谢产物和神经递质的共振峰,N-乙酸门冬氨酸(NAA)、肌酸(Cr)磷酸肌酸(PCr)胆碱(cho)肌醇(MI)谷氨酸胺Gln)谷氨酸盐(Glu)乳酸(Lac)等。
生物中,许多生物分子都有31P,这些化合物参与细胞的能量代谢和与生物膜有关的磷脂代谢,31P-MRS被广泛用在对脑组织能量代谢及酸碱平衡的分析上,可以检测磷酸肌酸(PCr人无机磷酸盐(PI)α- ATP、β-ATP、γ—ATP的含量和细胞内的PH值。
二、MRS的临床应用1.正常人的脑MRSMR波谱变化可反映神经元生长分化,脑能量代谢和髓鞘分化瓦解过程改变。
NAA是哺乳动物神经系统中普遍存在的化合物,几乎所有的NAA均存在于神经对内,目前将NAA作为反映神经元功能的内标物。
正常人有很高的NAA/Cr)值,NAA下降提示神经元的缺失和破坏。
磁共振波谱成像(MRS)解读及临床意义MRS是目前能够进行活体组织内化学物质无创性检测的唯一方法,MRI提供的是正常和病理组织的形态信息,而MRS则可以提供组织的代谢信息。
大家都清楚在很多疾病的发生过程中,代谢改变往往是早于形态改变的,因此磁共振波谱所能提供的代谢信息无疑有助于疾病的早期诊断,那么MRS是如何成像的。
技术原理·利用原子核化学位移现象成像不同化合物的相同原子核,相同化合物不同原子核之间由于所处的化学环境不同,其周围磁场有轻微变化,共振频率会有差别,这种情况称为化学位移现象,共振频率的差别就是MRS的原理基础·MRS表示方法横轴表示化学位移(频率差别)单位为百万分之一(ppm)纵轴表示信号强度峰高和峰值下面积反映某化合物的存在和量,与共振原子核的数目成正比SV PRESS TE=35ms•NAA波(N-乙酰天门冬氨酸):波峰在2.02ppm。
仅存在于神经系统,由神经元的线粒体产生,是神经元密度和活力的标志。
所有能够导致神经元损伤和丢失的病变都可以表现有NAA波降低和NAA/Cr比值降低,包括脑肿瘤、脑梗死、脑炎等。
•Cho波(胆碱):波峰在3.20ppm。
胆碱参与细胞膜的合成和降解,与细胞膜磷脂代谢有关,并且是神经递质乙酰胆碱的前体。
Cho波增高说明细胞膜更新加快、细胞密度大,通常为肿瘤细胞增殖所致。
•Cr波(肌酸):波峰在3.05ppm。
包括肌酸(Cr)、磷酸肌酸(PCr),存在于神经元和胶质细胞中,为能量代谢物质。
在同一个体脑内不同代谢条件下,Cr+PCr的总量恒定,即信号较稳定,故常用来作参比值。
脑肿瘤时,因为肿瘤对能量代谢需求高可导致Cr降低。
•Lac波(乳酸):波峰在1.33~1.35ppm,为无氧代谢产物。
正常情况下细胞能量代谢以有氧氧化为主,1H-MRS检测不到。
而在缺血/缺氧或者高代谢状态如恶性肿瘤时,乳酸信号强度增加。
包含两个明显的共振峰,称为“双尖波”,在较短TE(136ms、144ms)时表现为倒置双峰,在较长TE(272ms,288ms)时表现为正向双峰。
第八节MR波谱分析MR波谱(MR spectroscopy,MRS)是目前能够进行活体组织内化学物质无创性检测的唯一方法。
MRI提供的是正常和病理组织的形态信息,而MRS则可提供组织的代谢信息。
大家都知道,在很多疾病的发生和发展过程中,代谢改变往往早于形态学改变,因此MRS 所能提供的代谢信息无疑有助于疾病的早期诊断。
但是目前在临床应用方面还处于研究和摸索阶段。
一、MRS的原理MRS的原理比较复杂,这里仅作简单介绍。
(一)化学位移现象在MRI原理中我们知道,磁性原子核在外磁场中的进动频率取决于两个方面:(1)磁性原子核的磁旋比;(2)磁性原子核所感受的外磁场强度。
对于一个确定的磁性原子核,其磁旋比是不变的。
而磁性原子核所感受的外磁场强度除了受外加静磁场影响外,还受原子核周围的电子云和周围其他原子电子云的影响,这些电子云将会对磁场起屏蔽作用,使磁性原子核所感受的磁场强度略低于外加静磁场的强度,因而其进动频率也略有降低。
同一种磁性原子核如果处于不同的分子中,由于分子化学结构的不同,电子云对磁性原子核的磁屏蔽作用的大小也存在差别,因而将表现出其进动频率的差别。
这种由于所处的分子结构不同造成同一磁性原子核进动频率差异的现象被称为化学位移现象。
(二)MRS的简要原理下面以1H为例简述MRS的原理。
通过对某组织的目标区域施加经过特殊设计的射频脉冲,这种射频脉冲往往带宽较宽,其频率范围必须含盖所要检测代谢产物中质子的进动频率。
然后采集该区域发出的MR信号(可以是FID信号或回波信号),该MR信号来源于多种代谢产物中质子,由于化学位移效应,不同的代谢产物中质子进动频率有轻微差别,通过傅里叶转换可得到不同物质谱的信息,通常采用谱线来表示。
谱线包括一系列相对比较窄的波峰。
其横坐标表示不同物质中质子的进动频率,通常用PPM表示(以标准物的质子进动频率为基准,其他代谢物中质子进动频率与标准物中质子进动频率的差别,以百万分几(PPM)来表示)。