MR波谱分析
- 格式:ppt
- 大小:634.00 KB
- 文档页数:8
MR波谱技术MR波谱(MRS)是无创伤、无辐射危害进行活体组织化学物质检测的唯一方法。
研究的是一定体积的组织中化学物质的含量和浓度。
它的扫描单位是体积,称为体素。
根据每次MRS扫描时设置的体素数量,可分为单体素成像和多体素成像(化学位移成像)。
一、MRS的基本原理1.化学位移现象因所处分子结构不同造成同一磁性原子核进动频率差异的现象被称为化学位移。
2.MRS简要原理以1H为例,首先对某目标区域施加带宽较宽的射频脉冲,其频率范围涵盖所要检测代谢产物中质子的进动频率,然后采集该区域发出的MR信号,由于受化学位移的影响,不同的代谢产物质子的进动频率有轻微差别,通过傅立叶转换得一系列谱线代表不同的代谢物质。
其横坐标表示不同物质中质子的进动频率,通常用百万分几(ppm)来标示代谢产物中质子进动频率与标准物质进动频率的差别,波峰下面积与目标区域内某特定代谢产物的含量成正比。
3.MRS的特点:①提供组织的代谢信息;②可用数值或谱线来表示;③对磁场均匀度的要求更高;④其对比分辨力与主磁场强度成正比;⑤信号较弱,常需进行多次平均,检查时间较长;⑥可用两种或两种以上代谢产物含量之比来反映组织的代谢变化;⑦可利用不同的磁性原子核(1H、31P、12C、23Na和19F)进行MRS检查;⑧常选择一种比较稳定的化学物质作为标准参照物。
二、MRS的常用技术临床上1H-MRS多用激励回波采集模式( STEAM)和点解析波谱( PRESS)两种技术STEAM : 通过3个不同方法的层面选择梯度场,将3个90°脉冲分别施加在相互垂直的层面上,三者相交得到一个点状容积信号。
优点是TE较短;缺点是信噪比较低。
PRESS:采用1个90°脉冲和2个180°相位重聚脉冲,其施加层面选择梯度场与STEAM相同,得到的是自旋回波信号。
优点是信噪比较高;缺点是TE较长。
三、MRS的临床应用MRS的临床应用:①脑肿瘤的诊断和鉴别诊断;②代谢性疾病的脑改变;③脑肿瘤治疗后复发与肉芽组织的鉴别;④脑缺血疾病的诊断和鉴别诊断;⑤前列腺癌的诊断和鉴别诊断;⑥弥漫性肝病;⑦肾脏功能检测和肾移植排斥反应等。
磁共振波谱分析MRSMRS 为目前唯一能无创性观察活体组织代谢及生化变化的技术。
在相同的磁场环境下,处于不同化学环境中的同一种原子核,由于受到原子核周围不同电子云的磁屏蔽作用,而具有不同的共振频率。
波谱分析就是利用化学位移研究分子结构,化学位移的程度具有磁场依赖性、环境依赖性。
NAA:N-乙酰天门冬氨酸,神经元活动的标志位于:2.02ppmCreatine:Cr肌酸,脑组织能量代谢的提示物,峰度相对稳定,常作为波谱分析时的参照物,位于:3.05ppm Choline:Cho胆碱,细胞膜合成的标志位于:3.20ppm Lipid:脂质,细胞坏死提示物位于:0.9-1.3ppm Lactate:乳酸,无氧代谢的标志位于:1.33-1.35ppm Glutamate:Glx谷氨酰氨,脑组织缺血缺氧及肝性脑病时增加位于:2.1-2.4ppmmI:肌醇代表细胞膜稳定性,判断肿瘤级别位于:3.8ppmN-乙酰基天门冬氨酸(NAA)·正常脑组织1H MRS中的第一大峰,位于2.02-2.05ppm ·与蛋白质和脂肪合成,维持细胞内阳离子浓度以及钾、钠、钙等阳离子通过细胞和维持神经膜的兴奋性有关·仅存在于神经元内,而不会出现于胶质细胞,是神经元密度和生存的标志·含量多少反映神经元的功能状况,降低的程度反映了其受损的大小肌酸(Creatine)·正常脑组织1H MRS中的第二大峰,位于3.03ppm附近,有时在3.94ppm 处可见其附加峰(PCr)·此代谢物是脑细胞能量依赖系统的标志·能量代谢的提示物,在低代谢状态下增加,在高代谢状态下减低·峰值一般较稳定,常作为其它代谢物信号强度的参照物。
胆碱(Choline)·位于3.2 ppm附近,包括磷酸胆碱、磷酯酰胆碱和磷酸甘油胆碱·细胞膜磷脂代谢的成分之一,参与细胞膜的合成和蜕变,从而反映细胞膜的更新·Choline 峰是评价脑肿瘤的重要共振峰之一,快速的细胞分裂导致细胞膜转换和细胞增殖加快,使Cho峰增高·Cho峰在几乎所有的原发和继发性脑肿瘤中都升高·恶性程度高的肿瘤中,Cho/Cr比值显示增高· 同时Cho是髓鞘磷脂崩溃的标志,在急性脱髓鞘疾病,Cho水平显著升乳酸(Lac)·位于1.32ppm,由两个共振峰组成·TE=144,乳酸双峰向下;TE=288,乳酸双峰向上;·正常情况下,细胞代谢以有氧代谢为主,检测不到Lac峰,或只检测到微量·此峰出现说明细胞内有氧呼吸被抑制,糖酵解过程加强·脑肿瘤中,Lac出现提示恶性程度较高,常见于多形胶质母细胞瘤中·Lac也可以积聚于无代谢的囊肿和坏死区内,脑肿瘤、脓肿及梗塞时会出现乳酸峰。
mr 波谱临床应用MR波谱(Magnetic Resonance Spectroscopy,简称MR Spectroscopy)是一种基于核磁共振技术的无创成像技术,用于研究生物组织内各种化学成分的浓度和分布。
MR波谱在临床医学领域有着广泛的应用,能够提供更加详细的信息,帮助医生做出准确的诊断和治疗方案。
一、原理及技术特点MR波谱是利用核磁共振技术通过测定生物体内一定体积内各种核磁共振谱信号的相对强度,来确定物质的浓度和组织的代谢状态。
相较于传统的影像学技术如CT、MRI,MR波谱具有以下技术特点:1. 提供更多的生物化学信息:MR波谱可以测定组织内关键代谢产物的浓度,如肌酸、胆碱等,帮助医生评估组织的代谢状态和疾病情况。
2. 非侵入性:MR波谱无需注射造影剂或放射性同位素,对患者无任何伤害,是一种安全的成像技术。
3. 定量化分析:MR波谱能够提供定量化的化学信息,可以精确测定各种代谢物的浓度,有助于疾病的诊断和监测。
二、临床应用1. 脑部疾病诊断:MR波谱在神经科学领域有着重要的应用,可用于脑肿瘤、脑卒中、脑损伤等疾病的早期诊断和监测。
通过检测脑内代谢产物的浓度变化,可以了解病变部位的代谢状态,指导临床治疗。
2. 肝脏疾病评估:MR波谱可以用于评估肝脏脂肪代谢、肝纤维化程度等信息。
通过测定脂肪、葡萄糖等代谢产物的浓度,可以帮助医生了解患者的肝脏状况和代谢状况,进而指导治疗方案。
3. 心肌代谢研究:MR波谱可以用于评估心肌代谢和心功能,了解心肌组织的能量代谢状态。
在心肌梗死、心肌病等心脏疾病中有重要的应用,可以帮助医生评估病情严重程度,指导治疗选择。
4. 肿瘤代谢分析:MR波谱可以用于评估肿瘤组织的代谢状态,如乳腺癌、前列腺癌等肿瘤的代谢活性。
通过测定乳酸、胆碱、丙二醇等代谢物的浓度,可以帮助医生了解肿瘤细胞的代谢特点和生长状态,指导治疗方案的选择。
三、发展趋势随着医学技术的不断进步和MR波谱技术的不断完善,MR波谱在临床医学中的应用前景更加广阔。
磁共振波谱分析
磁共振波谱分析(MRS)是测定活体内某一特定组织区域化学成分的唯一的无损伤技术,是磁共振成像和磁共振波谱技术完美结合的产物,是在磁共振成像的基础上又一新型的功能分析诊断方法。
检查过程:组织内的一些化合物和代谢物的含量以及它们的浓度,由于各组织中的原子核质子是以一定的化合物的形式存在,在一定的化学环境下这些化合物或代谢物有一定的化学位移,并在磁共振波谱中的峰值都会有微小变化,它们的峰值和化学浓度的微小变化经磁共振扫描仪采集,使其转化为数值波谱。
这些化学信息代表组织或体液中相应代谢物的浓度,反映组织细胞的代谢状况。
即磁共振波谱是从组织细胞代谢方面来表达其病理改变的。