运算定律和简便运算PPT课件
- 格式:ppt
- 大小:36.50 KB
- 文档页数:8
定律与简便计算(一)加减法运算定律1、加法交换律定义:两个加数交换位置,与不变字母表示:例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,与不变.字母表示:注意:加法结合律有着广泛得应用,如果其中有两个加数得与刚好就是整十、整百、整千得话,那么就可以利用加法交换律将原式中得加数进行调换位置,再将这两个加数结合起来先运算。
例1、用简便方法计算下式:(1)63+16+84(2)76+15+24 (3)140+639+860 3、减法交换律、结合律注:减法交换律、结合律就是由加法交换律与结合律衍生出来得。
减法交换律:如果一个数连续减去两个数,那么后面两个减数得位置可以互换。
字母表示:例2、简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数得与。
字母表示:例3、简便计算:(1)369-45—155 (2)896—580-1204、拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些得时候,我们可以把这个数拆分成整百、整千与一个较小数得与,然后利用加减法得交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…例4、计算下式,能简便得进行简便计算:(1)89+106(2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170(2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)63+71+37+29 (8)85-17+15—33 (9)34+72-43-57+28 (二)乘除法运算定律1、乘法交换律定义:交换两个因数得位置,积不变。
字母表示:例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变.字母表示:乘法结合律得应用基于要熟练掌握一些相乘后积为整十、整百、整千得数。
运算定律和简便运算集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a=a++bb例如:16+23=23+16546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)a++b++=)((cbac注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84(2)76+15+24(3)140+639+8603.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b-=--a-bacc例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)-=--a+b(cbac例3.简便计算:(1)369-45-155(2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…例4.计算下式,能简便的进行简便计算:(1)89+106(2)56+98(3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170(2)820-456+280(3)900-456-244(4)89+997(5)103-60(6)458+996(7)63+71+37+29(8)85-17+15-33(9)34+72-43-57+28(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b)+c=a+(b+c) 加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。
如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c乘法分配律的应用:①类型一:(a+b)×c (a-b)×c= a×c+b×c = a×c-b×c②类型二:a×c+b×c a×c-b×c=(a+b)×c =(a-b)×c③类型三:a×99+a a×b-a= a×(99+1) = a×(b-1)④类型四:a×99 a×102= a×(100-1) = a×(100+2)= a×100-a×1 = a×100+a×2三、简便计算1.连加的简便计算:①使用加法结合律(把和是整十、整百、整千、的结合在一起)②个位:1与9,2与8,3与7,4与6,5与5,结合。