图形的位似2
- 格式:doc
- 大小:561.00 KB
- 文档页数:2
图形的位似--知识讲解【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化. 【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k或-k.【典型例题】类型一、位似多边形1.下列每组的两个图形不是位似图形的是().A. B. C. D.【思路点拨】根据位似图形的概念对各选项逐一判断,即可得出答案.【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A 、B 、C 三个图形中的两个图形都是位似图形; 而D 的对应顶点的连线不能相交于一点,故不是位似图形. 故选D .【总结升华】位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21C.31 D.不知AB 的长度,无法判断【答案】C2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.A B DE【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.举一反三【变式】在已知三角形内求作内接正方形.A 1B 1C 1D 1E 1【答案与解析】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD; ∴四边形DEFG 即为所求.类型二、坐标系中的位似图形B C3.(优质试题•漳州)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.【思路点拨】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【答案与解析】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【总结升华】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.(优质试题春•威海期末)如图△ABC的顶点坐标分别为A (1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F 的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)如图,△DEF和△D′E′F′为所作;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).【总结升华】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.。
第四章图形的相似8.图形的位似(二)一、学生知识状况分析九年级的学生正处于由形象思维向抽象思维的过渡阶段,经过沉淀,已经积累了一定的学习数学的方法和经验。
他们具备一定的探究能力,也喜欢动手探究。
本节课是第四章第13节图形的位似的第二课时,在上一课时学习了位似图形及相关概念后,学生动手能够将一些简单图形进行放大或缩小,会利用橡皮筋等方法做近似的放大图形,已获得一些相关的知识经验和体验,这些为本节课的学习奠定了基础。
学生日常生活中经常见到放大与缩小的实例,对本课的学习有一定的兴趣。
同时,在以往的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的经验,以及归纳知识的能力。
在此基础上,本节课主要探讨在平面直角坐标系中多边形与其位似图形之间的关系二、教学任务分析因为学生已经学过相似、位似等有关知识,并能将某一简单图形按一定比例放大或缩小,本节课将多边形放到直角坐标系中,探讨通过直角坐标系,如何寻找它关于原点O的位似图形并确定相似比,如何将一个多边形放大或缩小。
同时,也要探讨在直角坐标系中,给出相似比,如何确定一个已知多边形关于原点O的位似图形。
通过具有挑战性的内容,促使学生进一步理解位似的相关概念,熟练掌握利用直角坐标系将一个图形按比例放大或缩小,进而能初步归纳出规律,形成有关技能,发展思维能力。
本节课将观察、动手操作、合作探究等实践活动贯穿于教学活动的始终。
同时,有意识地培养学生积极的情感和态度。
为此,本节课的教学目标是:(一)知识目标1、在直角坐标系中,感受以O为位似中心的多边形的坐标变化与相似比之间的关系.2、经历探究平面直角坐标系中以原点O为位似中心的多边形的坐标变化与相似比之间关系的过程,发展形象思维能力和数形结合意识。
(二)能力目标1、能熟练地利用平面直角坐标系中,多边形坐标变化与其位似图形的关系,将一个图形放大或缩小2、经历探究平面直角坐标系中,以O为位似中心的多边形的坐标变化与相似比之间关系的过程,领会所学知识,归纳作图步骤,总结规律,并较熟练地进行应用。
九年级位似图形知识点位似图形是几何学中的一个重要概念,旨在描述两个图形在平面上的相似关系。
在九年级的学习中,位似图形是一个重要的知识点,需要我们对其特性和性质进行深入了解。
下面将对九年级位似图形的相关知识进行详细介绍。
一、位似图形的定义位似图形是指两个图形在形状上相似,但它们的大小可能不同。
也就是说,如果两个图形的相应角度相等,并且对应边的长度之比相等,那么这两个图形就是位似图形。
二、位似图形的性质1. 角度相等性质:两个位似图形的相应角度是相等的,也就是说,它们的对应角度是相等的。
这是因为位似图形的定义中要求相应角度相等。
2. 边比例性质:位似图形的对应边的长度之比相等。
比如,如果两个位似三角形的某两条边之比为a:b,那么这两个位似三角形的所有对应边的长度之比都是a:b。
3. 面积比例性质:位似图形的面积之比等于任意一对相应边的长度之比的平方。
这是因为面积是长度的平方,所以位似图形的面积比例由边的长度比例的平方决定。
三、位似图形的判定方法在九年级的学习中,我们需要掌握一些判定位似图形的方法,以便在做几何题目时能够准确判断图形的相似关系。
1. 角度判定法:当两个图形的所有相应角度均相等时,这两个图形是位似图形。
2. 边比例判定法:当两个位似图形的对应边长度之比相等时,这两个图形是位似图形。
3. 边角比例判定法:当两个位似图形的两对相应边的比例均相等时,这两个图形是位似图形。
四、位似图形的应用位似图形有着广泛的应用,尤其是在几何题目的解答中经常会用到。
以下是一些位似图形的应用场景:1. 尺规作图:利用位似图形的性质可以进行尺规作图,即通过已知图形的位似图形来构造目标图形。
2. 相似比例问题:位似图形常常与比例的概念联系在一起。
在解决相似比例问题时,我们可以利用位似图形的性质来求解未知量。
3. 解决实际问题:位似图形的概念可以帮助我们解决一些实际问题,比如测量高度无法直接测量的物体等。
总结:九年级位似图形是一个重要的几何学知识点,需要我们掌握位似图形的定义、性质、判定方法以及应用。
图形的位似
图形的位似是一种数学概念,用于描述两个图形之间的相似程度。
在几何图形中,位似是指两个图形的形状和大小相似,只是其中一个图形经过了缩放、旋转或平移等变换。
要判断两个图形是否位似,主要需要比较它们的比例关系和形状。
比例关系表示两个图形的对应部分的边长或面积的比值是相等的;形状表示两个图形的边长和角度之间的关系是相等的。
图形的位似可以用于解决很多实际问题。
例如,当我们要放大或缩小一个图形时,可以利用位似的概念来确定新图形的尺寸;当我们需要判断两个地图或建筑物是否相似时,也可以采用位似的方法来比较它们的形状和比例关系。
在实际应用中,通常可以通过计算两个图形的相似比来确定它们的位似程度。
相似比是两个图形的对应边长的比值。
如果两个图形的相似比相等,则它们是位似的。
例如,假设有两个三角形ABC和DEF,它们的对应边长比为a:b:c和d:e:f,如果a/b=c/d=e/f,则可以判断三角形ABC和DEF是位似的。
当然,在实际中判断图形的位似还有其他方法和指标。
例如,可以通过计算两个图形的面积比或计算它们的角度之间的差值来判断它们的位似程度。
不同的方法可以根据具体的问题进行选择和应用。
总之,图形的位似是一种数学概念,用于描述和比较两个图形之间的相似程度。
通过比较两个图形的比例关系和形状
等特征,可以判断它们的位似程度。
在解决实际问题时,可以利用位似的概念来确定图形的尺寸和形状,并进行比较和分析。
22.4图形的位似变换教学目标【知识与技能】1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.【过程与方法】经历位似图形的探索过程,进一步发展学生的探究、交流能力.【情感、态度与价值观】培养学生动手操作的能力,体验学习的乐趣.重点难点【重点】位似图形的有关概念、性质与作图.【难点】利用位似将一个图形放大或缩小.教学过程一、问题引入1.生活中我们经常把照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.2.问:如图,多边形,把它放大为原来的2倍,即新图与原图的相似比为2,应该怎样做?你能说出画相似图形的一种方法吗?二、新课教授活动1:观察下图,图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?师生活动:教师提出问题.学生通过观察了解到有一类相似的图形,除具备个似的所有性质外,还有其他特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.每对位似对应点与位似中心共线(位似中心可在形上、形外、形内);不经过位似中心的对应线段平行.利用位似可以将一个图形放大或缩小.活动2:把图中的四边形缩小到原来的.师生活动:教师提出问题,要注意引导学生能够用不同的方法画出所要求作的图形,要让学生通过作图理解符合要求的图形不唯一,这和所作的图形与所确定的位似中心的位置有关(如位似中心O 可能选在四边形外,可能选在四边形内,可能选在四边形的一条边上,可能选在四边形的一个顶点上),并且同一个位似中心的两侧各有一个符合要求的图形,因此,位似中心的确定是关键.学生积极思考如何作图,并动手作图,遇到问题及时询问.分析:把图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2.作法一:(1)在四边形外任取一点O;(2)过点O 分别作射线、、、;(3)分别在射线、、、上取点A'、B'、C'、D',使得2='='='='OD D O OC C O OB B O OA A O ;(4)顺次连接A'B'、B'C'、C'D'、D'A',所得四边形A'B'C'D'就是所要求作的图形,如图.问:此题目还可如何画出图形?作法二:(1)在四边形外任取一点O;(2)过点O 分别作射线、、、;(3)分别在射线、、、的反向延长线上取点A'、B'、C'、D',使得2='='='='OD D O OC C O OB B O OA A O ; (4)顺次连接A'B'、B'C'、C'D'、D'A',所得四边形A'B'C'D'就是所要求作的图形,如图.作法三:(1)在四边形内任取一点O;(2)过点O 分别作射线、、、;(3)分别在射线、、、上取点A'、B'、C'、D',使得2='='='='OD D O OC C O OB B O OA A O ;(4)顺次连接A'B'、B'C'、C'D'、D'A',所得四边形A'B'C'D'就是所要求作的图形,如图.(当点O 在四边形的一条边上或在四边形的一个顶点上时,作法略.可以让学生自己完成)三、例题讲解【例】 如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似再看对应点的连线是否都经过同一点,这两个方面缺一不可.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A,图(2)中的点P和图(4)中的点O.(图(3)中的点O不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)四、巩固练习1.已知:四边形及点O,试以O点为位似中心,将四边形放大为原来的2倍.【答案】略2.画出所给图形的位似中心.【答案】五、课堂小结本节课主要学习了:1.位似图形的概念:如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.2.位似的作用:利用位似可以将一个图形放大或缩小.3.位似图形的画法.教学反思位似是相似形的延伸和深化.位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形.本章编排的素材不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值.因此,本节教材对学生形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学生学好数学的信心,具有积极促进的作用.。
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
教学时间课题27. 3 位似(一)课型新授课教学目标知识和能力1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.过程和方法情感态度价值观教学重点位似图形的有关概念、性质与作图.教学难点利用位似将一个图形放大或缩小.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、课堂引入1.观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?2.问:已知:如图,多边形ABCDE ,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?二、例题讲解例1(补充)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)例2(教材P61例题)把图1中的四边形ABCD 缩小到原来的. 分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;2121(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′,使得; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图2.问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA , OB , OC ,OD ;(3)分别在射线OA , OB , OC , OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图3.作法三:(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′,使得; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图4.(当点O 在四边形ABCD 的一条边上或在四边形ABCD 的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习1.教材P60.1、221OD D O OC C O OB B O OA A O ='='='='21OD D O OC C O OB B O OA A O ='='='='21OD D O OC C O OB B O OA A O ='='='='2.画出所给图中的位似中心.1.把右图中的五边形ABCDE扩大到原来的2倍.作业设计必做教科书P64:1、2选做教科书P64:4、7教学反思一、课堂引入 1.如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标;(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标;(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.3.探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现? (2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .二、例题讲解例1(教材P62的例题)分析:略(见教材P62的例题分析)解:略(见教材P62的例题解答)问:你还可以得到其他图形吗?请你自己试一试!31解法二:点A的对应点A′′的坐标为(-6×,6×),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)例2(教材P63)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….解:答案不惟一,略.三、课堂练习1.教材P62.1、22.△ABO的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F的坐标.3.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.作业设计必做教科书P64:3选做教科书P65:6、8教学反思)21(-)21(-。
城阳第五中学九年级数学学科导学案
课题:图形的位似2 第 2 课时 总第 课时
一、学习目标
1.能够利用位似等方法在平面直角坐标系中将一个图形放大或缩小。
2.利用图形的相似解决一些简单的实际问题,并在有关的学习和运用过程中发展数学应用意识,进一步培养动手操作的良好习惯。
二、学习内容
(一)引入:1、什么是位似图形?
2、如何把画在纸上的一个图片放大,使放大前后对应线段比为1:2?你有哪些方法?与同伴交流
3、你还记得在上学期“变化的鱼”那节课里,怎样把鱼变长变胖吗?怎样把鱼放大呢?
你能用这些方法将一个已知的多边形放大与缩小吗? 还有更好的方法吗?
(二)新课讲解:
1、问题:如图在直角坐标系中,△OAB 三个顶点的坐标分别为O (0,0),A (3,0),B (2,3).(1)将点O ,A ,B 的横、纵坐标都乘以
2,得到三个点O ′,A ′,B ′,请你在坐标系中找
到这三个点。
(2)以这三个点为顶点的三角形与△OAB 位似吗?
为什么?
(3)如果位似,指出位似中心和相似比。
(4)如果将点O ,A ,B 的横、纵坐标都乘以-2呢?
2、做一做:
如图4--41在直角坐标系中,四边形ABCD 的顶点坐标分别为A (4,2),B (8,6),
C (6,10),
D (-2,6),.将点A ,B ,C ,D 的横、纵坐标都乘2
1,得到四个点,以这四个点为顶点的四边形与四边形ABCD 位似吗?如果位似,指出位似中心和
相似比.如果点O ,A ,B ,C 的横、纵坐标都乘-2
1呢? 在直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘以同一个数k (k ≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为姓名
___________
∣k∣.
3、例2在直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B (3,6),C(-3,3).以原点O为位似中心,画出四边
形OABC的位似图形,
且相似比是2:3。
图
4-42
4、巩固练习:
(1)如图,在直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(3,0),B(4,4),C(-2,3).画出四边形OABC以O为位似中心的位似图形,使它与四
边形OABC的相似比是2:1.
(2)课本P118 2、 3、4
三、感悟收获
本节课学到什么知识?学到什么解题方法?
四、达标检测
新课堂P90 1、2
五、拓展延伸
新课堂P91 4
六、课后作业(预计所需时间:分钟)
同步90-91
七、课后反思。