掌握用一阶导数判别函数单调性的方法会求
- 格式:ppt
- 大小:142.50 KB
- 文档页数:13
判断单调性的5种方法在数学中,判断函数的单调性是一个非常重要的问题。
单调性是指函数在定义域内的增减关系,它直接关系到函数图像的形状和性质。
因此,对于一个给定的函数,我们需要掌握一些方法来准确地判断它的单调性。
下面将介绍5种判断单调性的方法,希望能够帮助大家更好地理解和掌握这一概念。
1. 导数法。
判断函数的单调性最常用的方法之一就是使用导数。
通过求函数的导数,我们可以得到函数的增减区间,从而判断函数的单调性。
具体来说,如果函数在某个区间上的导数始终大于0(或者始终小于0),那么函数在这个区间上就是单调递增(或者单调递减)的。
这种方法在实际应用中非常方便,特别是对于一些复杂的函数,通过导数法可以比较容易地判断其单调性。
2. 一阶导数和二阶导数的关系。
除了直接使用导数判断单调性外,我们还可以通过一阶导数和二阶导数的关系来判断函数的单调性。
具体来说,如果函数在某个区间上的一阶导数大于0,而二阶导数小于0,那么函数在这个区间上就是单调递增的;反之,如果一阶导数小于0,而二阶导数大于0,那么函数在这个区间上就是单调递减的。
这种方法在一些特殊情况下非常有效,可以帮助我们更快地判断函数的单调性。
3. 利用函数的图像。
对于一些简单的函数,我们可以通过观察函数的图像来判断其单调性。
具体来说,如果函数的图像是上升的,那么函数就是单调递增的;如果函数的图像是下降的,那么函数就是单调递减的。
这种方法虽然不够精确,但在一些直观的情况下非常实用,可以帮助我们快速地判断函数的单调性。
4. 利用零点。
对于一些特殊的函数,我们可以通过求解函数的零点来判断其单调性。
具体来说,如果函数在某个区间上的零点个数为偶数,并且在这个区间的两个相邻零点处函数值的符号相反,那么函数在这个区间上就是单调递增的;反之,如果零点个数为奇数,并且在这个区间的两个相邻零点处函数值的符号相同,那么函数在这个区间上就是单调递减的。
这种方法在一些特殊的函数中非常有用,可以帮助我们更快地判断函数的单调性。
第一章 函数、极限与连续知识要点:1、 会求给定函数的自然定义域(用导数研究奇偶性凹凸性的时候要用到)2、 会求反函数(第二换元积分法要用到)3、 会判断一个函数是否有界,掌握奇偶性和单调性的基本概念(这三个性质很多地方要用到)4、 数列极限与函数极限的定义(极限研究的是当自变量发生某种变化时,函数值是否无限接近于某个确定的实数值) 5、 会求左右极限(判断间断点和求左右导数的时候要用到) 6、 有界函数与无穷小的乘积为无穷小 7、 无穷小和无穷大之间互为倒数8、 掌握高阶,同阶,等价,n 阶无穷小的基本概念9、 几个重要的等价无穷小:当0()x x x →∞→时,如果()0g x →,则:sin(())()~tan(())g x g x g x :,211cos(())()2g x g x -:,11~()g x n ,arcsin ()()arctan ()g x g x g x ::,ln(1())~()g x g x +,()1~()g x e g x -,()1~()ln (0)g x a g x a a ->10、 极限的四则运算法则11、 复合函数的极限运算法则:如果()f u 关于变量u 连续,则:lim (())(lim ())f g x f g x =12、准则I (夹逼准则):如果数列n n y x ,及n z 满足下列条件:(1)),3,2,1(Λ=≤≤n z x y n n n ; (2),lim ,lim a z a y n n n n ==∞→∞→那末数列n x 的极限存在, 且.lim a x n n =∞→12、 单调递增有上界的数列必有极限,单调减少有下界的数列必有极限13、 两个重要极限:(1)如果x a →时,()0g x →,则:sin ()lim1()x a g x g x →=(2)如果x a →时,()0g x →,则:()1()lim 1()g x x a g x e→+=14、 当求极限的函数是几个无穷小的积和商时可以进行等价无穷小替换,和差的时候不可以 15、 会判断函数在一点是否连续16、 函数的间断点及其分类:第一类间断点:跳跃间断点,可去间断点;第二类间断点:无穷间断点,振荡间断点;会判断是哪种类型的间断点17、 连续函数之间的和差积商都是连续的,两连续函数的复合也是连续的,初等函数在其定义区间内都是连续的18、 闭区间上连续函数的性质:最大最小值定理,有界性定理,零点定理,介值定理19、 会求函数的水平渐近线和垂直渐近线 注意事项:1、 讨论函数连续性的时候,对于分段函数,若在每个小的开区间上为初等函数,则在此开区间上必连续;而在分隔点处,先求在分隔点处的左右极限然后与函数值进行比较,如间断必须判断出是哪种间断点 2、 幂指函数求极限:()()ln ()lim[()ln ()]lim ()lim g x g x f x g x f x f x e e ==3、 做题的时候一定要把求极限符号下自变量的变化趋势给写出来,我不写是为了表示两种不同的变化趋势都适用,你做具体题的时候不可以不写,推导的过程中极限符号不可落掉,避免出现极限等于一个函数的情形第二章 导数与微分知识要点:1、掌握导数的定义:x x f x x f x yx f x x ∆-∆+=∆∆='→∆→∆)()(limlim)(000002、函数在一点处左右导数的定义3、函数在一点可导⇔左右导数都存在且相等⇒函数在这一点连续4、函数在0x 处导数的几何意义:函数图像过点00(,())x f x 切线的斜率5、求导的四则运算法则6、会求函数过某点的切线方程和法线方程7、复合函数求导法则:()[(())]()()u g x f g x f u g x ='''=⨯8、反函数求导法则:1dy dx dy dx= 9、导数表里的公式都要记住10、掌握隐函数求导法则,会求隐函数的一阶导和二阶导 11、掌握参数方程求导公式:dy dydx dtdtdx = 12、会求函数的微分:()()df x f x dx '=,函数在一点处的微分:0()()x x df x f x x='=∆注意事项:1、 讨论函数可导性的时候,对于分段函数,如果在每个开区间上是初等函数则在开区间内必可导,而在分隔点处要分别求左右导数,如果左右导数存在且相等则可导,否则不可导 2、 左导数不等于左极限:00000()()()limlim ()x x x f x x f x f x f x x---∆→→+∆-'=≠∆, 也不可以对分隔点左侧函数先求导函数再取极限得到 3、 应用隐函数求导法则求在给定点处一、二阶导数的时候,不仅要在结果中把横坐标的值代入,相应纵坐标的值也要代入 4、 幂指函数求导数可以用对数求导法也可以:()()ln ()()ln ()(())()(()ln ())g x g x f x g x f x f x e e g x f x '''==⨯,但不可以令 (),()f x u g x v ==,然后化成v y u =然后用幂函数求导公式,因为这里的v 不是常数,这样的做法从过程到结果都是极其错误的5、 求切线方程和法线方程的时候,要先判断给出的点是否在函数图像上,如果在就是切点,如果不在要先把切点设出来第三章 微分中值定理与导数的应用知识要点:1、 会用罗尔定理和拉格朗日定理来证明一些简单的结论,理解拉格朗日中值定理的证明过程,对柯西中值定理的内容有一定的了解2、 导函数为0的函数必为常值函数3、会用洛比达法则来求未定式的极限:00,∞∞()()limlim ()()f x f x F x F x '='4、 掌握一些化简后可以间接利用洛比达法则来计算的函数的极限5、 掌握利用函数一阶导数符号来判断函数单调性的一般步骤,会求极值点与极值6、 掌握利用函数二阶导数符号来判断函数凹凸性的一般步骤,会求拐点7、 会求函数的最值点与最值8、 如果函数只有有限个驻点与不可导点,则极值点不是驻点就一定是不可导点;最值点不是极值点就一定是端点。
单调性的判断方法单调性是数学中常用的一个概念,用于描述函数在定义域上的变化规律。
判断函数的单调性可以帮助我们更好地理解和运用函数,因此具有重要的意义。
下面将结合实例逐步介绍判断函数单调性的方法。
首先,我们需要了解什么是函数的单调性。
一个函数f(x)在定义域内是严格递增的,如果当x1 < x2时,有f(x1) < f(x2)。
相反,如果满足x1 < x2时,有f(x1) > f(x2),则函数f(x)是严格递减的。
另外,函数可能同时在某一个区间递增和递减,这被称为函数的非单调性。
对于一个给定的函数,我们可以通过函数的导数来判断其单调性。
具体来说,对于函数f(x)在定义域内连续且可导,我们有以下定理:1. 当函数的导数f'(x)在定义域内恒大于0时,函数f(x)在定义域上是严格递增的;2. 当函数的导数f'(x)在定义域内恒小于0时,函数f(x)在定义域上是严格递减的;这个定理的证明可以通过导数的定义和相关定理进行推导,但此处略去。
基于上述定理,我们可以采用以下步骤来判断函数的单调性:步骤一:求出函数f(x)的导数f'(x)。
步骤二:根据函数的导数f'(x)的符号进行分类讨论:- 如果f'(x) > 0,则说明函数在该区间递增;- 如果f'(x) < 0,则说明函数在该区间递减;- 如果f'(x) = 0,则说明函数在该点处取得极值,但不一定是单调的;步骤三:将上述分类讨论的结果归纳到函数f(x)的定义域内。
在实际应用中,我们通常先找出函数的导数的零点,即f'(x) = 0的点。
这些点我们称之为临界点,它们对应于函数f(x)的极值点,可能是函数的拐点。
在求解过程中,我们可以利用一阶导数和二阶导数的性质,来确定极值点的性质和判断拐点的存在与位置。
下面通过具体的例子来说明如何判断函数的单调性。
假设我们要判断函数f(x) = x^2在定义域(-∞, +∞)上的单调性。
《函数的单调性与导数》教学设汁【教学目标】知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间过程与方法:i.通过本巧的学习,掌握用导数研究单调性的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想、分类讨论思想。
情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
【教学的重点和难点】教学重点:探索并应用函数的单调性与导数的关系求单调区间。
教学难点:探索函数的单调性与导数的关系。
性问题.内容讲授例题讲解例1 : 求函数f(x) = x3-3x2的单调区间,并画出函数的大致图像.分析:根据上面结论,我们知道函数的单调性与函数导数的符号有关。
因此,可以通过分析导数的符号求出函数的单调区间.解:引导学生回答问题并同时板书.根据单调性的结论画出函数的图像.学生思考回答思路.学生利用导数知识解决函数的单调性问题.明确利用导数是求函数单调区间的最简单的方法.加深对单调性的理解,体会数形结合的思想.加强学生对利用导数求函数单调性的方法进一步熟练掌握,特别是单调区间满足在定义域内.学生总结并回答问题加深记忆.练习1求函数/(x ) = — lnx 的单调区间.函数的导数值大 于零时,其函数为 单调递增;函数的 导数值小于零时, 其函数为单调递 从函数的单调性 和导数的正负关 系的讨论环节中, 不断的比较了函 数和导函数的图 像,因此设置该 题,从熟悉的函数 到该题,题LI 更容 易解决.1求定义域;2求函数/(X )的导数, 3讨论单调区间,解不等式 广(力>°,解集为增区间;4解不等式广(切<°,解集为减区间.山学生共同回答.例2函数图像如下图,导函数图像可能为哪'一木讨论函数单调性的一般步骤 是什么教师根据一个学 生的作图进行讲 解.学生对所学知识 进一步巩固和熟 练掌握.【板书设计】参与课堂的学生为高二年级理科的学生,学生基础参差不齐,差别较大,而单调性的槪念是在髙一第一学期学过的,因此对于单调性槪念的理解不够准确,同时导数是髙中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表而上•本节课应着重让学生通过探究来研究利用导数判左函数的单调性.效果分析本节课教师运用了多种教学手段,创设了丰富的教学情境,成功的激发了学生的学习兴趣:教学目标简明扼要,便于实施,注重数学思想、能力的培养,广度和深度都符合数学课程标准的要求,符合学生的实际情况。
第三章 一元函数微分学的应用学习指导一元函数微分学在经济等领域有着广泛的应用,微分中值定理给出了函数及其导数之间的联系,是微分学的基本定理.本章以导数为工具,以微分中值定理为理论基础,研究函数的单调性、极值、最值,函数的凹向及拐点,并应用导数解决经济中的边际、弹性及最优经济量等问题.一、教学要求1. 了解罗尔中值定理、拉格朗日中值定理,并会应用拉格朗日中值定理证明不等式. 2. 熟练掌握洛必达法则求“00”、“∞∞”、“0⋅∞”、“∞-∞”、“1∞”、“00”、“0∞”七种未定式的极限方法.3.掌握利用导数判定函数的单调性及函数单调区间的方法,会利用函数的增减性证明简单的不等式. 4.理解函数极值的概念,掌握求函数的极值和最值的方法,并会求简单的几何应用问题. 5.会判定曲线的凹向,会求曲线的拐点及渐进线.6.了解常用经济函数,掌握导数在经济分析中的应用(边际分析、弹性分析最优经济量的求法). 重点: 利用洛必达法则求未定式的极限;利用导数判定函数的单调性与极值、凹向及拐点;导数的经济应用.难点: 应用拉格朗日中值定理证明不等式;经济应用中的边际分析、弹性分析.二、学习要求1. 牢记中值定理成立的条件,并恰当引入辅助函数.2.应用洛必达法则求极限时应注意使用的条件,每次运用洛必达法则之前一定要检验是否是未定式的极限,然后转化为00或∞∞型再计算. 3.深刻理解驻点只是可导函数取得极值的必要条件,极值点可能是驻点也可能是导数不存在的点. 4.边际函数即经济函数的导数()f x ',反映的是当x 产生一个单位的改变时,()f x 改变()f x '个单位;弹性函数Ey Ex 表示当x 产生1%的改变时,y 改变Ey Ex%.在解决实际问题时,应注重结合经济实例,理解所求值的正负的含义.三、典型例题分析例1 设523)(2++=x x x f ,求)(x f 在],[b a 上满足拉格朗日中值定理的ξ值. 解 )(x f 为多项式函数,在],[b a 上满足拉格朗日中值定理的条件,故有 ))((')()(a b f a f b f -=-ξ即 ))(26()523()523(22a b a a b b -+=++-++ξ 由此解得2ab +=ξ, 即此时ξ为区间],[b a 的中点. 例2 应用拉格朗日中值定理证明下列不等式 (1) 当0a b <<时,ln b a b b ab a a--<<; (2) 当1x >时,xe e x >⋅证明 (1)设()ln f x x =,则()f x 在[],a b 上满足拉格朗日中值定理的条件, 故至少存在一点ξ(),a b ∈,使得()()()f b f a f b aξ-'=-即ln ln 1b a b a ξ-=-,因为111b a ξ<<,所以1ln ln 1b a b b a a-<<-,整理得ln b a b b ab a a--<<,得证. (2)证法一 设()uf u e =,[]1,u x ∈,容易验证()f u 在[]1,x 上满足拉格朗日中值定理的条件. 故存在ξ()1,x ∈,使得()()()11f x f f x ξ-'=-左端()()111x f x f e e x x --=--,右端()f e e ξξ'=>,即1x e e e x ->- 整理得 当1x >时,xe e x >⋅,得证. 证法二 设()lnf u u =, []1,u x ∈容易验证()f u 在[]1,x 上满足拉格朗日中值定理的条件. 故存在ξ()1,x ∈,使得()()()11f x f f x ξ-'=-左端()()1ln 11f x f x x x -=--,右端()11f ξξ'=<,即ln 11x x <-,11ln 1,x x x x x e e e-<-<=, 整理得 当1x >时,xe e x >⋅,得证. 例3 计算下列极限:(1)xe e x x x sin lim 0-→-; (2))1ln(arctan lim 30x xx x +-→;(3)2ln limx x x →+∞; (4)xx xx x sin tan lim0--→. 解 (1) =--→x e e xx x sin lim02cos lim 0=+-→x e e x x x ; (2) =+-→)1ln(arctan lim30x x x x =⋅++-→2320311111lim x x x x 203221lim 13x x x x x →+⋅=+31)1131(lim 230=++⋅→x x x ;(3) 2ln lim x x x →+∞=1lim 2x x x→+∞=21lim 02x x →+∞=; (4) =--→x x x x x sin tan lim 0=--→x x x cos 11sec lim 20=→22021tan lim x x x 2)tan (lim 220=→xx x .说明: 洛必达法则主要解决00,∞∞型不定式极限,在应用洛必达法则时应注意以下几点: (1) 在使用洛必达法则前,先要判断所求极限是否满足洛必达法则条件,即判断所求极限是否为0,∞∞型未定式,是这两种类型方可使用. (2) 当应用一次洛必达法则之后仍为00,∞∞型未定式时,可以继续使用洛必达法则,直到求出极限值或得出不符合法则条件时为止,使用后所得极限不存在(不包括极限为∞)时,不能肯定原极限不存在,此时洛必达法则失效,应改用其他方法求极限.(3) 使用洛必达法则求极限时,应及时对所求极限进行简化,表达式中有极限存在的因式可以暂时用极限运算法则将其分离出来,只要最终极限存在,这种处理方法就是可行的.(4) 洛必达法则应尽量和其他求极限的方法(四则运算、无穷小性质、重要极限、连续性等)结合使用,才能更好的发挥其作用.例4 计算下列极限 (1)axnx ex -+∞→lim ),0(为自然数n a >; (2))tan (sec lim 2x x x -→π;(3)xx xsin 0lim +→; (4)x x x )arctan 2(lim π+∞→; (5)xxx x 1)2(lim ++∞→.解 (1) =-+∞→axn x ex lim =+∞→ax n x e x lim =-+∞→ax n x ae nx 1lim 22(1)lim n ax x n n x a e-→+∞-=!1li 0m n axx n a e →+∞== ),0(为自然数n a >.(2) 0sin cos lim cos sin 1lim )cos sin cos 1(lim )tan (sec lim 2222=--=-=-=-→→→→x xx x x x x x x x x x x ππππ.(3) 因为xxxe xsin ln sin =,而12sin 00000ln sin lim ln lim sin ln lim lim lim csc csc cot cos xx x x x x x x xx x x x x x x x+++++-→→→→→=⋅===-- 00sin sin lim lim cos x x x x x x++→→=-⋅001=⨯-= 所以=+→xx xsin 0lim sin lim ln 001xx x ee +→==.(4) 因为2ln(arctan )2(arctan )xx xx eππ=,而πππ21arctan 1lim 111arctan 1lim 1arctan ln 2lnlim)arctan 2ln(lim 2222-=+-⋅=-+⋅=+=+∞→+∞→+∞→+∞→x x x xx x xx x x x x x x 所以 )arctan 2ln(lim )arctan 2(lim x x xx x e x ππ+∞→=+∞→=2eπ-.(5)因为xx x xxex 1)2ln(1)2(+=+,而11ln(2)1lim ln(2)lim ln(2)lim lim (12ln 2)2x x x xxx x x x x x x x x x x →+∞→+∞→+∞→+∞++=+==⋅++ 2ln 2ln 2lim 12ln 2x x x →+∞⋅⋅=+⋅2ln )2(ln 2)2(ln 2ln 2lim 22=⋅⋅⋅=+∞→x x x 所以 ()11lim ln 2ln 2lim (2)2xxx x x xx x ee →∞+→+∞+===.说明: 对于∞-∞,0⋅∞型未定式,经过对极限表达式的适当变形可以化为00或∞∞型未定式,对于由)()(x g x f 产生的00,1∞,0∞型未定式,可以通过对)()(x g x f 取对数化为0⋅∞型未定式,然后再转化为00或∞∞型未定式计算. 例5 计算下列极限:(1) x x x x 2220sin cos 1lim -→; (2)xe x x 210lim -→; (3)3sin lim cos 2x x x x x →∞++. 解 (1) 此题用洛必达法则求解,比较繁琐.利用等价无穷小量代换x x ~sin .再用洛必达法则更为简便.=-→x x x x 2220sin cos 1lim =-→420cos 1lim x x x =→3204sin 2lim xx x x 21sin lim 21220=→x x x . (2) 此题若按照00型未定式,用洛必达法则计算会越算越复杂,不能解决问题.如果令11,t x x t==即,代入后将分式化为∞∞型,再用洛必达法则计算就简便得多. =-→x ex x 210lim 2t lim 1t e t -→∞=2t lim t t e →∞=2t 1lim 02t te→∞=. (3)此题虽为∞∞型,但不能用洛必达法则3sin lim cos 2x x x x x →∞++ 1x t = 0113sin l m co 2i 1s t t t t t →++013sin 1cos 21lim t t t t t→+=+12= 若用洛必达法则3sin lim cos 2x x x x x →∞++3cos 1limsin 2x x x →∞+=-+,极限不存在. 例6 设xxx f sin 1sin 1)(-+=,问(1))(lim 0x f x →是否存在?(2)能否由洛必达法则求上述极限,为什么?解 (1) =→)(lim 0x f x 10101)sin 1(lim )sin 1(lim sin 1sin 1lim 00=-+=-+=-+→→→x x x x x x x .(2) 不能.因为此极限非00,∞∞型未定式,,不能满足洛必达法则条件. 例7 判别函数32)(x x f =的增减性. 解 函数)(x f 的定义域为),(+∞-∞,()1323f x x -'==当0=x 时,)('x f 不存在.点0=x 将定义域),(+∞-∞分成两个区间.列表如下:所以函数)(x f 在]0,(-∞内单调减少,在),0[+∞单调增加.说明: 使导数不存在的点往往也是增减区间的分界点. 例8 当0>x 时,证明)1ln(1x xx+<+. 证明 令)1ln(1)(x xxx f +-+=)0(>x 显然)(x f 在),0(+∞内连续,且22)1(11)1(1)('x xx x x f +-=+-+=当0>x 时,0)('<x f ,即)(x f 在),0(+∞内单调减少, 此时,0)0()(=<f x f ,即0)1ln(1<+-+x x x ,故)1ln(1x xx +<+. 说明: 单调性证明不等式的方法是:(1) 构造辅助函数)(x f ,即将不等式的右端(或左端)全部移到一端,再令左端(或右端)为函数)(x f ; (2) 在区间内讨论)(x f 的连续性及)('x f 符号,得到)(x f 的单调性;(3) 利用单调性定义,将)(x f 与区间内一特定点函数值(通常为区间的端点)进行比较构成所要证明的不等式.例9 证明方程1sin 21=-x x 只有一个正根. 证明 令1sin 21)(--=x x x f ,则)(x f 在),(+∞-∞内连续,且,01)(,01)0(>-=<-=ππf f根据零点存在定理知,至少存在一个),0(πξ∈,使得0)(=ξf , 即 方程0)(=x f 在区间),0(π内至少存在一个正根. 又因为0cos 211)('>-=x x f ,所以)(x f 在区间),(+∞-∞上是单调递增的,于是断定)(x f 在区间),0(π内的根是唯一的.从而得证,方程1sin 21=-x x 只有一个正根. 例10 求函数33)(23+-=x x x f 的极值.解法一 函数)(x f 的定义域为),(+∞-∞,)3)(1(3963)('2-+=--=x x x x x f ,令0)('=x f ,解得驻点3,121=-=x x ,用驻点21,x x 将函数的定义域划分为3个部分区间,列表讨论由上表可知,当1-=x 时,函数取得极大值()1f -=-1; 当3=x 时,函数取得极小值(3)3f =. 解法二 由题设可得)3)(1(3963)('2-+=--=x x x x x f ,66)("-=x x f 令0)('=x f ,解得驻点3,121=-=x x ,又因为 012)1("<-=-f ,012)3(">=f所以,当1-=x 时,函数取得极大值()1f -=1-;当3=x 时,函数取得极小值(3)3f =. 例11 当a 为何值时,x x a x f 3sin 31sin )(+=在3π=x 处取得极值,并求此极值. 解 函数)(x f 在定义域内处处可导,且x x a x f 3cos cos )('+=, 由于)(x f 在3π=x 处取得极值,所以有0)3('=πf ,即0121)33cos(3cos)3('=-=⋅+=a a f πππ,得2=a ,且3)33sin(313sin 2)3(=⋅+=πππf .例12 求32)5()(x x x f ⋅-=在区间]3,2[-上的最值.解 函数)(x f 在闭区间]3,2[-上连续,因而)(x f 在]3,2[-上必有最大值和最小值.33323)2(51)5(32)('xx x x x x f ⋅-=-+=,令0)('=x f ,得驻点2=x ,)('x f 不存在点为0=x ,比较函数值(2)(0)0,(2)(3)f f f f -=-==-=-知函数]3,2[)(-在x f 上最大值为0)0(=f ,最小值为347)2(-=-f . 例13 求曲线21xxy -=的凹凸区间与拐点. 解 函数21xxy -=的定义域为(,1)(1,1)(1,)-∞--+∞,222222)1(1)1()2()1('x x x x x x y -+=--⋅--= 322422222)1()3(2)1()1)(2()1(2)1(2"x x x x x x x x x y -+=-+-⋅---= 令0"=y ,得0=x ,用点1,0,1x =-将函数的定义域划分为4个部分区间,列表讨论由表可见,在区间)1,(--∞,)1,0(内曲线为凹的,在区间)0,1(-,),1(+∞内曲线为凸的,点)0,0(为拐点.例14 已知曲线cx bx ax y ++=23上点)2,1(处有水平切线,且原点为该曲线的拐点,求出该曲线方程.解 由cx bx ax y ++=23,得c bx ax y ++=23'2,b ax y 26"+= 根据题意得 2|1=++==c b a y x 023|'1=++==c b a y x 02|"0===b y x 解得3,0,1==-=c b a所以,该曲线方程为x x y 33+-=. 例15 求下列曲线的渐近线(1)2312+--=x x x y ; (2)2x y e -=; (3)34)1(x x y +=.解 (1) 因为0231lim2=+--∞→x x x x ,所以,0=y 为水平渐近线,又因 ∞=+--→231lim 22x x x x ,所以,曲线有垂直渐近线2=x . (2) 因为2lim 0x x e →∞=,所以,0y =为曲线的水平渐近线.(3) 因为∞=+-→341)1(lim x x x ,所以,曲线有垂直渐近线1-=x ;又因为 1)1(lim 34=⋅+∞→xx x x=-+∞→])1([lim 34x x x x =++-∞→334)1()1(lim x x x x x 2324)1()331(lim x x x x x x x ++++-∞→ 3)1(33lim 323-=+---=∞→x x x x x 所以,3-=x y 为曲线的斜渐近线. 说明: 曲线)(x f y =渐近线的确定:(1) 水平渐近线 若c x f x =∞→)(lim ,则直线c y =是曲线)(x f y =的水平渐近线.(2) 垂直渐近线 若∞=→)(lim 0x f x x ,则直线0x x =是曲线)(x f y =的垂直渐近线.(3) 斜渐近线 若a xx f x =∞→)(lim ,b ax x f x =-∞→])([lim 存在,则直线b ax y +=是直线)(x f y =的斜渐近线.例16 描绘函数2211)(xxx f -+=的图形. 解 依据描绘函数图形的六个步骤进行. 第一步 函数2211)(xxx f -+=的定义域为),0()0,(+∞⋃-∞, 经验证不具备奇偶性与周期性.第二步 求出一阶导数3)1(2)('x x x f -=,令0)('=x f 得驻点,11=x 求出二阶导数4)23(2)("xx x f -=,令0)("=x f 得,232=x 第三步 用点,11=x ,232=x 将函数的定义域划分为4个部分区间,列表分析函数)(x f 的单调性、极值、凹凸性和拐点.第四步 因+∞==→∞→)(lim ,1)(lim 0x f x f x x ,所以该曲线有水平渐近线1=y 和垂直渐近线0=x .第五步 点)0,1()91,23(121==,4|1=-=x y ,4|2=-=x y ,以利图形描绘.第六步 根据以上信息做出函数的图形.说明: 作函数图形的基本步骤:(1) (2) 求)('x f ,)("x f ,讨论函数单调性、凹凸性及极值点、拐点; (3) 确定曲线的渐近线;(4) 补充适当点(与坐标轴相交的点)的坐标,描点画图.例17 有一块宽为a 2的长方形铁皮,将宽的两个边缘向上折起相同的高度,做成一个开口水槽,其横截面为矩形,高为x ,问高x 取何值时水槽的流量最大(流量与横截面积成正比).解 根据题意得该水槽的横截面积为 )(2)(x a x x s -= (a x <<0),由于,42)('x a x s -=所以令,0)('=x s 得)(x s 的唯一驻点2a x =. 又因为铁皮的两边折得过大或过小,都会使横截面积变小,这说明该问题一定存在着最大值,所以,2ax =就是我们要求得使流量最大的高. 例18 已知某商品的成本函数为4100)(2q q C +=,求出产量10=q 时的总成本、平均成本、边际成本并解释其经济意义.解 4100)(2q q C +=总成本 125410100)10(2=+=C 平均成本函数 4100)()(qq q q C q C +== 平均成本 5.1241010100)10(=+=C边际成本 2)'4100()('2q q q C MC =+== 当10=q 时,边际成本5210)10(==MC 即当产量为10个单位时,每多生产1个单位产品需要增加5个单位成本.因为)10()10(MC C >,应继续提高产量.例19 某商品需求函数为122Q p=-)240(<<p ,求 (1) 需求弹性函数;(2) p 为何值时,需求为高弹性或低弹性? (3) 当6=p 时的需求弹性,并解释其经济意义. (4) 当6=p 时,价格上涨1%,总收益如何变化?解 (1) 因为122Q p=-,所以12d Q dp =-, 1()1212224P p d p pE Q Q dp p p =⋅=-⋅-=- (2) 令1P E <,即241pp -<,即12<p ,故 当120<<p 时,为低弹性.令1P E >,即241pp ->,即12>p , 故 当2412<<p 时,为高弹性.(3) 当6=p 时的需求弹性为 666||0.338241P p p p p E =====--- 说明: 当6=p 时,需求变动幅度小于价格变动的幅度,即6=p 时,价格上涨1%, 需求减少0.33%,或者说当价格下降1%时,需求将增加0.33%.(4) 当6=p 时,由于1183|6<==p P E ,故当价格上涨1%,其总收益会增加. 另外,由于总收益22112p p pD R T -==,于是总收益的弹性函数是pp p p p p R pdp dR E TT P R T --=-⋅-=⋅=24)12(22112)12(2从而当6=p 时,总收益的弹性是 67.032|24)12(2|66≈=--===p p P R p p E T ,说明当6=p 时,价格上涨1%,总收益将增加0.67%.例20 某个体户以每条10元的进价购一批牛仔裤,假设此牛仔裤的需求函数为P Q 240-=,问该个体户获得最大利润的销售价是多少?解 将总利润函数L 表示为p 的函数400602)240(10)240(10)()()(2-+-=---=-=-=p p p p p q pq p C p R p L604)('+-=p p L 令 0)('=p L ,得15=p 驻点唯一,且 04)("<-=p L , 故 15=p 为唯一极大值点. 因此当销售价为15元/条时获得最大利润.例21 某厂生产摄影机,年产量1000台,每台成本800元,每一季度每台摄影机的库存费是成本的5%,工厂分批生产,每次生产准备费为5000元,市场对产品一致需求,不许缺货,试确定一年最小费用开支时的生产批量及最小费用.分析: 此问题是经济批量及存货总费用最小问题,属于“成批到货,一致需求,不许缺货”的库存模型.所谓“成批到货”就是工厂生产的每批产品,先整批存入仓库;“一致需求”,就是市场对这种产品的需求在单位时间内数量相同,因而产品由仓库均匀提取投放市场;“不许缺货”就是当前一批产品由仓库提取完后,下一批产品立刻进入仓库.在这种假设下,规定仓库的平均库存量为每批产量的一半.设在一个计划期内 (1) 工厂生产总量为D ;(2) 分批投产,每次投产数量,即批量为Q ; (3) 每批生产准备费为1C ;(4) 每批产品的库存费为2C ,且按批量的一半即2Q收取库存费; (5) 存货总费用是生产准备费与库存费之和,记为E .依题设,库存费=每件产品的库存费×批量的一半=22QC ⋅生产准备费=每批生产准备费×生产批数=QD C ⋅1 于是,总费用函数为212)(C Q C Q D Q E E +== 02)('212=+-=C C Q DQ E 变形221QC QD C = (使库存费与生产准备费相等的批量是经济批量)解得 经济批量2102C DC Q =02)("31>=Q D C Q E 故此时总费用最小,其值为210201022C DC Q C Q D C E =+=. 解 由题设知台1000=D ,元50001=C ,每年每台库存费用 1604%58002=⋅⋅=C (元)库存总费用E 与每批生产台数Q 的关系 Q Q E E E 21605000100021+⋅=+=一年最小费用开支时的生产批量是经济批量2501605000100022210=⋅⋅==C DC Q (台)一年最小库存总费用40000250500010002250160202010=⋅+⋅=+=Q C Q D C E (元) 或400001605000100022210=⋅⋅⋅==C DC E (元)四、复习题三1. 函数)1ln(x y +=在)1,0(上是否满足拉格朗日中值定理的条件,若满足试求出定理中的ξ值. 2. 求出下列极限(1)8421612lim 2332+--+-→x x x x x x ; (2)xx x 1arctan 2lim -+∞→π; (3)xx ex 201lim -+→;(4)x x x )11(lim 0++→; (5))111(lim 0--→x x e x ; (6)xx xx x sin tan lim 20-→;(7)3sin 0lim x e e x x x -→; (8))tan (sec lim 2x x x -→π; (9)21lim (1)x xx e x-→+∞+; (10))1(sin lim20--→xx e x xx . 3. 证明:当0x >时,有不等式(ln x +>4. 证明:方程x x -=1tan 在)1,0(内的根是唯一的.5. 要造一个容积为V 的圆柱形密闭容器,问底半径r 和高h 为何值时,使表面积最小. 6. 求下列函数的单调区间及极值:(1)32)1()(x x x f -=; (2)2156)(23+--=x x x x f .7. 求下列函数的凹凸区间及拐点:(1)23)1(-=x x y ; (2)xxe y -=. 8. 设曲线123+++=cx bx ax y 在1=x 处有极小值-1,且有拐点)1,0(,试确定常数c b a ,,的值. 9. 一房地产公司有50套公寓要出租,当月租金每套定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会有一套公寓租不出去,而租出去的公寓每套每月需花费200元的维修费,试问租金定为多少时可获最大利润,最大利润是多少?10. 某公司生产成本的一个合理而实际的模型由短期库柏—道格拉斯成本曲线252)(21+-=q q C 给出.假设当平均成本等于边际成本时,平均成本取极小值,求q 取何值时,平均成本取得极小值?11. 设某商品的需求函数为p e Q 43-= ,求(1)需求弹性函数. (2)当4,34,1=p 时的需求弹性,并解释其经济意义. 五、复习题三答案1. 11ln 2ξ=- 2.(1)23; (2)1; (3)12-; (4) 1; (5)21;(6)31(提示 利用无穷小量代换x x ~sin ); (7)61(提示 =-+-→3sin sin sin 0lim x e e x x x x x =--→3sin sin 0)1(lim x e e x x x x 2sin 03)cos 1(lim x e x x x x -→-); (8)0;(9)21-e (提示 =⋅+-+∞→x x x e x2)11(lim −−→−=-++∞→xt x x x x e1)11ln(lim 2令20)1ln(lim t t t t e -+→);(10)61 (提示 利用无穷小量代换x e x~1-, 原式==-→203cos 1limx x x 616sin lim 0=→x x x ).3.提示: 方法一利用拉格朗日中值定理证明.设()(ln f x x =,()f x 在()0,+∞上连续可导,任取0x >,()f x 在()0,x 上满足拉格朗日中值定理的条件,()()00,f f x '==+=,存在()0,,x ξ∈使()ln 00x x -=-,由0x ξ<<,得(ln x +>方法二利用函数单调性证明.作辅助函数()(ln F x x =+,在[0,)+∞上连续可导,()()32221F x x x -⎡⎤'=-+⎥⎦=()232201x x >+为单调增加函数,当0x >时,()()0F x F >=0,即(ln x >4.提示:由零点定理证得x x -=1tan 在)1,0(内有根,01sec )'1(tan )('2>+=+-=x x x x F ,故)(x F 在)1,0(内严格单调增加,故方程x x -=1tan 在)1,0(内的根是唯一的.5.设表面积为A,则222,A r rh ππ=+又2V r h π=,即2V h r π=,222V A r rπ=+ ()0,r ∈+∞ ,因为3222424V r VA r r rππ-'=-=令0A '=,得唯一驻点r =所以当r =2V h r π==,表面积最小. 6.(1)单调增加区间),52[]0,(+∞⋃-∞;单调递减区间]52,0[;极大值0)0(=f ; 极小值325453)52(-=f .(2)单调增加区间),5[]1,(+∞⋃--∞;单调递减区间]5,1[-;极大值10)1(=-f ;极小值98)5(-=f .7.(1)凹区间),1()1,0(+∞⋃;凸区间)0,(-∞;拐点)0,0( (2)凹区间),2(+∞;凸区间)2,(-∞;拐点)2,2(2-e8.3,0,1-===c b a ;9.提示:设每套租金为x ,总利润为y总利润)14000007200(1001)200)(100200050(2-+-=---=x x x x y )72002(1001'+-=x y 令0'=y ,得3500=x 且0501"<-=y即 3500=x 是y 达到最大值的点,最大利润112000=y 元.10.提示:平均成本12()252C q q q q-=-+; 边际成本21)('--=q q C 由)(')(q C qq C = 得625=q 11.34p EQ E P Ep P Q =-=当1=p 时,314p E =<,需求为低弹性; 当34=p 时,1p E =,需求为单位弹性; 当4=p 时,31p E =>,需求为高弹性.六、自测题三(一)填空题(每小题2分,共20分)1.32)(2--=x x x f 在]23,1[-上满足罗尔中值定理的=ξ ; 2.函数)1ln()(+=x x f 在]1,0[上满足拉格朗日中值定理的=ξ ; 3. 函数x x x f cos 2)(-=在区间 内是单调增加的; 4.曲线35)2(-=x y 的凸区间为__________________________________; 5.曲线3352x x y -+=的拐点是______________________________________;6. 曲线122-=x x y 有水平渐近线 ,垂直渐近线___________________;7. 函数)(x f =12+x 在[0,4]上的最大值是 ,最小值是______________; 8. 当4=x 时,函数q px x y ++=2取得极值,则p = ; 9. 若点(1,3)是曲线23bx ax y +=的拐点,则a = ,b = ; 10.总成本函数,10001001.0)(2++=x x x C 则边际成本为 ______.(二)单选题(每小题3分,共15分)1.函数)(x f 有连续二阶导数且2)0(",1)0(',0)0(-===f f f ,则2)(limx xx f x -→= ( ) A .不存在; B .0 ; C .-1 ; D .-2.2. 设函数)(x f 在),(b a 内连续,),(0b a x ∈,0)(")('00==x f x f ,则)(x f 在0=x 处 ( )A .取得极大值;B .取得极小值 ;C .一定有拐点))(,(00x f x ;D .可能取得极值,也可能有拐点. 3. 函数)(x f 在0x 处取得极值,则必有 ( ) A . 0)('=x f ; B . 0)("<x f ;C . 0)('=x f ,0)("<x f ;D . 0)('=x f 或)('x f 不存在.4.曲线32)2(2-+=x x y 的渐近线有 ( )A .一条;B .2条 ;C .3条 ;D .0条. 5.方程0133=+-x x 在区间),(+∞-∞内有 ( ) A .无实根; B .有唯一实根; C .有两个实根; D .有三个实根.(三)求下列极限(每小题6分,共24分) 1.)1ln(arctan lim31x x x x +-→; 2. x x x ln lim 50+→; 3. )]1ln(11[lim 20x xx x -+→; 4. x x x ln 10)(cot lim +→.(四)证明题(11分)1.证明不等式)0(1>+>x x e x;(5分) 2.证明方程015=-+x x 只有一个正根.(6分) (五)应用题(每小题10分,共30分)1.求函数123+--=x x x y 的单调区间、极值及凹凸区间、拐点. 2.在周长为定值l 的所有扇形中,当扇形的半径取何值时所得扇形面积最大? 3.某商品的需求函数为275)(p p Q -=(p 为价格) (1) 求4=p 的边际需求.(2) 求4=p 时需求价格的弹性,并说明经济意义. (3) 当p 为多少时,总收益最大?最大值时多少?七、自测题三答案(一)1.41; 2.12ln 1-; 3.),(+∞-∞; 4. )2,(-∞ 5.)2,0(; 6.1,1±==x y ; 7.3,1; 8.-8; 9.29,23-; 10.1002.0)('+=x x C . (二)1.C ; 2.D ; 3.D ; 4.B ; 5.D .(三)1.14ln 2π-2.0; 3.21-; 4. e 1.(四)1.证:设x e x f x--=1)(,在),0(+∞内连续,且01)('>-=xe xf ,)(x f 在),0(+∞内单调增加,0)0()(=>f x f ,即01>--x e x ,得证.2.提示:设()51f x x x =+-由零点定理证得()f x 在)1,0(内至少存在一点ξ,使得()510f ξξξ=+-=,再由4()510f x x '=+>,()f x 在()0,+∞内严格单调增加,故方程015=-+x x 只有一个正根.(五)1.单调递增区间为),1()31,(+∞⋃--∞;单调递减区间为)1,31(-; 极大值1332|27x y =-=;极小值0|1==x y ;凹区间为),31(+∞;凸区间为)31,(-∞;拐点)2716,31(. 2.设扇形半径为x ,弧长为x l 2-,扇形面积1(2)2y x l x =-,1'22y x l =-+, 令0'=y ,得驻点4l x =,唯一驻点 ,且"20y =-<,故4lx =为极大值点,所以,当4lx =时,扇形面积最大,最大面积为216l y =.3.(1)8|2|44-=-===p p p dpdQ(2)75222-=⋅=p p dp dQ Q p Ep EQ , 54.0|4-≈=p Ep EQ 说明若价格由4=p 上涨1%,则需求量减少0.54%.(3)375R pQ p p ==-,2375'p R -= ,令0'=R ,得5=p ,030|6"5<-=-==p p R ,所以 5=p 时总收益最大,最大值为250|5==p R .。
⾼等数学(同济⼤学教材第五版)复习提纲⾼等数学(同济⼤学教材第五版)复习提纲第⼀章函数与极限:正确理解、熟练掌握本章内容,求各类函数的极限,尤其是未定式与幂指函数求极限第⼆章导数与微分:正确理解、熟练掌握本章内容,各类函数的求导与微分的基本计算第三章微分中值定理与导数的应⽤:熟练掌握本章的实际应⽤,研究函数的性态,证明相关不等式第四章不定积分:正确理解概念,会多种积分⽅法,尤其要⽤凑微分以及⼀些需⽤⼀定技巧的函数类型第五章定积分:正确理解概念,会多种积分⽅法,有变限函数参与的各种运算第六章定积分的应⽤:掌握定积分的实际应⽤第七章空间解析⼏何和向量代数:熟练掌握本章的实际应⽤⾼等数学(1)期末复习要求第⼀章函数、极限与连续函数概念理解函数概念,了解分段函数,熟练掌握函数的定义域和函数值的求法。
2.函数的性质知道函数的单调性、奇偶性、有界性和周期性,掌握判断函数奇偶性的⽅法。
3.初等函数了解复合函数、初等函数的概念;掌握六类基本初等函数的主要性质和图形。
4.建⽴函数关系会列简单应⽤问题的函数关系式。
5.极限:数列极限、函数极限知道数列极限、函数极限的概念。
6.极限四则运算掌握⽤极限的四则运算法则求极限. 7.⽆穷⼩量与⽆穷⼤量了解⽆穷⼩量的概念、⽆穷⼩量与⽆穷⼤量之间的关系,⽆穷⼩量的性质。
8.两个重要极限了解两个重要极限,会⽤两个重要极限求函数极限。
9.函数的连续性了解函数连续性的定义、函数间断点的概念;会求函数的连续区间和间断点,并判别函数间断点的类型;知道初等函数的连续性,知道闭区间上的连续函数的⼏个性质(最⼤值、最⼩值定理和介值定理)。
第⼆章导数与微分1.导数概念:导数定义、导数⼏何意义、函数连续与可导的关系、⾼阶导数。
理解导数概念;了解导数的⼏何意义,会求曲线的切线和法线⽅程;知道可导与连续的关系,会求⾼阶导数概念。
2.导数运算熟记导数基本公式,熟练掌握导数的四则运算法则、复合函数的求导的链式法则。
《高等数学一》课程教学大纲一、课程基本信息课程名称:高等数学一英文名称:Advanced Mathematics 1课程性质:专业基础课周学时/学分:5/4适用专业:使用教材:《高等数学》由济大学数学系编,高等数学同济第七版是普通高等教育“十二五”GJJ规划教材,在第6版基础上作了进一步修订。
二、课程简介《高等数学》是高等学校中经济类和理工类专业必修的重要基础理论课。
高等数学是高校不可或缺的一门基础课,为学生学习专业课奠定了基础,对对培养学生严密的思维能力和创新能力起着不可替代的作用。
旨在通过高等数学得学习,进行逻辑思维能力的训练,为其他课程奠定一个坚实的基础。
三、教学基本要求将社会主义核心价值观贯穿始终,使学生树立正确的价值观,培养学生敬业、精益、专注、创新、追求卓越的工匠精神;培养学生将实际问题转化为数学问题以及所学知识去解决实际问题的能力,力求使学生在原有初等数学的基础上,学习与掌握高等数学的思想与方法,并能用高等数学的思想与方法去分析、解决实际问题,让数学成为学生解决实际问题的工具,更好的服务于学生后续专业课程的学习与素质的全面提高,培养面向基层、面向生产、面向管理与服务的一线高技能应用型人才;理解函数极限、连续、导数、微分、不定积分和定积分的概念;熟练掌握函数的极限、导数、积分的计算;能对函数进行连续性的判断,会求最值、切线、平面图形的面积以及旋转体的体积等;在教学过程中结合学校“三考一创”特色,着重对学生考研知识框架内进行学习与指导。
五、考核方式和成绩评定方法1、考核方式:闭卷考2、成绩评定方法:平时、期中、期末成绩分别为20%、20%、60%(平时成绩由作业成绩、课堂讨论成绩、考勤成绩构成)六、教学内容提要第一章函数1、教学目的:1.理解函数、复合函数、分段函数、基本初等函数、初等函数的概念。
2.了解几类特殊的函数。
3.掌握函数的表示方法及求函数的定义域和函数值的方法。
4.了解函数的奇偶性、单调性、周期性和有界性。
《微积分》教学要求说明:从2013学年起《微积分》课程教学内容分为三个学期完成,课时数分别为60,60,40.(课时总数没有变化,但时间跨度从四学期变为三学期)第一学期(60学时)第一章 函数与极限(14学时)1 了解极限的概念,了解分段函数的极限的计算。
2 掌握极限四则运算法则,会用变量代换求某些简单复合函数的极限。
3 了解极限的性质(惟一性、有界性和保号性)和两个极限存在准则(夹逼准则与单调有界准则),会用两个重要极限求极限。
4 了解无穷小、无穷大以及无穷小的阶的概念,会用等价无穷小求极限。
5 理解函数连续性的概念,会判别函数间断点的类型。
6 了解初等函数的连续性和闭区间上连续函数的性质。
说明1:本章原来教学时数是16,现改为14,建议第一节(常用符号介绍)、第二节(函数的概念)作为自学内容。
说明2:用,N X εεδε---,定义证明极限不作要求。
第二章 导数与微分(12学时)1 理解导数(包括左、右导数)的概念,了解导数的几何意义,了解函数的可导性与连续性之间关系。
2 掌握导数的四则运算法则、反函数与复合函数的求导法则,掌握基本初等函数的导数公式。
会求分段函数的导数。
3 了解高阶导数的概念。
掌握初等函数的二阶导数的计算。
会求简单函数的n 阶导数。
4 掌握求隐函数、参数方程所确定的函数的一阶、二阶导数。
会解一些简单实际问题中的相关变化率问题。
5 了解微分的概念与四则运算。
说明:建议导数的经济意义作为自学内容。
高阶导数以二阶为主。
第三章 微分中值定理及导数的应用(12学时)1 理解并会应用罗尔定理、拉格朗日中值定理,了解柯西中值定理。
2 掌握洛必达法则求不定式极限的方法。
3 理解函数的极值概念,掌握用导数判别函数的单调性和求函数极值的方法。
会用单调性证明不等式。
4 会求最大值、最小值问题,会解决简单的实际应用问题。
5 会用导数判别函数图形的凹凸性,会求拐点。
说明1:建议第六节(函数图形的描绘)、第七节(曲率)、第八节(方程的近似解)作为自学内容。
高等数学(1)复习指导(一)高等数学(1)复习指导(一)高数一本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。
应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
复习考试内容一、函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数隐函数(2)函数的性质单调性奇偶性有界性周期性(3)反函数反函数的定义反函数的图像(4)基本初等函数幂函数指数函数对数函数三角函数反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。
会求函数的表达式、定义域及函数值。
会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
(二)极限1.知识范围(1)数列极限的概念数列数列极限的定义(2)数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4)函数极限的性质唯一性四则运算法则夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。
判断单调性的5种方法在数学中,判断函数的单调性是一个非常重要的问题,它涉及到函数图像的走势和变化规律。
下面将介绍判断单调性的5种方法,希望能够帮助大家更好地理解和掌握这一知识点。
1. 导数法。
利用导数的正负性来判断函数的单调性是一种常用的方法。
当函数在某一区间内的导数大于0时,函数在该区间内是单调递增的;当函数在某一区间内的导数小于0时,函数在该区间内是单调递减的。
通过求导数并分析导数的正负性,可以比较容易地判断函数的单调性。
2. 一阶导数与二阶导数法。
除了利用导数的正负性外,还可以通过一阶导数和二阶导数的关系来判断函数的单调性。
当函数在某一区间内的一阶导数大于0且二阶导数大于等于0时,函数在该区间内是单调递增的;当函数在某一区间内的一阶导数小于0且二阶导数小于等于0时,函数在该区间内是单调递减的。
这种方法在一些特殊情况下比较有效。
3. 函数图像法。
通过观察函数的图像,可以直观地判断函数的单调性。
当函数的图像是严格上升或严格下降的时候,函数在相应的区间内是单调递增或单调递减的。
利用函数的图像可以更直观地理解函数的单调性。
4. 极值点法。
函数在极值点处可能发生单调性的变化。
当函数在某一区间内的极值点处,可以通过判断极值点的类型(极大值或极小值)来推断函数在该区间内的单调性。
这种方法需要注意极值点的存在和类型。
5. 线性规划法。
对于一些特定的函数,可以利用线性规划的方法来判断函数的单调性。
通过建立相应的线性规划模型,可以得到函数的单调性区间和趋势。
这种方法相对较为复杂,但在一些特殊情况下比较有效。
总结。
判断函数的单调性是数学中的一个重要问题,对于理解函数的性质和变化规律有着重要的意义。
通过以上介绍的5种方法,希望能够帮助大家更好地掌握判断单调性的技巧和方法。
当然,判断函数的单调性并不是一件容易的事情,需要通过大量的练习和实践来提高自己的能力。
希望大家能够在学习和实践中不断提高,掌握更多的数学知识。
教学设计-------导数及其应用一.教学目标知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求最值极值过程与方法:1.通过本节的学习,掌握用导数研究单调性、最值的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想、分类讨论思想。
情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
二.教学重难点对于函数导数及其应用,学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由数到形的翻译,从直观到抽象的转变,对学生是比较困难的。
根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。
教学重点:探索研究切线、单调区间、最值和极值。
教学难点:探索函数的单调性与导数的关系。
三.教法分析:1.教学方法的选择:为还课堂于学生,突出学生的主体地位,本节课拟运用“问题--- 解决”课堂教学模式,采用发现式、启发式、讲练结合的教学方法。
通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题,总结规律,培养积极探索的科学精神。
2.教学手段的利用:本节课采用多媒体课件等辅助手段以加大课堂容量,通过数形结合,使抽象的知识直观化,形象化,以促进学生的理解。
3.教学课堂结构知识回顾—问题情境—新课探究—知识运用(例题精讲—变式训练—拓展延伸—能力提升)—课堂小结—作业布置四.学法分析:为使学生积极参与课堂学习,我主要指导了以下的学习方法:1.合作学习:引导学生分组讨论,合作交流,共同探讨问题;2.自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动;3.探究学习:引导学生发挥主观能动性,主动探索新知。
五.教学过程:(一)知识回顾从已学过的知识(导数几何意义、求导公式、判断二次函数的单调性、极值)入手,提出新的问题(判断三次函数的单调性、求极值),引起认知冲突,激发学习的兴趣。
浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x )与其反函数y =ƒ-1(x )之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
证明函数单调性的方法证明一个函数的单调性是数学分析中非常重要的一部分,它可以帮助我们更好地理解函数的性质和特点。
在这篇文档中,我将介绍一些证明函数单调性的方法,希望能够对大家有所帮助。
首先,我们需要了解函数的单调性是指函数在定义域内的任意两个点x1和x2,若满足x1<x2,则有f(x1)≤f(x2)或f(x1)≥f(x2),那么我们就称这个函数在这个定义域内是单调递增或单调递减的。
证明一个函数的单调性通常有以下几种方法:1. 导数法。
导数法是证明函数单调性最常用的方法之一。
我们可以通过求函数的导数来判断函数的单调性。
具体来说,如果函数在定义域内的导数大于0,那么函数就是单调递增的;如果函数在定义域内的导数小于0,那么函数就是单调递减的。
2. 一阶导数判别法。
一阶导数判别法是通过函数的一阶导数的符号来判断函数的单调性。
我们可以通过求函数的一阶导数,并根据导数的符号来确定函数的单调性。
如果一阶导数大于0,则函数单调递增;如果一阶导数小于0,则函数单调递减。
3. 二阶导数判别法。
二阶导数判别法是通过函数的二阶导数的符号来判断函数的单调性。
我们可以通过求函数的二阶导数,并根据二阶导数的符号来确定函数的单调性。
如果二阶导数大于0,则函数凹性向上,单调递增;如果二阶导数小于0,则函数凹性向下,单调递减。
4. 极值点法。
极值点法是通过函数的极值点来判断函数的单调性。
我们可以通过求函数的极值点,并根据极值点的位置来确定函数的单调性。
如果函数在极值点的左侧是单调递增的,在极值点的右侧是单调递减的;如果函数在极值点的左侧是单调递减的,在极值点的右侧是单调递增的。
以上就是几种常用的证明函数单调性的方法,当然也还有其他一些方法,但这些方法是最基本、最常用的。
希望通过这篇文档的介绍,大家能够更好地理解函数的单调性,并且能够灵活运用这些方法来证明函数的单调性。
函数的单调性是数学分析中的重要内容,它可以帮助我们更好地理解函数的性质和特点,也为我们解决实际问题提供了重要的理论依据。
中国地质大学研究生院硕士研究生入学考试《高等数学》考试大纲(包括高等数学、线性代数初步两部分)一、试卷结构(一)内容比例高等数学 约85%线性代数初步 约15%(二)题型比例填空题与选择题 约30%解答题(包括证明题) 约70%二、其他考试时间为180分钟,总分为150分。
高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立 数列极限与函数极限的定义以及它们的性质 函数的左、右极限 无穷小 无穷大 无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:e )11(lim ,1sin lim 0=+=∞→→x x x xx x 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质(最大值、最小值定理和介值定理)。
考试要求1. 理解函数的概念 会作函数符号运算并会建立简单应用问题中的函数关系式。
2. 了解函数的奇偶性、单调性、周期性和有界性。
3. 理解复合函数的概念,了解反函数及隐函数的概念。
4. 掌握基本初等函数的性质及图形。
5. 理解极限的概念,理解函数的左、右极限概念及函数极限存在与左、右极限之间的关系。
6. 掌握极限的性质及四则运算法则。
7. 理解极限存在的两个准则,并会利用它们求极限,掌握用两个重要极限求极限的方法。
8. 理解无穷小、无穷大以及无穷小的阶的概念,会用等价无穷小求极限。
9. 理解函数连续性的概念,会判别函数间断点的类型。
10. 了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质。
二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线及其方程基本初等函数的导数导数和微分的四则运算反函数、复合函数、隐函数以及参数方程所确定的函数的微分法高阶导数的概念某些简单函数的n介导数一阶微分形式的不变性微分在近似计算中的应用罗尔(Rolle)定理拉格朗日(Lagrange)中值定理柯西(Cauchy)中值定理泰勒(Taylor)定理洛必达(L′Hospital)法则函数的极值及其求法函数增减性和函数图形凹凸性的判定函数图形的拐点及其求法渐近线描绘函数的图形函数最大值和最小值的求法及其简单应用弧微分曲率的概念及计算曲率半径方程近似解的二分法和切线法考试要求1. 理解导数和微分的概念。
高纲1132江苏省高等教育自学考试大纲27707经济应用数学南京农业大学编江苏省高等教育自学考试委员会办公室一、课程性质及其设置目的与要求(一)课程性质、地位和和任务经济应用数学课程是经济类和管理类专业学生的一门重要的基础课程,其主要任务是培养经济管理类专业的自学者系统地学习微积分的基本概念、基本理论、基本原理,通过对微积分的学习培养学生抽象思维的能力,逻辑推理的能力,发现问题、分析问题和解决问题的能力,为学生后续课程的学习或为考生今后从事经济管理相关业务或工作打下良好的基础。
(二)本课程的基本要求和重点通过本课程的学习,应达到以下要求:1.获得一元函数微积分学的系统的基本知识、基本理论和基本方法,特别是一元微积分学处理问题的思路和方法;2.获得多元函数微分学的初步知识。
本课程的重点是一元函数的极限与连续、导数与微分、积分的概念、计算及其应用。
考虑到经济管理类专业的特点,本着打好基础、着重应用为原则,要求学员理解课程中的基本概念和它们之间的联系,掌握基本的运算方法和运算技巧,以及这些概念和方法在经济中的一些简单的应用。
课程中的有关定理只要知道定理成立的条件和可以得到的结论,定理的证明以及与经济方面关系不大的内容不作要求。
(三)本课程与相关课程的联系微积分以函数为研究对象,本课程主要包括函数的导数、微分和积分等概念、方法、计算和应用,而极限是阐明这些概念和方法的基本工具。
为此,考生在学习本课程时应具备高中数学的基础知识。
另一方面,本课程又为经济管理类各专业的后续课程奠定必要的数学基础。
二、课程内容与考核目标第一章函数与极限一、考核知识点1.函数的概念(函数的定义、定义域、表示方法);2.函数的基本性质(单调性、奇偶性、有界性、周期性);3.复合函数与反函数;4.初等函数和分段函数;5.数列极限与函数极限的概念,极限的基本运算法则;6.无穷小与无穷大的概念、相互关系、无穷小的性质与无穷小量的比较;7.两个重要的极限;8.函数的连续性与间断点9.经济问题中常见的函数(需求函数、供给函数、成本函数、收益函数、利润函数);二、自学要求函数是数学中最基本的概念之一,它从数学上反映各种实际现象中量与量之间的依赖关系,是微积分的主要研究对象。
《微积分》复习大纲第二章、极限与连续第一节、数列的极限教学目的和要求:1、通过割圆术和截杖问题的计算实例引入数列极限的概念,从中领会极限的基本思想。
2、使学生了解的极限定义和性质,并通过例题学会如何处理和解决相应的数学问题。
重点:数列极限的概念教学过程:一、问题的提出1、刘徽的割圆术2、截杖问题二、数列极限的定义注:1、数列是否有极限,与其前面的有限项无关•而与从某项以后的变化情况有关,因此改变一个数列的有限项的值或去掉或添加有限项,均不改变{ X n} 的收敛与发散性;2、在证明数列有极限时,不一定要找到最小的正整数N,只要证明其存在即可.显然,如果证明了存在符合要求的正整数N,那么这种就有无穷多个.3、数列极限的定义未给出求极限的方法.第二节、函数的极限教学目的和要求:1、理解函数极限的概念,了解;-X ,;定义。
2、使学生了解的函数极限性质重点:函数极限的概念教学过程:一、函数极限的定义1、自变量趋于无穷大时函数的极限注:讨论当自变量X的绝对值|X无限增大(X r ,X r 一,X))时,函数f (X)无限趋近于一个常数A的情形.2、自变量趋于有限值时函数的极限注:研究自变量x无限趋近于一个常数x o,(x— x0,x_. x0,x_. \7),函数f (x) 无限趋近于一个常数A的情形.三、例题分析例1证明lim叱=0.x注:1本题考察用定义验证函数极限的一般过程2、若|im f x =c,则直线y = c是函数y= f x的图形的水平渐近线。
例2:证明lim c =c ( c为常数).X—注:常数在任一点的极限是常数。
例3:证明lim x = x0.X—sxo例4:证明lim匸1 =2.一x—1注:函数在某一点是否有极限,与该点是否有定义无关。
\+1, x c0例5:设f (x)=彳0, x =0证验当X T0时,f (x )的极限不存在.x2 -1, x 0注:函数f X当x > X。
高等数学C1(一)一、课程说明课程编号:130707X10课程名称(中/英文):高等数学C1(一)/ Advanced Mathematics C1(Ⅰ)课程类别:必修学时/学分:80/5先修课程:初等数学适用专业:药学、临床医学八年制基本教材:《医用高等数学》李飞宇、张佃中主编湖南科学技术出版社2012.9主要参考书:教材、教学参考书:二、课程设置的目的意义高等数学是大学药学专业、临床医学八年制的主要公共基础课程之一.本课程主要介绍一元函数微积分、空间解析几何、多元函数微分学、二重积分等方面的基本概念、基本理论和基本运算技能.使学生对极限的思想和方法有初步认识,对具体与抽象、特殊与一般、有限与无限等辩证关系有初步的了解,初步掌握微积分的基本知识、基本理论和基本技能,建立变量的思想,培养辩证唯物主义观点,并受到运用变量数学方法解决简单实际问题的初步训练.通过各个教学环节逐步培养学生具有抽象概括问题的能力、空间想象能力、逻辑推理能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决实际问题的能力.为学习后继课程和今后工作需要打下必要的数学基础.三、课程的基本要求本课程基本要求的高低用不同词汇加以区分,对概念、理论,高要求用“理解”一词表述,低要求用“了解”一词表述;对方法、运算,高要求用“掌握”一词表述,低要求用“会”或“了解”表述.学生对高要求部分必须深入理解、牢固掌握、熟练运用.具体要求如下:第1章函数、极限与连续1.理解函数的概念,掌握函数的表示法, 会求函数值及定义域.2.了解函数的奇偶性、单调性、周期性和有界性.3.了解反函数概念,会求简单函数的反函数;理解复合函数概念,会分析复合函数的复合过程.4.掌握基本初等函数的性质及其图形.5.会建立简单实际问题中的函数关系.6.理解极限的概念(对极限的ε-N,ε-δ定义在学习过程中逐步加深理解,对于给出ε求N或δ不作过多的要求.)7.掌握极限四则运算法则.8.了解极限存在的夹逼准则和单调有界准则,会用两个重要极限求极限.9.了解无穷小、无穷大以及无穷小的阶的概念,了解无穷小的运算性质及阶的比较,会用等价无穷小求极限.10.理解函数在一点连续的概念,会判断函数在某一点(包括分段函数的分段点)处的连续性.11.了解函数间断点的概念,并会判断间断点的类别.12.了解初等函数的连续性及闭区间上连续函数的性质, 并会运用这些性质.第2章导数与微分1.理解导数与微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系;会求曲线在某点处的切线与法线方程.2.掌握导数的四则运算法则和复合函数求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分的形式不变性.3.了解高阶导数的概念, 会求简单函数的n阶导数.4.掌握初等函数一、二阶导数的求法.5.会求隐函数和参数方程所确定的函数的一、二阶导数,会求反函数的导数.6.会用对数求导法求幂指函数及由积、商、幂所形成的函数的导数.第3章中值定理与导数应用1.理解罗尔定理和拉格朗日中值定理.2.了解柯西中值定理和泰勒中值定理,知道e x、sin x等函数的麦克劳林展开式.3.会用罗尔定理和拉格朗日中值定理进行简单的推理证明.4.会用洛必达法则求不定式的极限.5.掌握用一阶导数判别函数单调性及确定单调区间的方法,会利用函数的单调性证明简单的不等式.6.理解函数的极值概念,掌握极值点与极值的求法.会求较简单的最大值和最小值的应用问题.7.了解曲线凹凸性与拐点的概念,会用导数判别曲线的凹凸性,会求拐点.会求曲线的水平和铅直渐近线,能描绘函数的图形.第4章不定积分1.理解原函数与不定积分的概念,掌握不定积分的性质.2.掌握不定积分的基本公式.3.掌握不定积分的换元积分法和分部积分法.4.会求简单的有理函数和三角函数有理式及简单无理函数的不定积分.第5章定积分1.理解定积分的概念、几何意义和基本性质.2.理解变上限的积分作为其上限的函数及其求导定理.3.掌握牛顿-莱布尼兹公式并能熟练地用此公式计算定积分.4.掌握定积分的换元积分法与分部积分法.5.会用微元法将实际问题表达成定积分的方法.6.掌握用定积分计算平面区域的面积(包括在直角坐标系和极坐标系).7.会用定积分计算平行截面面积为已知的立体(包括旋转体)的体积.8.会求平面曲线的弧长.第6章空间解析几何1.理解向量的概念.2.掌握向量的运算(线性运算、数量积和向量积).掌握两个向量夹角的求法以及垂直、平行的条件.3.理解单位向量及向量的坐标表达式.掌握用坐标表达式进行向量运算.4.理解平面和直线方程并掌握它们的求法.5.理解曲面方程的概念.掌握常用二次曲面的方程及其图形.掌握以坐标轴为旋转轴的曲面及母线平行于坐标轴的柱面方程.了解以坐标原点为顶点的锥面方程,会求空间曲线在坐标面上的投影曲线方程.6.了解空间曲线的参数方程和一般方程.第7章多元函数微分学1.理解多元函数的概念及其几何意义,会求函数的定义域.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.理解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件,掌握多元函数一阶、二阶偏导数的求法.4.掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数.5.会求由一个方程所确定的隐函数的偏导数.6.理解多元函数的极值和条件极值的概念,会求二元函数的极值.了解求条件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题.7.了解最小二乘法.第8章二重积分1.理解二重积分的概念,了解二重积分的性质.2.掌握二重积分的计算方法(直角坐标、极坐标).3.会用二重积分求一些几何量(如面积、体积等).四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求无.六、考核方式及成绩评定七、大纲撰写:大纲审核:。