三年高考两年模拟2017版高考数学专题汇编 第三章 导数及其应用1 理
- 格式:doc
- 大小:98.50 KB
- 文档页数:6
第二节导数与函数的单调性、极值与最值A组基础题组1.如果函数y=f(x)的导函数的图象如图所示,给出下列判断:①函数y=f(x)在区间--内单调递增;②函数y=f(x)在区间-内单调递减;③函数y=f(x)在区间(4,5)内单调递增;④当x=2时,函数y=f(x)有极小值;⑤当x=-时,函数y=f(x)有极大值.则上述判断中正确的是( )A.①②B.②③C.③④⑤D.③2.函数y=x2-ln x的单调递减区间为( )A.(-1,1]B.(0,1]C.[1 +∞)D.(0 +∞)3.(2015南昌一模)已知函数f(x)=(2x-x2)e x,则( )A.f()是f(x)的极大值也是最大值B.f()是f(x)的极大值但不是最大值C.f(-)是f(x)的极小值也是最小值D.f(x)没有最大值也没有最小值4.已知函数f(x)=e x-2x-1(其中e为自然对数的底数),则y=f(x)的图象大致为( )5.设f(x)=ln(1+x)-x-ax2,若f(x)在x=1处取得极值,则a的值为.6.(2015兰州一模)若函数f(x)=x2-e x-ax在R上存在单调递增区间,则实数a的取值范围是.7.(2015九江一模)已知函数f(x)=x2+2ax-ln x,若f(x)在区间上是增函数,则实数a的取值范围为.8.(2015重庆,20,12分)设函数f(x)=(a∈R).(1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1, f(1))处的切线方程;(2)若f(x)在[3 +∞)上为减函数,求a的取值范围.9.已知函数f(x)=(4x2+4ax+a2),其中a<0.(1)当a=-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a的值.B组提升题组10.(2016辽宁育才中学月考)已知函数f(x)的定义域是R, f '(x)是f(x)的导数, f(1)=e,g(x)=f'(x)-f(x),g(1)=0,g(x)的导数恒大于零,则函数h(x)=f(x)-e x(e=2.718 28…是自然对数的底数)的最小值是( )A.-1B.0C.1D.211.(2016湖南邵阳石齐中学月考)已知函数f(x)的导函数f '(x)=5+cos x x∈(-1,1),且f(0)=0,若f(1-x)+f(1-x2)<0,则实数x的取值范围是.12.已知f(x)=ax-ln x,g(x)= x∈(0 e] 其中e是自然对数的底数 a∈R.(1)讨论当a=1时, f(x)的单调性和极值;(2)求证:在(1)的条件下,有f(x)>g(x)+;(3)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,请说明理由.13.(2014山东,20,13分)设函数f(x)=-k(k为常数 e=2.718 28…是自然对数的底数).(1)当k≤0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.答案全解全析A组基础题组1.D 当x∈(-3,-2)时, f '(x)<0, f(x)单调递减 ①错;当x∈-时, f '(x)>0,f(x)单调递增,当x∈(2 3)时, f '(x)<0,f(x)单调递减 ②错;当x=2时,函数y=f(x)有极大值 ④错;当x=-时,函数y=f(x)无极值 ⑤错.故选D.2.B 由题意知,函数的定义域为(0 +∞)y'=x-,令x-≤0(x>0) 解得0<x≤1 所以函数的单调递减区间为(0,1].3.A 由题意得f '(x)=(2-2x)e x+(2x-x2)e x=(2-x2)e x,当-<x<时, f '(x)>0,函数f(x)单调递增;当x<-或x>时, f '(x)<0,函数f(x)单调递减,所以f(x)在x=处取得极大值,在x=-处取得极小值,又f()=2(-1)>0, f(-)=2(--1)-<0,当x→+∞时 f(x)→-∞ 当x→-∞时 f(x)→0 所以f(x)无最小值,有最大值,且f()是f(x)的极大值,也是最大值,故选A.4.C 依题意得f '(x)=e x-2.当x<ln 2时, f '(x)<0, f(x)是减函数;当x>ln 2时, f '(x)>0, f(x)是增函数,因此对照各选项知,选C.5.答案-解析由题意知, f(x)的定义域为(-1 +∞)且f '(x)=-2ax-1=--(),又由题意得f '(1)=0,则-2a-2a-1=0,得a=-.6.答案(-∞ 2ln 2-2]解析∵f(x)=x2-e x-ax ∴f '(x)=2x-e x-a ∵函数f(x)=x2-e x-ax在R上存在单调递增区间 ∴在R上存在区间I,使在I上,f '(x)=2x-e x-a≥0恒成立,即a≤2x-e x恒成立,设g(x)=2x-e x,则g'(x)=2-e x,令g'(x)=0,解得x=ln 2,则当x<ln 2时,g'(x)>0,g(x)单调递增,当x>ln 2时,g'(x)<0,g(x)单调递减 ∴当x=ln 2时,g(x)取得最大值,且g(x)max=g(ln 2)=2ln 2-2 ∴a≤2ln 2-2.7.答案∞解析由题意知f '(x)=x+2a-≥0在上恒成立,即2a≥-x+在上恒成立 ∵当x∈时,-= ∴2a≥,即a≥.8.解析(1)对f(x)求导得f '(x)=()-()=-(-),()因为f(x)在x=0处取得极值,所以f '(0)=0,即a=0.此时, f(x)=, f '(x)=-,故f(1)=, f '(1)=,从而曲线f(x)在点(1, f(1))处的切线方程为y-=(x-1),化简得3x-ey=0.(2)由(1)知f '(x)=-(-).令g(x)=-3x2+(6-a)x+a,解方程g(x)=0,得x1=--,x2=-.当x<x1时,g(x)<0,即f '(x)<0,故f(x)为减函数;当x1<x<x2时,g(x)>0,即f '(x)>0,故f(x)为增函数;当x>x2时,g(x)<0,即f '(x)<0,故f(x)为减函数.由f(x)在[3 +∞)上为减函数,知x2=-≤3 解得a≥-,故a的取值范围为-∞.9.解析(1)当a=-4时, f(x)=(4x2-16x+16),则f '(x)=.令=0,解得x=或x=2,由f '(x)>0得0<x<或x>2,故函数f(x)的单调递增区间为和(2 +∞).(2)f '(x)=,a<0,解方程f '(x)=0,得x=-或x=-.当x∈-时, f(x)单调递增;当x∈--时, f(x)单调递减;当x∈-∞时, f(x)单调递增.易知 f(x)=(2x+a)2≥0且f-=0.①当-≤1 即-2≤a<0时, f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a+a2,令4+4a+a2=8,解得a=±2-2(舍去).②当1<-≤4 即-8≤a<-2时, f(x)在[1,4]上的最小值为f-=0,不符合题意.③当->4,即a<-8时, f(x)在[1,4]上的最小值可能在x=1处取得,也可能在x=4处取得,又a<-8时,f(1)≠8 由f(4)=2(64+16a+a2),令2(64+16a+a2)=8,解得a=-10或a=-6(舍去),当a=-10时, f(x)在(1,4)上单调递减, f(x)在[1,4]上的最小值为f(4)=8,故a=-10符合题意.综上,a=-10.B组提升题组10.B ∵g(x)=f '(x)-f(x),g(1)=0,∴g(1)=f '(1)-f(1)=0,又f(1)=e ∴f '(1)=f(1)=e,∵g'(x)>0恒成立 ∴g(x)为增函数,故当x>1时,g(x)>g(1)=0,即f '(x)-f(x)>0,当x<1时,g(x)<g(1)=0,即f '(x)-f(x)<0.构造函数m(x)=(),则m'(x)= '()-()= '()-(),()则当x>1时,m'(x)>0,m(x)递增,当x<1时,m'(x)<0,m(x)递减,故函数m(x)在x=1处取得极小值,同时也是最小值,又m(1)=()==1,故m(x)=()≥1∴f(x)≥e x,则h(x)=f(x)-e x≥e x-e x=0,即h(x)的最小值为0.11.答案(1,)解析由f '(x)=5+cos x x∈(-1,1),知f(x)=5x+sin x+c(c为常数 x∈(-1,1)),又f(0)=0 ∴c=0 即f(x)=5x+sin x,易知此函数是奇函数,且在(-1,1)内单调递增.由f(1-x)+f(1-x2)<0,可得f(1-x)<f(x2-1),∴------解得1<x<.故实数x的取值范围是(1,).12.解析(1)由题意,知当a=1时,f '(x)=1-=-,易知当0<x<1时, f '(x)<0,f(x)单调递减,当1<x<e时, f '(x)>0, f(x)单调递增,所以f(x)的极小值为f(1)=1.(2)证明:由(1)可知,当a=1时,f(x)在(0,e]上的最小值为1.令h(x)=g(x)+=+,则h'(x)=-,当0<x≤e时 h'(x)≥0 ∴h(x)在(0,e]上单调递增,所以在x∈(0 e]上,h(x)max=h(e)=+<+=1=f(x)min,所以在(1)的条件下,有f(x)>g(x)+.(3)存在.求解过程如下:假设存在实数a,使f(x)=ax-ln x(x∈(0 e])有最小值3,由已知得,f '(x)=a-=-.①当a≤0时,因为x∈(0 e] 所以f '(x)<0,从而f(x)在(0,e]上单调递减,所以f(x)min=f(e)=ae-1,此时,由f(x)min=3解得a=(舍去);②当0<<e时, f(x)在上单调递减,在上单调递增,所以f(x)min=f=1+ln a,此时,由f(x)min=3解得a=e2;③当≥e时,因为x∈(0 e]所以f '(x)<0,所以f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1,此时,由f(x)min=3解得a=(舍去).综上,存在实数a=e2,使得当x∈(0 e]时, f(x)有最小值3.13.解析(1)函数y=f(x)的定义域为(0 +∞).f '(x)=--k-=--(-)=(-)(-).由k≤0可得e x-kx>0,所以当x∈(0 2)时, f '(x)<0,函数y=f(x)单调递减,当x∈(2 +∞)时, f '(x)>0,函数y=f(x)单调递增.所以f(x)的单调递减区间为(0,2),单调递增区间为(2 +∞).(2)由(1)知,当k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点.当k>0时,设函数g(x)=e x-kx x∈[0 +∞)则g'(x)=e x-k=e x-e ln k.当0<k≤1时,当x∈(0 2)时,g'(x)=e x-k>0,y=g(x)单调递增,故f(x)在(0,2)内不存在两个极值点;当k>1时,得x∈(0 ln k)时,g'(x)<0,函数y=g(x)单调递减,x∈(ln k +∞)时,g'(x)>0,函数y=g(x)单调递增,所以函数y=g(x)的最小值为g(ln k)=k(1-ln k).函数f(x)在(0,2)内存在两个极值点,当且仅当()()()解得e<k<.所以函数f(x)在(0,2)内存在两个极值点时,k的取值范围为.。
专题03 导数及其应用(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2+b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-2.【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =3.【2017年高考全国Ⅱ卷理数】若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e --C .35e -D .14.【2017年高考浙江】函数y=f ()的导函数()y f x '=的图象如图所示,则函数y=f ()的图象可能是5.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x--=的图像大致为6.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为7.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e8.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0D .a >–1,b >09.【2017年高考全国Ⅲ卷理数】已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .110.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.11.【2018年高考全国Ⅱ卷理数】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.12.【2018年高考全国Ⅲ卷理数】曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________.13.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 .14.【2018年高考全国Ⅰ卷理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 15.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .16.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f ()为奇函数,则a =________;若f ()是R 上的增函数,则a 的取值范围是___________.17.【2018年高考江苏】若函数在有且只有一个零点,则在[−1,1]上的最大值与最小值的和为 . 18.【2017年高考江苏】已知函数31()2e exx f x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 .19.【2017年高考山东理数】若函数e ()xf x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2xf x -=②()3xf x -=③3()f x x =④2()2f x x =+。
第三章导数及其应用第一节变化率与导数、导数的计算A组基础题组1.已知函数f(x)=cos x,则f(π)+f '=( )A.-B.-C.-D.-2.已知f(x)=x(2 014+ln x), f '(x0)=2 015,则x0=( )A.e2B.1C.ln 2D.e3.(2015河南郑州质检二,5)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g'(x)是g(x)的导函数,则g'(3)=( )A.-1B.0C.2D.44.(2015内蒙古呼和浩特期中,5)设曲线y=e ax-ln(x+1)在点(0,1)处的切线方程为2x-y+1=0,则a=( )A.0B.1C.2D.35.如图是函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是( )6.(2015太原一模)函数f(x)=xe x的图象在点(1, f(1))处的切线方程是.7.已知f(x)=3ln x-2xf '(1),则曲线y=f(x)在点A(1,m)处的切线方程为.8.(2015陕西西工大附中月考)已知函数f(x)=e x-mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为.9.已知f1(x)=sin x+cos x,记f2(x)=f1'(x), f3(x)=f2'(x),……,f n(x)=f n-1'(x)(n∈N*,n≥2),则f1+f2+…+f2 014= .10.已知函数f(x)=x3-2x2+3x(x∈R)的图象为曲线C.(1)求曲线C上任意一点处的切线斜率的取值范围;(2)若曲线C存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.11.已知函数f(x)=x-,g(x)=a(2-ln x).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两切线是否为同一条直线.B组提升题组12.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f '(x)的图象,则f(-1)=( )A. B.-C. D.-或13.(2015宁夏大学附中期中,8)已知函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1, f(1))处切线的斜率为( )A.4B.-C.2D.-14.已知f(x)=acos x,g(x)=x2+bx+1,若曲线y=f(x)与曲线y=g(x)在公共点(0,m)处有公切线,则a+b=( )A.-1B.0C.1D.215.已知f(x)=x3-3x2+2x,若存在过点O(0,0)的直线l与曲线y=f(x)和y=x2+a都相切,则a的值是( )A.1B.C.1或D.1或-16.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小距离为.17.设函数f(x)=ax-,曲线y=f(x)在点(2, f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.答案全解全析A组基础题组1.C ∵f(x)=cos x,∴f '(x)=-cos x+·(-sin x),∴f(π)+f '=-+·(-1)=-.2.B 由题意可知f '(x)=2 014+ln x+x·=2 015+ln x.由f '(x0)=2 015,得ln x0=0,解得x0=1.3.B 由题图可知曲线y=f(x)在x=3处切线的斜率等于-,∴f '(3)=-.∵g(x)=xf(x),∴g'(x)=f(x)+xf '(x),∴g'(3)=f(3)+3f '(3),又由题图可知f(3)=1,所以g'(3)=1+3×-=0.4.D ∵y=e ax-ln(x+1),∴y'=ae ax-,∴当x=0时,y'=a-1.∵曲线y=e ax-ln(x+1)在点(0,1)处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D.5.D 由导函数的图象可知,函数y=f(x)与y=g(x)都是单调增函数,且y=g(x)的增长速度越来越快,y=f(x)的增长速度越来越慢.又g'(x0)=f '(x0),故y=f(x)和y=g(x)的图象在x=x0处的切线互相平行,综上可知应选D.6.答案y=2ex-e解析∵f(x)=xe x,∴f(1)=e,f '(x)=e x+xe x,∴f '(1)=2e,∴f(x)的图象在点(1, f(1))处的切线方程为y-e=2e(x-1),即y=2ex-e.7.答案x-y-3=0解析由题意得f '(x)=-2f '(1),所以f '(1)=3-2f '(1),即f '(1)=1.∴m=f(1)=-2f '(1)=-2,所以所求切线方程为y+2=x-1,即x-y-3=0.8.答案,解析函数f(x)=e x-mx+1的导数为f '(x)=e x-m,要使曲线C存在与直线y=ex垂直的切线,则需e x-m=-有解,即m=e x+有解,由e x>0,得m>.则实数m的取值范围为,.9.答案0解析f2(x)=f1'(x)=cos x-sin x,f3(x)=(cos x-sin x)'=-sin x-cos x,f4(x)=-cos x+sin x, f5(x)=sin x+cos x,以此类推,可得出f n(x)=f n+4(x),又f1(x)+f2(x)+f3(x)+f4(x)=0,∴f1+f2+…+f2 014=503f1+f2+f3+f4+f1+f2=0.10.解析(1)由题意得f '(x)=x2-4x+3,则f '(x)=(x-2)2-1≥-1,即曲线C上任意一点处的切线斜率的取值范围是[-1,+ ).(2)设一条切线的斜率为k,则由(2)中条件并结合(1)中结论可知,-, --,解得-1≤k<0或k≥1,令-1≤x2-4x+3<0或x2-4x+3≥1,解得x∈(- ,2-]∪(1,3)∪[2+,+ ).∴所求的切点横坐标的取值范围是(- ,2-]∪(1,3)∪[2+,+ ).11.解析易知:曲线y=f(x)在x=1处的切线斜率为f '(1)=3,曲线y=g(x)在x=1处的切线斜率为g'(1)=-a.又f '(1)=g'(1),所以a=-3.因为曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1),得y+1=3(x-1),即切线方程为3x-y-4=0;曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),得y+6=3(x-1),即切线方程为3x-y-9=0,所以两切线不是同一条直线.B组提升题组12.D ∵f '(x)=x2+2ax+a2-1,∴f '(x)的图象开口向上,则排除②④.若f '(x)的图象为①,则a=0,f(-1)=;若f '(x)的图象为③,则a2-1=0,且-a>0,∴a=-1,∴f(-1)=-.综上知选D.13.A f '(x)=g'(x)+2x.∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g'(1)=2,∴f'(1)=g'(1)+2×1=2+2=4,∴曲线y=f(x)在点(1, f(1))处的切线的斜率为4.14.C 依题意得, f '(x)=-asin x,g'(x)=2x+b, f '(0)=g'(0),∴-asin 0=2×0+b,故b=0,∵m=f(0)=g(0),∴m=a=1,因此a+b=1,选C.15.C 易知点O(0,0)在曲线y=f(x)上,(1)当O(0,0)是切点时,∵O(0,0)在曲线y=f(x)上,∴切线斜率为f '(0)=2,切线方程为y=2x,由,得x2-2x+a=0.依题意知Δ=4-4a=0,∴a=1.(2)当O(0,0)不是切点时,设直线l与曲线y=f(x)的切点为P(x0,y0),则y0=-3+2x0,且直线l的斜率k=f '(x0)=3-6x0+2.①又k==-3x0+2,②由①②得2-3x0=0,得x0=(x0=0舍),所以k=-,∴直线l的方程为y=-x.由-,得x2+x+a=0.依题意知,Δ=-4a=0,∴a=.综上,a=1或a=.16.答案解析由y=x2-ln x,得y'=2x-(x>0),设P0(x0,y0)点是曲线y=x2-ln x上到直线y=x-2的距离最小的点,则y'=2x0-=1,解得x0=1或x0=-(舍).∴P0点坐标为(1,1).∴所求的最小距离==.17.解析(1)方程7x-4y-12=0可化为y=x-3,当x=2时,y=,故2a-=.又因为f '(x)=a+,则有a+=,所以a=1,b=3.故f(x)=x-.(2)设P(x0,y0)为曲线上任一点,由(1)知, f '(x)=1+,则曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),即y--=(x-x0).令x=0,得y=-,从而得切线与直线x=0的交点坐标为,-.令y=x,得x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以曲线y=f(x)在点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为-|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,此定值为6.。
课时1导数与函数的单调性题型一不含参数的函数的单调性例1 求函数f(x)=ln xx的单调区间.解函数f(x)的定义域为(0,+∞).因为f(x)=错误!,所以f′(x)=错误!.当f′(x)>0,即0〈x〈e时,函数f(x)单调递增;当f′(x)〈0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).思维升华确定函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求f′(x);(3)解不等式f′(x)〉0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)〈0,解集在定义域内的部分为单调递减区间.已知定义在区间(-π,π)上的函数f(x)=x sin x+cos x,则f(x)的单调递增区间是________________.答案错误!和错误!解析f′(x)=sin x+x cos x-sin x=x cos x.令f′(x)=x cos x≥0,则其在区间(-π,π)上的解集为错误!和错误!,即f(x)的单调递增区间为错误!和错误!.题型二含参数的函数的单调性例2 已知函数f(x)=ln x+ax+错误!-1。
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)当-错误!≤a≤0时,讨论f(x)的单调性.解(1)当a=1时,f(x)=ln x+x+错误!-1,此时f′(x)=错误!+1-错误!,f′(2)=错误!+1-错误!=1.又因为f(2)=ln 2+2+22-1=ln 2+2,所以切线方程为y-(ln 2+2)=x-2,整理得x-y+ln 2=0.(2)f′(x)=错误!+a-错误!=错误!=错误!.当a=0时,f′(x)=错误!.此时,在(0,1)上,f′(x)<0,f(x)单调递减;在(1,+∞)上,f′(x)>0,f(x)单调递增.当-错误!≤a〈0时,f′(x)=错误!。
第三章 导数及其应用§3.1 导数与积分考点一 导数的概念及其几何意义11.(2012广东,12,5分)曲线y=x 3-x+3在点(1,3)处的切线方程为 . 答案 2x-y+1=0解析 易知y'=3x 2-1,∴y=x 3-x+3在点(1,3)处的切线的斜率k=2,∴切线方程为y-3=2(x-1),即2x-y+1=0.评析 本题考查导数的几何意义及直线方程,考查运算求解能力.12.(2012辽宁,21,12分)设f(x)=ln(x+1)+ x +1+ax+b(a,b ∈R ,a,b 为常数),曲线y=f(x)与直线y=32x 在(0,0)点相切. (1)求a,b 的值;(2)证明:当0<x<2时, f(x)<9xx +6. 解析 (1)由y=f(x)过(0,0)点,得b=-1. 由y=f(x)在(0,0)点的切线斜率为32,又y'x=0=1x +1+2 x +1+a x=0=32+a,得a=0.(3分)(2)证明:证法一:由基本不等式,知当x>0时,2 (x +1)·1<x+1+1=x+2,故 x +1<x2+1. 记h(x)=f(x)-9xx +6,则h'(x)=1x +1+12 x +1-54(x +6)2=2+ x +12(x +1)-54(x +6)2<x +64(x +1)-54(x +6)2 =(x +6)3-216(x+1)4(x +1)(x +6)2.令g(x)=(x+6)3-216(x+1),则当0<x<2时,g'(x)=3(x+6)2-216<0.因此g(x)在(0,2)内是递减函数,又g(0)=0,故g(x)<0,所以h'(x)<0.(10分) 因此h(x)在(0,2)内是递减函数,又h(0)=0,故h(x)<0. 于是当0<x<2时, f(x)<9xx +6.(12分) 证法二:由(1)知f(x)=ln(x+1)+ x +1-1.由基本不等式,知当x>0时,2 <x+1+1=x+2,故 x +1<x2+1.① 令k(x)=ln(x+1)-x,则k(0)=0,当x>0时,k'(x)=1x +1-1=-xx +1<0,故k(x)<0,即ln(x+1)<x.② 由①②得,当x>0时, f(x)<32x. 记h(x)=(x+6)f(x)-9x,则当0<x<2时, h'(x)=f(x)+(x+6)f '(x)-9<32x+(x+6) 1x +112x +1-9 =12(x +1)[3x(x+1)+(x+6)(2+ x +1)-18(x+1)] <12(x +1)3x(x+1)+(x+6)3+x 2-18(x+1)=x4(x +1)(7x-18)<0.(10分)因此h(x)在(0,2)内单调递减,又h(0)=0,所以h(x)<0,即f(x)<9xx +6.(12分)评析 本题考查了导数的概念及运算,考查导数的几何意义及应用,考查构造法.考点二 定积分的运算及应用12.(2012湖北,3,5分)已知二次函数y=f(x)的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43C.32D.π2答案 B 由题图知二次函数的解析式为f(x)=-x 2+1,其图象与x 轴所围图形的面积为∫ -11f(x)d x=2∫ 01f(x)dx=2∫ 01(-x 2+1)dx=2 -13x 3+x 01=2× -13+1 =43.故选B.评析 本题考查了定积分的知识,考查了学生运算求解能力.运用数形结合思想求出二次函数和定积分是解题关键.13.(2013湖南,12,5分)若∫ T0x 2dx=9,则常数T 的值为 .答案 3 解析 ∫ 0Tx 2dx=x 33 0T =T 33=9,解得T=3.14.(2013福建,15,5分)当x ∈R ,|x|<1时,有如下表达式: 1+x+x 2+…+x n +…=11-x. 两边同时积分得: 1120d x + x 120d x +120x 2d x +…+120x n d x +…=1211-xd x ,从而得到如下等式:1×12+12× 12 2+13× 12 3+…+1n +1× 12n +1+…=ln2.请根据以上材料所蕴含的数学思想方法,计算:C n 0×12+12C n 1× 12 2+13C n 2× 12 3+…+1n +1C n n × 12n +1= .答案1n +1 32n +1-1 解析 C n 0+C n 1x+C n 2x 2+…+C n n x n=(1+x)n ,两边同时积分得:∫120C n 0d x +∫ 120C n 1xdx+∫ 120C n 2x 2dx+…+∫ 120C n n x n dx=∫ 12(1+x)n dx,从而得到如下等式:C n 0×12+12C n 1× 12 2+13C n 2× 12 3+…+1n +1C n n× 12n +1 =1n +1 32 n +1-1 .15.(2012江西,11,5分)计算定积分∫ -11(x 2+sin x)dx= . 答案 23解析 ∫ -11(x 2+sin x)dx= 13x 3-cos x -11=23. 评析 本题考查了定积分的运算.。
第二节 导数的应用A 组 三年高考真题(2016~2014年)1.(2015·福建,10)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A.f ⎝ ⎛⎭⎪⎫1k <1kB.f ⎝ ⎛⎭⎪⎫1k >1k -1C.f ⎝ ⎛⎭⎪⎫1k -1<1k -1D.f ⎝ ⎛⎭⎪⎫1k -1>k k -12.(2015·陕西,12)对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A.-1是f (x )的零点B.1是f (x )的极值点C.3是f (x )的极值D.点(2,8)在曲线y =f (x )上3.(2015·新课标全国Ⅱ,12)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)4.(2015·新课标全国Ⅰ,12)设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,15.(2014·新课标全国Ⅱ,12)设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)6.(2014·辽宁,11)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.⎣⎢⎡⎦⎥⎤-6,-98C.[-6,-2]D.[-4,-3] 7.(2016·全国Ⅱ,21)(1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.8.(2016·全国Ⅲ,21)设函数f (x )=a cos 2x +(a -1)·(cos x +1),其中a >0,记|f (x )|的最大值为4. (1)求f ′(x ); (2)求A ;(3)证明|f ′(x )|≤2A .9.(2016·全国Ⅰ,21)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.10.(2016·北京,18)设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间.11.(2016·四川,21)设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).12.(2016·山东,20)已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.13.(2015·新课标全国Ⅱ,21)设函数f (x )=e mx+x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围. 14.(2015·北京,18)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33; (3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.15.(2015·四川,21)已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.16.(2015·天津,20)已知函数f (x )=nx -x n ,x ∈R ,其中n ∈N *,n ≥2. (1)讨论f (x )的单调性;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的正实数x ,都有f (x )≤g (x );(3)若关于x 的方程f (x )=a (a 为实数)有两个正实根x 1,x 2,求证:|x 2-x 1|<a1-n+2.17.(2015·江苏,19)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞,求c 的值.18.(2015·重庆,20)设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.19.(2015·新课标全国Ⅰ,21)已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.20.(2015·安徽,21)设函数f (x )=x 2-ax +b .(1)讨论函数f (sin x )在⎝ ⎛⎭⎪⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值; (2)记f 0(x )=x 2-a 0x +b 0,求函数|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值D ;(3)在(2)中,取a 0=b 0=0,求z =b -a 24满足D ≤1时的最大值.21.(2015·广东,19)设a >1,函数f (x )=(1+x 2)e x-a . (1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O是坐标原点),证明:m ≤3a -2e-1.22.(2015·山东,21)设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R . (1)讨论函数f (x )极值点的个数,并说明理由; (2)若∀x >0,f (x )≥0成立,求a 的取值范围.23.(2015·湖南,21)已知a >0,函数f (x )=e axsin x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点,证明: (1)数列{f (x n )}是等比数列; (2)若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.24.(2015·福建,20)已知函数f (x )=ln(1+x ),g (x )=kx (k ∈R ). (1)证明:当x >0时,f (x )<x ;(2)证明:当k <1时,存在x 0>0,使得对任意的x ∈(0,x 0),恒有f (x )>g (x ); (3)确定k 的所有可能取值,使得存在t >0,对任意的x ∈(0,t ),恒有|f (x )-g (x )|<x 2.25.(2014·广东,21)设函数f (x )=1x 2+2x +k2+x 2+2x +k -3,其中k <-2.(1)求函数f (x )的定义域D (用区间表示); (2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示).26.(2014·山东,20)设函数f (x )=e xx 2-k (2x+ln x )(k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.27.(2014·新课标全国Ⅰ,21)设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ; (2)证明:f (x )>1.28.(2014·北京,18)已知函数f (x )=x cos x -sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin x x <b 对x ∈⎝ ⎛⎭⎪⎫0,π2恒成立,求a 的最大值与b 的最小值.29.(2014·江西,18)已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间(0,13)上单调递增,求b 的取值范围.30.(2014·辽宁,21)已知函数f (x )=(cos x -x )(π+2x )-83(sin x +1),g (x )=3(x -π)cos x -4(1+sin x )ln ⎝ ⎛⎭⎪⎫3-2x π. 证明:(1)存在唯一x 0∈⎝⎛⎭⎪⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝ ⎛⎭⎪⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1<π.B 组 两年模拟精选(2016~2015年)1.(2016·河北邯郸模拟)做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为( ) A.3B.4C.5D.62.(2016·北京重点中学模拟)已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34B.⎝ ⎛⎭⎪⎫12,34 C.⎣⎢⎡⎭⎪⎫34,+∞ D.⎝ ⎛⎭⎪⎫0,123.(2016·江苏南京模拟)函数f (x )的导函数为f ′(x ),对∀x ∈R ,都有2f ′(x )>f (x )成立,若f (ln 4)=2,则不等式f (x )>e x2的解集是( )A.(ln 4,+∞)B.(0,ln 4)C.(1,+∞)D.(0,1)4.(2015·江西新余模拟)如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫14,12B.(1,2)C.⎝ ⎛⎭⎪⎫12,1 D.(2,3) 5.(2015·北京海淀4月模拟题)设某商品的需求函数为Q =100-5P ,其中Q ,P 分别表示需求量和价格,如果商品需求弹性EQEP大于1⎝⎛⎭⎪⎫其中EQEP=-Q ′Q P ,Q ′是Q 的导数,则商品价格P 的取值范围是________.6.(2015·湛江质检)已知函数f (x )=sin x (x ≥0),g (x )=ax (x ≥0). (1)若f (x )≤g (x )恒成立,求实数a 的取值范围; (2)当a 取(1)中的最小值时,求证:g (x )-f (x )≤16x 3.7.(2015·浙江余杭模拟)已知函数f (x )=4x 2-72-x ,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1],若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.答案精析A 组 三年高考真题(2016~2014年)1.C [∵导函数f ′(x )满足f ′(x )>k >1,∴f ′(x )-k >0,k -1>0,1k -1>0, 可构造函数g (x )=f (x )-kx ,可得g ′(x )>0,故g (x )在R 上为增函数, ∵f (0)=-1,∴g (0)=-1,∴g ⎝ ⎛⎭⎪⎫1k -1>g (0),∴f ⎝⎛⎭⎪⎫1k -1-k k -1>-1,∴f ⎝ ⎛⎭⎪⎫1k -1>1k -1,∴选项C 错误,故选C.]2.A [A 正确等价于a -b +c =0,① B 正确等价于b =-2a ,② C 正确等价于4ac -b 24a =3,③D 正确等价于4a +2b +c =8.④ 下面分情况验证,若A 错,由②、③、④组成的方程组的解为⎩⎪⎨⎪⎧a =5,b =-10,c =8.符合题意;若B 错,由①、③、④组成的方程组消元转化为关于a 的方程后无实数解; 若C 错,由①、②、④组成方程组,经验证a 无整数解; 若D 错,由①、②、③组成的方程组a 的解为-34也不是整数.综上,故选A.]3.A [因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝ ⎛⎭⎪⎫f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x>0⇔f (x )>0; 在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x<0⇔f (x )>0.综上,得使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A.]4.D [设g (x )=e x(2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x(2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,[g (x )]min =-2e -12,当x =0时,g (0)=-1,g (1)=3e>0,直线y =a (x -1)恒过(1,0)且斜率为a ,故-a >g (0)=-1, 且g (-1)=-3e -1≥-a -a ,解得32e≤a <1,故选D.]5.C [由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m=π2+k π(k ∈Z ),从而得x 0=(k +12)m (k ∈Z ).所以不等式x 20+[f (x 0)]2<m 2即为(k +12)2m 2+3<m 2,变形得m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3,其中k ∈Z .由题意,存在整数k 使得不等式m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.] 6.C [当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立.故实数a 的取值范围为[-6,-2].]7.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x-(x -2)e x(x +2)2=x 2ex(x +2)2≥0,且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增.因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0. (2)证明 g ′(x )=(x -2)e x+a (x +2)x 3=x +2x3(f (x )+a ).由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e xa -a (x a +1)x 2a =e xa +f (x a )(x +1)x 2a =e xax a +2. 于是h (a )=e x a x a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,e xx +2单调递增.所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e24.因为e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24. 8.(1)解 f ′(x )=-2a sin 2x -(a -1)sin x .(2)解 当a ≥1时,|f (x )|=|a cos 2x +(a -1)(cos x +1)|≤a +2(a -1)=3a -2.因此A =3a -2.当0<a <1时,将f (x )变形为f (x )=2a cos 2x +(a -1)·cos x -1,令g (t )=2at 2+(a -1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=a ,g (1)=3a -2,且当t =1-a 4a 时,g (t )取得极小值,极小值为g ⎝ ⎛⎭⎪⎫1-a 4a =-(a -1)28a -1=-a 2+6a +18a. 令-1<1-a 4a <1,解得a <-13(舍去),a >15.(ⅰ)当0<a ≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=a ,|g (1)|=2-3a ,|g (-1)|<|g (1)|,所以A =2-3a .(ⅱ)当15<a <1时,由g (-1)-g (1)=2(1-a )>0,知g (-1)>g (1)>g ⎝ ⎛⎭⎪⎫1-a 4a . 又⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a -|g (-1)|=(1-a )(1+7a )8a >0,所以A =⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a =a 2+6a +18a .综上,A =⎩⎪⎨⎪⎧2-3a ,0<a ≤15,a 2+6a +18a ,15<a <1,3a -2,a ≥1.(3)证明 由(1)得|f ′(x )|=|-2a sin 2x -(a -1)sin x |≤2a +|a -1|. 当0<a ≤15时,|f ′(x )|≤1+a ≤2-4a <2(2-3a )=2A .当15<a <1时,A =a 8+18a +34≥1,所以|f ′(x )|≤1+a <2A . 当a ≥1时,|f ′(x )|≤3a -1≤6a -4=2A .所以|f ′(x )|≤2A . 9.解 (1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ). ①设a =0,则f (x )=(x -2)e x,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e 2-x2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e 2-x2-(x 2-2)e x2.设g (x )=-x e 2-x-(x -2)e x,则g ′(x )=(x -1)(e 2-x-e x),所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2. 10.解 (1)f (x )的定义域为R .∵f ′(x )=ea -x-x ea -x+b =(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e. (2)由(1)知f (x )=x e 2-x+e x ,由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.令g (x )=1-x +ex -1,则g ′(x )=-1+ex -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).11.解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞. 12.(1)解 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎪⎫x -2a ⎝⎛⎭⎪⎫x +2a .①0<a <2时,2a>1,当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫1,2a 时,f ′(x )<0,f (x )单调递减.②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ③a >2时,0<2a<1,当x ∈⎝⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎪⎫1,2a 内单调递减,在⎝⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎪⎫0,2a 内单调递增,在⎝⎛⎭⎪⎫2a,1内单调递减,在(1,+∞)内单调递增.(2)证明 由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x2-⎝⎛⎭⎪⎫1-1x -2x2+2x 3=x -ln x +3x +1x 2-2x3-1,x ∈[1,2]. 设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号.又h ′(x )=-3x 2-2x +6x. 设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0.所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.13.(1)证明 f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减, 在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.①设函数g (t )=e t -t -e +1,则g ′(t )=e t-1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1].14.(1)解 因为f (x )=ln(1+x )-ln(1-x ),所以f ′(x )=11+x +11-x ,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明 令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增.所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)解 由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x 2. 所以当0<x <4k -2k时,h ′(x )<0,因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减.当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.15.(1)解 由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -a )-2ln x -2⎝⎛⎭⎪⎫1+a x ,所以g ′(x )=2-2x+2a x 2=2⎝ ⎛⎭⎪⎫x -122+2⎝ ⎛⎭⎪⎫a -14x 2,当0<a <14时,g (x )在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增,在区间⎝⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减; 当a ≥14时,g (x )在区间(0,+∞)上单调递增.(2)证明 由f ′(x )=2(x -a )-2ln x -2⎝⎛⎭⎪⎫1+a x =0,解得a =x -1-ln x1+x-1, 令φ(x )=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln x +x 2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1x -2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x 1+x -1, 则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-2⎝ ⎛⎭⎪⎫e -21+e -12<0, 故存在x 0∈(1,e),使得φ(x 0)=0, 令a 0=x 0-1-ln x 01+x -1,u (x )=x -1-ln x (x ≥1), 由u ′(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增, 所以0=u (1)1+1<u (x 0)1+x -10=a 0<u (e )1+e -1=e -21+e-1<1,即a 0∈(0,1), 当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0,由(1)知,f ′(x )在区间(1,+∞)上单调递增, 故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0,所以,当x ∈(1,+∞)时,f (x )≥0, 综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.16.(1)解 由f (x )=nx -x n ,可得f ′(x )=n -nx n -1=n (1-xn -1).其中n ∈N *,且n ≥2,下面分两种情况讨论:①当n 为奇数时.令f ′(x )=0,解得x =1,或x =-1. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )在②当n 为偶数时.当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减;所以,f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明 设点P 的坐标为(x 0,0),则x 0=n1n -1,f ′(x 0)=n -n 2. 曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0). 令F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)(x -x 0),则F ′(x )=f ′(x )-f ′(x 0). 由于f ′(x )=-nxn -1+n 在(0,+∞)上单调递减,故F ′(x )在(0,+∞)上单调递减,又因为F ′(x 0)=0,所以当x ∈(0,x 0)时,F ′(x )>0, 当x ∈(x 0,+∞)时,F ′(x )<0,所以F (x )在(0,x 0)内单调递增, 在(x 0,+∞)上单调递减,所以对于任意的正实数x ,都有F (x )≤F (x 0)=0,即对于任意的正实数x ,都有f (x )≤g (x ). (3)证明 不妨设x 1≤x 2.由(2)知g (x )=(n -n 2)(x -x 0), 设方程g (x )=a 的根为x 2′,可得x 2′=an -n 2+x 0.当n ≥2时,g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′),可得x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ),可得h (x )=nx . 当x ∈(0,+∞),f (x )-h (x )=-x n<0,即对于任意的x ∈(0,+∞),f (x )<h (x ). 设方程h (x )=a 的根为x 1′,可得x 1′=an.因为h (x )=nx 在(-∞,+∞)上单调递增,且h (x 1′)=a =f (x 1)<h (x 1),因此x 1′<x 1. 由此可得x 2-x 1<x 2′-x 1′=a1-n+x 0. 因为n ≥2,所以2n -1=(1+1)n -1≥1+C 1n -1=1+n -1=n ,故2≥n1n -1=x 0.所以,|x 2-x 1|<a 1-n+2. 17.解 (1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3.当a =0时,因为f ′(x )=3x 2>0(x ≠0),所以函数f (x )在(-∞,+∞)上单调递增; 当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减.(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f ⎝ ⎛⎭⎪⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝ ⎛⎭⎪⎫-2a 3=b ⎝ ⎛⎭⎪⎫427a 3+b <0,从而⎩⎪⎨⎪⎧a >0,-427a 3<b <0或⎩⎪⎨⎪⎧a <0,0<b <-427a 3.又b =c -a ,所以当a > 0时,427a 3-a +c >0或当a <0时,427a 3-a +c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎪⎫1,32∪⎝⎛⎭⎪⎫32,+∞,则在(-∞,-3)上g (a )<0,且在⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞上g (a )>0均恒成立. 从而g (-3)=c -1≤0,且g ⎝ ⎛⎭⎪⎫32=c -1≥0,因此c =1. 此时,f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x +1-a ],因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根, 所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0, 且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,+∞.综上c =1.18.解(1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )ex(e x )2=-3x 2+(6-a )x +aex, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x. 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0, 故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.19.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0.即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0,解得x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0, 故h (x )在(1,+∞)无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)的零点个数.(ⅰ)若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点.(ⅱ)若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0,-a 3单调递减,在⎝⎛⎭⎪⎫-a3,1单调递增,故在(0,1)中,当x=-a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫-a 3=2a3-a 3+14. ①若f ⎝ ⎛⎭⎪⎫-a 3>0,即-34<a <0,f (x )在(0,1)无零点;②若f ⎝ ⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)有唯一零点;③若f ⎝⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)有两个零点;当-3<a ≤-54时,f (x )在(0,1)有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点. 20.解 (1)f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝ ⎛⎭⎪⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时,函数f (sin x )单调递减; x 0≤x <π2时,函数f (sin x )单调递增;因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值f (sin x 0)=f ⎝ ⎛⎭⎪⎫a 2=b -a 24. (2)-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x +b -b 0|≤|a -a 0|+|b -b 0|.当(a 0-a )(b -b 0)≥0时,取x =π2,等号成立.当(a 0-a )(b -b 0)<0时,取x =-π2,等号成立.由此可知,|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值为D =|a -a 0|+|b -b 0|. (3)D ≤1即为|a |+|b |≤1,此时0≤a 2≤1,-1≤b ≤1, 从而z =b -a 24≤1.取a =0,b =1,则|a |+|b |≤1,并且z =b -a 24=1.由此可知,z =b -a 24满足条件D ≤1的最大值为1.21.(1)解 f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x∀x ∈R ,f ′(x )≥0恒成立.∴f (x )的单调增区间为(-∞,+∞). (2)证明 ∵f (0)=1-a ,f (a )=(1+a 2)e a-a ,∵a >1,∴f (0)<0,f (a )>2a e a-a >2a -a =a >0,∴f (0)·f (a )<0, ∴f (x )在(0,a )上有一零点,又∵f (x )在(-∞,+∞)上递增,∴f (x )在(0,a )上仅有一个零点,∴f (x )在(-∞,+∞)上仅有一个零点.(3)证明 f ′(x )=(x +1)2e x,设P (x 0,y 0),则f ′(x 0)=e x 0(x 0+1)2=0,∴x 0=-1, 把x 0=-1,代入y =f (x )得y 0=2e -a ,∴k OP =a -2e.f ′(m )=e m (m +1)2=a -2e,令g (m )=e m-(m +1),g ′(m )=e m-1. 令g ′(x )>0,则m >0,∴g (m )在(0,+∞)上增.令g ′(x )<0,则m <0,∴g (m )在(-∞,0)上减.∴g (m )min =g (0)=0. ∴e m -(m +1)≥0,即e m ≥m +1.∴e m (m +1)2≥(m +1)3,即a -2e≥(m +1)3.∴m +1≤3a -2e ,即m ≤3a -2e-1. 22.解 (1)由题意知,函数f (x )的定义域为(-1,+∞), f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1.令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,此时f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点; ②当a >0时,Δ=a 2-8a (1-a )=a (9a -8).(ⅰ)当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点;(ⅱ)当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2),因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 因此函数有两个极值点.(ⅲ)当a <0时,Δ>0,由g (-1)=1>0,可得x 1<-1. 当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减;所以函数有一个极值点. 综上所述,当a <0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a >89时,函数f (x )有两个极值点.(2)由(1)知,①当0≤a ≤89时,函数f (x )在(0,+∞)上单调递增,因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意; ②当89<a ≤1时,由g (0)≥0,得x 2≤0,所以函数f (x )在(0,+∞)上单调递增,又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;③当a >1时,由g (x )<0,可得x 2>0.所以x ∈(0,x 2)时,函数f (x )单调递减; 因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意; ④当a <0时,设h (x )=x -ln(x +1). 因为x ∈(0,+∞)时,h ′(x )=1-1x +1=x x +1>0 ,所以h (x )在(0,+∞)上单调递增, 因此当x ∈(0,+∞)时,h (x )>h (0)=0,即ln(x +1)<x . 可得f (x )<x +a (x 2-x )=ax 2+(1-a )x ,当x >1-1a时,ax 2+(1-a )x <0,此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].23.证明 (1)f ′(x )=a e ax sin x +e ax cos x =e ax (a sin x +cos x )=a 2+1e axsin(x +φ), 其中tan φ=1a ,0<φ<π2.令f ′(x )=0,由x ≥0得x +φ=m π,即x =m π-φ,m ∈N *, 对k ∈N ,若2k π<x +φ<(2k +1)π,即2k π-φ<x <(2k +1)π-φ,则f ′(x )>0;若(2k +1)π<x +φ<(2k +2)π,即(2k +1)π-φ<x <(2k +2)π-φ,则f ′(x )<0. 因此,在区间((m -1)π,m π-φ)与(m π-φ,m π)上,f ′(x )的符号总相反. 于是当x =m π-φ(m ∈N *)时,f (x )取得极值,所以x n =n π-φ(n ∈N *). 此时,f (x n )=ea (n π-φ)sin(n π-φ)=(-1)n +1e a (n π-φ)sin φ.易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +2e a [(n +1)π-φ]sin φ(-1)n +1e a (n π-φ)sin φ=-e a π是常数,故数列{f (x n )}是首项为f (x 1)=ea (π-φ)sin φ,公比为-e a π的等比数列. (2)由(1)知,sin φ=1a 2+1,于是对一切n ∈N *; x n <|f (x n )|恒成立,即n π-φ<1a 2+1ea (n π-φ)恒成立,等价于a 2+1a <ea (n π-φ)a (n π-φ)(*)恒成立,因为(a >0).设g (t )=e tt (t >0),则g ′(t )=e t(t -1)t2. 令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减; 当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增. 从而当t =1时,函数g (t )取得最小值g (1)=e.因此,要使(*)式恒成立,只需a 2+1a <g (1)=e,即只需a >1e 2-1.而当a =1e 2-1时,由tan φ=1a =e 2-1>3且0<φ<π2知,π3<φ<π2. 于是π-φ<2π3<e 2-1,且当n ≥2时,n π-φ≥2π-φ>3π2>e 2-1.因此对一切n ∈N *,ax n =n π-φe 2-1≠1,所以g (ax n )>g (1)=e =a 2+1a .故(*)式亦恒成立.综上所述,若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.24.(1)证明 令F (x )=f (x )-x =ln(1+x )-x ,x ∈(0,+∞),则有F ′(x )=11+x-1=-xx +1. 当x ∈(0,+∞)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递减, 故当x >0时,F (x )<F (0)=0,即当x >0时,f (x )<x .(2)证明 令G (x )=f (x )-g (x )=ln(1+x )-kx ,x ∈(0,+∞), 则有G ′(x )=1x +1-k =-kx +(1-k )x +1. 当k ≤0时,G ′(x )>0,故G (x )在(0,+∞)单调递增,G (x )>G (0)=0, 故任意正实数x 0均满足题意.当0<k <1时,令G ′(x )=0,得x =1-k k =1k-1>0,取x 0=1k-1,对任意x ∈(0,x 0),有G ′(x )>0,从而G (x )在(0,x 0)单调递增,所以G (x )>G (0)=0,即f (x )>g (x ).综上,当k <1时,总存在x 0>0,使得对任意x ∈(0,x 0),恒有f (x )>g (x ). (3)解 当k >1时,由(1)知,对于∀x ∈(0,+∞),g (x )>x >f (x ),故g (x )>f (x ), |f (x )-g (x )|=g (x )-f (x )=kx -ln(1+x ).M (x )=kx -ln(1+x )-x 2,x ∈[0,+∞). 则有M ′(x )=k -11+x -2x =-2x 2+(k -2)x +k -1x +1.故当x ∈⎝ ⎛⎭⎪⎫0,k -2+(k -2)2+8(k -1)4时,M ′(x )>0,M (x )在⎣⎢⎡⎭⎪⎫0,k -2+(k -2)2+8(k -1)4上单调递增,故M (x )>M (0)=0,即|f (x )-g (x )|>x 2,所以满足题意的t 不存在. 当k <1时,由(2)知,存在x 0>0,使得当x ∈(0,x 0)时,f (x )>g (x ), 此时|f (x )-g (x )|=f (x )-g (x )=ln(1+x )-kx . 令N (x )=ln(1+x )-kx -x 2,x ∈[0,+∞).则有N ′(x )=1x +1-k -2x =-2x 2-(k +2)x +1-kx +1.当x ∈⎝ ⎛⎭⎪⎫0,-(k +2)+(k +2)2+8(1-k )4时,N ′(x )>0,N (x )在⎣⎢⎡⎭⎪⎫0,-(k +2)+(k +2)2+8(1-k )4上单调递增,故N (x )>N (0)=0,即f (x )-g (x )>x 2.记x 0与-(k +2)+(k +2)2+8(1-k )4中的较小者为x 1,则当x ∈(0,x 1)时,恒有|f (x )-g (x )|>x 2.故满足题意的t 不存在.当k =1时,由(1)知,当x >0时,|f (x )-g (x )|=g (x )-f (x )=x -ln(1+x ), 令H (x )=x -ln(1+x )-x 2,x ∈[0,+∞),则有H ′(x )=1-11+x -2x =-2x 2-xx +1.当x >0时,H ′(x )<0,所以H (x )在[0,+∞)上单调递减,故H (x )<H (0)=0. 故当x >0时,恒有|f (x )-g (x )|<x 2.此时,任意正实数t 均满足题意. 综上,k =1.法二 (1)(2)证明 同法一.(3)解 当k >1时,由(1)知,对于∀x ∈(0,+∞),g (x )>x >f (x ), 故|f (x )-g (x )|=g (x )-f (x )=kx -ln(1+x )>kx -x =(k -1)x . 令(k -1)x >x 2,解得0<x <k -1.从而得到,当k >1时,对于x ∈(0,k -1),恒有|f (x )-g (x )|>x 2, 故满足题意的t 不存在. 当k <1时,取k 1=k +12,从而k <k 1<1,由(2)知,存在x 0>0,使得x ∈(0,x 0),f (x )>k 1x >kx =g (x ), 此时|f (x )-g (x )|=f (x )-g (x )>(k 1-k )x =1-k2x ,令1-k 2x >x 2,解得0<x <1-k 2,此时f (x )-g (x )>x 2. 记x 0与1-k 2的较小者为x 1,当x ∈(0,x 1)时,恒有|f (x )-g (x )|>x 2.故满足题意的t 不存在.当k =1时,由(1)知,x >0,|f (x )-g (x )|=f (x )-g (x )=x -ln(1+x ),令M (x )=x -ln(1+x )-x 2,x ∈[0,+∞),则有M ′(x )=1-11+x -2x =-2x 2-xx +1.当x >0时,M ′(x )<0,所以M (x )在[0,+∞)上单调递减, 故M (x )<M (0)=0.故当x >0时,恒有|f (x )-g (x )|<x 2, 此时,任意正实数t 均满足题意. 综上,k =1.25.解 (1)由题意知(x 2+2x +k +3)(x 2+2x +k -1)>0,因此⎩⎪⎨⎪⎧x 2+2x +k +3>0x 2+2x +k -1>0或⎩⎪⎨⎪⎧x 2+2x +k +3<0x 2+2x +k -1<0, 设y 1=x 2+2x +k +3,y 2=x 2+2x +k -1,则这两个二次函数的对称轴均为x =-1, 且方程x 2+2x +k +3=0的判别式Δ1=4-4(k +3)=-4k -8, 方程x 2+2x +k -1=0的判别式Δ2=4-4(k -1)=8-4k , 因为k <-2,所以Δ2>Δ1>0,。
第三章:导数及其应用一、2017年最新考试大纲 导数及其应用(1)导数概念及其几何意义①了解导数概念的实际背景。
②理解导数的几何意义。
(2)导数的运算①能根据导数定义,求函数x y x y x y c y 12====,,,的导数。
②能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数.·常见基本初等函数的导数公式和常用导数运算公式:(C)′=0(C 为常数);(x n )′=nx n —1,n ∈N +x x cos )(sin ='';x x sin )(cos -=' ;xxee =')(;1)0(ln )(≠>='a a a a axx且;x x 1)(ln =';1)0(log 1)(log ≠>='a a e x x a a 且·常用的导数运算法则:·法则1 [])()()()(x v x u x v x u '±'='± ·法则2 [])()()()()()(x v x u x v x u x v x u '+'='·法则3)0)(()()()()()()()(2≠'-'='⎥⎦⎤⎢⎣⎡x v x v x v x u x v x u x v x u(3)导数在研究函数中的应用①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次).②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). (4)生活中的优化问题会利用导数解决某些实际问题。
二、真题汇编 1.【2016课标卷Ⅰ理7】函数22xy x e =-在[–2,2]的图像大致为( )A .B .C .D .2.【2016课标卷Ⅰ理21】已知函数2()(2)(1)xf x x e a x =-+-有两个零点. (I )求a 的取值范围;(II )设x 1,x 2是()f x 的两个零点,证明:122x x +< 3。
第一节 导数的概念及其运算A 组 三年高考真题(2016~2014年)1.(2014·陕西,10)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x2.(2016·新课标全国Ⅲ,16)已知f (x )为偶函数,当x ≤0时,f (x )=-x-1e -x ,则曲线y =f (x )在点(1,2)处的切线方程是________.3.(2015·新课标全国Ⅰ,14)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.4.(2015·新课标全国Ⅱ,16)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.5.(2015·天津,11)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.6.(2014·江苏,11)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________. 7.(2014·广东,11)曲线y =-5e x +3在点(0,-2)处的切线方程为______________. 8.(2014·北京,20)已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)B 组 两年模拟精选(2016~2015年)1.(2016·云南曲靖一中质量检测(五))已知点P 是曲线y =3-e xe x +1上一动点,α为曲线在点P 处的切线的倾斜角,则α的最小值是( ) A.0 B.π4 C.2π3D.3π42.(2016·河南适应性测试)已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则ab 的值为( )A.13B.23C.-23D.-133.(2015·浙江金华十校联考)设函数y =x sin x +cos x ,且在f (x )图象上点(x 0,y 0)处的切线的斜率为k ,若k =g (x 0),则函数k =g (x 0)的图象大致为( )4.(2015·赣州市十二县联考)函数f (x )=3ln x +x 2-3x +3在点(3,f (3))处的切线斜率是( ) A.-2 3 B. 3 C.2 3D.435.(2015·昆明三中模拟)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎡⎦⎤0,5π12,则导数f ′(1)的取值范围是( ) A.[-2,2] B.[2,3] C.[3,2]D.[2,2]6.(2016·郑州质量预测)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.7.(2015·豫南九校二联)若函数f (x )=cos x +2xf ′⎝⎛⎭⎫π6,则f (x )在点(0,f (0))处的切线方程是________.8.(2015·黄冈中学高三期中)定义运算1111a ab b =a 1b 2-a 2b 1,则函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x 2+3x 1x 13x 的图象在点⎝⎛⎭⎫1,13处的切线方程是________. 9.(2015·南昌模拟)已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1e (x +2)(x -a ),x <1(a 为常数,e 为自然对数的底数)的图象在点A (e ,1)处的切线与该函数的图象恰好有三个公共点,则实数a 的取值范围是________.答案精析A 组 三年高考真题(2016~2014年)1.解析 法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y =-x ,在(2,0)处的切线方程为y =3x -6,以此对选项进行检验.A 选项, y =12x 3-12x 2-x ,显然过两个定点,又y ′=32x 2-x -1,则y ′|x =0=-1,y ′|x =2=3,故条件都满足,由选择题的特点知应选A.法二 设该三次函数为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题设有⎩⎪⎨⎪⎧f (0)=0⇒d =0,f (2)=0⇒8a +4b +2c +d =0,f ′(0)=-1⇒c =-1,f ′(2)=3⇒12a +4b +c =3,解得a =12,b =-12,c =-1,d =0.故该函数的解析式为y =12x 3-12x 2-x ,选A.答案 A2.解析 设x >0,则-x <0,f (-x )=e x -1+x ,因为f (x )为偶函数,所以f (x )=e x -1+x ,f ′(x )=e x -1+1,f ′(1)=2, y -2=2(x -1),即y =2x . 答案 y =2x3.解析 f ′(x )=3ax 2+1,f ′(1)=1+3a ,f (1)=a +2. 点(1,f (1))处的切线方程为y -(a +2)=(1+3a )(x -1). 将(2,7)代入切线方程,得7-(a +2)=(1+3a ), 解得a =1. 答案 14.解析 由y =x +ln x ,得y ′=1+1x ,得曲线在点(1,1)的切线的斜率为k =y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1,此切线与曲线y =ax 2+(a +2)x +1相切,消去y 得ax 2+ax +2=0,得a ≠0且Δ=a 2-8a =0,解得a =8. 答案 85.解析 f ′(x )=a ln x +ax ·1x =a (ln x +1),由f ′(1)=3得,a (ln 1+1)=3,解得a =3.答案 36.解析 由曲线y =ax 2+b x 过点P (2,-5)可得-5=4a +b 2 (1).又y ′=2ax -bx 2,所以在点P处的切线斜率4a -b 4=-72 (2).由(1)(2)解得a =-1,b =-2,所以a +b =-3.答案 -37.解析 由y =-5e x +3得,y ′=-5e x ,所以切线的斜率k =y ′|x =0=-5,所以切线方程为y +2=-5(x -0),即5x +y +2=0. 答案 5x +y +2=08.解 (1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3. 令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1,所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0).整理得4x 30-6x 20+t +3=0.设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1), g (x )与g ′(x )的情况如下:当g (0)=t +3≤0,即t ≤-3时,此时g (x )在区间(-∞,1]和(1,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (1)=t +1≥0,即t ≥-1时,此时g (x )在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (0)>0且g (1)<0,即-3<t <-1时,因为g (-1)=t -7<0,g (2)=t +11>0,所以g (x )分别在区间[-1,0),[0,1)和[1,2)上恰有1个零点,由于g (x )在区间(-∞,0)和(1,+∞)上单调,所以g (x )分别在区间(-∞,0)和[1,+∞)上恰有1个零点.综上可知,当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1). (3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切.B 组 两年模拟精选(2016~2015年)1.解析 y ′=-e x (e x +1)-(3-e x )e x (e x +1)2=-4e x e 2x +2e x +1=-4e x+1ex +2≥-42+2=-1, 故α最小值是3π4.答案 D2.解析 由题意得y ′=3x 2,当x =1时,y ′|x =1=3×12=3, 所以a b ×3=-1,即a b =-13,故选D.答案 D3.解析 y ′=x cos x ,k =g (x 0)=x 0cos x 0, 由于它是奇函数,排除B ,C ;当0<x <π4时,k >0,排除D ,答案为A.答案 A4.解析 ∵f ′(x )=3x +2x -3,∴f ′(3)=33+23-3=2 3. 答案 C5.解析 f ′(x )=x 2sin θ+3x cos θ,∴f ′(1)=sin θ+3cos θ=2⎝⎛⎭⎫12sin θ+32cos θ=2sin ⎝⎛⎭⎫θ+π3,∵0≤θ≤5π12,∴π3≤θ+π3≤3π4,∴2≤2sin ⎝⎛⎭⎫θ+π3≤2,即2≤f ′(1)≤2, 即导数f ′(1)的取值范围是[2,2],选D. 答案 D6.解析 依题意得f (3)=k ×3+2=1,k =-13,则f ′(3)=k =-13,g ′(3)=f (3)+3f ′(3)=1-1=0.答案 07.解析 f ′(x )=-sin x +2f ′⎝⎛⎭⎫π6,令x =π6,得f ′⎝⎛⎭⎫π6=12,得f (x )=cos x +x , f ′(0)=1,f (0)=1,故在(0,1)处的切线方程为y -1=1(x -0),即x -y +1=0. 答案 x -y +1=08.解析 由定义可知f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x 2+3x1x 13x=13x 3+x 2-x ,故f ′(x )=x 2+2x -1,f ′(1)=2, 所以函数f (x )在点⎝⎛⎭⎫1,13处的切线方程为y -13=2(x -1),化为一般式为6x -3y -5=0. 答案 6x -3y -5=09.解析 易知曲线在点A 处的切线方程为y -1=1e (x -e),即为y =1ex .该切线与f (x )的图象有三个交点,则与f (x )=1e (x +2)(x -a ),x <1有两个不同交点,即方程1e x =1e (x +2)(x -a ),x ∈(-∞,1)有两个不等根,x 2+(1-a )x -2a =0,x ∈(-∞,1)有两个不等根,结合二次函数g (x )=x 2+(1-a )x -2a ,x ∈(-∞,1)的图象可得⎩⎪⎨⎪⎧Δ=(1-a )2+8a >0,-1-a2<1,g (1)=2-3a >0,解得⎩⎪⎨⎪⎧a <-3-22或a >-3+22,a <3,a <23.所以a <-3-22或-3+22<a <23,故实数a 的取值范围为(-∞,-3-22)∪⎝⎛⎭⎫-3+22,23. 答案 (-∞,-3-22)∪(-3+22,23)。
专题03 导数及其应用(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-2.【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =3.【2017年高考全国Ⅱ卷理数】若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e --C .35e -D .14.【2017年高考浙江】函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是5.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x--=的图像大致为6.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为7.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e8.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0D .a >–1,b >09.【2017年高考全国Ⅲ卷理数】已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .110.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.11.【2018年高考全国Ⅱ卷理数】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.12.【2018年高考全国Ⅲ卷理数】曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________.13.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 .14.【2018年高考全国Ⅰ卷理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 15.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .16.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.17.【2018年高考江苏】若函数 在 内有且只有一个零点,则 在上的最大值与最小值的和为 . 18.【2017年高考江苏】已知函数31()2e exx f x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 .19.【2017年高考山东理数】若函数e ()xf x (e 2.71828=是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 . ①()2xf x -=②()3xf x -=③3()f x x =④2()2f x x =+。
专题02 函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A .a c b <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=,10.20.50.50.5c <=<,即112c <<, 所以a c b <<. 故选A.【名师点睛】本题考查比较大小问题,关键是选择中间量和利用函数的单调性进行比较. 3.【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ; 由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确. 故选C .【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.5.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .2sin cos ++x xx x【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,【名师点睛】本题通过判断函数的奇偶性,排除错误选项,通过计算特殊函数值,作出选择.本题注重基础知识、基本计算能力的考查.7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1xy a =的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α=, 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得α=所以.r R α== 故选D.【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形易出错.9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C【解析】()f x Q 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.10.【2017年高考山东理数】设函数y =的定义域为A ,函数ln(1)y x =-的定义域为B ,则A B I =A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤, 由10x ->得1x <,故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<I I . 选D.【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解.11.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x --=的图像大致为【答案】B【解析】()()()2e e 0,,x xx f x f x f x x --≠-==-∴Q 为奇函数,舍去A ; ()11e e 0f -=->Q ,∴舍去D ;()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x x x ---+---++=='Q 2x ∴>时,()0f x '>,()f x 单调递增,舍去C.因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性. 12.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得2x <-或02x <<,此时函数单调递增,由()0f x '<得22(21)0x x ->,得2x >或02x -<<,此时函数单调递减,排除C. 故选D.【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.13.【2018年高考浙江】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A,B;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D .【名师点睛】先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可判断选择.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的周期性.14.【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =【答案】D【解析】因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以()3f x x x =+,()231f x x '=+, 所以()()01,00f f '==,所以曲线()y f x =在点()0,0处的切线方程为()()00y f f x '-=,化简可得y x =, 故选D .【名师点睛】该题考查的是函数的奇偶性以及有关曲线()y f x =在某个点()()00,x f x 处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论:多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得()f x ',借助于导数的几何意义,结合直线方程的点斜式求得结果.15.【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+, 所以()()()()()113114f x f x f x f x f x T +=--∴+=-+=-∴=,,,因此()()()()()()()()()()1235012123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦L , 因为()()()()3142f f f f =-=-,,所以()()()()12340f f f f +++=, 因为()()200f f ==,从而()()()()()1235012f f f f f ++++==L . 故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 16.【2018年高考天津理数】已知2log e a =,ln2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】D【解析】由题意结合对数函数的性质可知:2log e 1a =>,()21ln20,1log eb ==∈,12221log log 3log e 3c ==>, 据此可得:c a b >>. 本题选择D 选项.【名师点睛】由题意结合对数函数的性质整理计算即可求得最终结果.对于对数的大小的比较,我们通常都是运用对数函数的单调性,但很多时候,因对数的底数或真数不相同,不能直接利用函数的单调性进行比较,这就必须掌握一些特殊方法.在进行对数的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据对数函数的单调性进行判断.对于不同底而同真数的对数的大小的比较,利用图象法求解,既快捷,又准确. 17.【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解析】0.22log 0.3,log 0.3a b ==Q ,0.30.311log 0.2,log 2a b∴==, 0.311log 0.4a b ∴+=,1101a b ∴<+<,即01a b ab+<<, 又0,0a b ><Q ,0ab ∴<, ∴0ab a b <+<. 故选B .【名师点睛】本题主要考查对数的运算和不等式,属于中档题.18.【2017年高考北京理数】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093【答案】D 【解析】设36180310M x N ==,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310. 故选D .【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aMM N N-=,log log n a a M n M =.19.【2017年高考全国Ⅰ卷理数】设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【解析】令235(1)x y zk k ===>,则2log x k =,3log y k =,5log z k =∴22lg lg3lg913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <. 故选D .【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.20.【2017年高考浙江】若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关.故选B .【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值. 21.【2017年高考全国Ⅰ卷理数】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤的x 的取值范围为[1,3]. 故选D.【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立.22.【2017年高考北京理数】已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数【答案】A【解析】()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3x y =是增函数,13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数. 故选A.【名师点睛】本题属于基础题型,根据()f x -与()f x 的关系就可以判断出函数的奇偶性,判断函数单调性的方法:(1)利用平时学习过的基本初等函数的单调性;(2)利用函数图象判断函数的单调性;(3)利用函数的四则运算判断函数的单调性,如:增函数+增函数=增函数,增函数−减函数=增函数;(4)利用导数判断函数的单调性.23.【2017年高考天津理数】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以当0x >时,()0f x >, 从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<, 所以0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<. 故选C .【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式.24.【2017年高考山东理数】已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是A .(0,1])+∞UB .(0,1][3,)+∞UC .)+∞UD .[3,)+∞U【答案】B【解析】当01m <≤时,11m≥,2(1)y mx =-在[0,1]x ∈时单调递减,且22(1)(1),1y mx m ⎡⎤=-∈-⎣⎦,y m =在[0,1]x ∈时单调递增,且[,1]y m m m =∈+,此时有且仅有一个交点; 当1m >时,101m <<,2(1)y mx =-在1,1m ⎡⎤⎢⎥⎣⎦上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥.故选B.【名师点睛】已知函数有零点求参数的取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.25.【2017年高考山东理数】若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2aba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a ba ab b +<+< D .()21log 2a ba b a b +<+< 【答案】B【解析】因为0a b >>,且1ab =,所以1,01,a b ><<所以221,log ()log 12a ba b <+>=, 12112log ()a ba ab a a b b b+>+>+⇒+>+, 所以选B.【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断.26.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-, 如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.【名师点睛】本题考查了函数与方程,二次函数.解题的关键是能够得到(2,3]x ∈时函数的解析式,并求出函数值为89-时对应的自变量的值.27.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减, 则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a<0且()32011(1)1(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.28.【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞)【答案】C【解析】画出函数()f x 的图象,e xy =在y 轴右侧的图象去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点(0,1)时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程()f x x a =--有两个解,也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-. 故选C .【名师点睛】该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图象以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.即:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图象,再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.29.【2017年高考全国Ⅲ卷理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是看解析式是否为sin y A x ω=或cos y A x b ω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x 即可;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.30.【2017年高考全国Ⅲ卷理数】已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =. 故选C.【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.31.【2017年高考天津理数】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 A .47[,2]16- B .4739[,]1616- C.[2]- D.39[]16- 【答案】A【解析】不等式()||2xf x a ≥+可化为()()2x f x a f x -≤+≤ (*), 当1x ≤时,(*)式即22332x x x a x x -+-≤+≤-+,即2233322x x a x x -+-≤≤-+, 又22147473()241616x x x -+-=---≤-(当14x =时取等号), 223339393()241616x x x -+=-+≥(当34x =时取等号),所以47391616a -≤≤, 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+.又3232()22x x x x --=-+≤-3x =,222x x +≥=(当2x =时取等号),所以2a -≤≤. 综上,47216a -≤≤. 故选A .【名师点睛】首先将()||2x f x a ≥+转化为()()22x xf x a f x --≤≤-,涉及分段函数问题要遵循分段处理的原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的取值范围.32.【2019年高考江苏】函数y =的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.33.【2018年高考江苏】函数()f x =________.【答案】[2,+∞)【解析】要使函数()f x 有意义,则需2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[)2,+∞.【名师点睛】求给定函数的定义域往往需转化为解不等式(组)的问题.求解本题时,根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.34.【2017年高考江苏】记函数()f x =的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 . 【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤, 根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.35.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________. 【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.36.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1;,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查. 37.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤,可得()2222364233a t t -≤++-≤, 即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解.38.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________. 【答案】①130;②15【解析】①10x =时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求; 当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8y y x y x -≥≤, 因为min158y ⎛⎫=⎪⎝⎭,所以x 的最大值为15. 综上,①130;②15.【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.39.【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤Q ,ππ19π3666x ∴≤+≤, 由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的性质和函数的零点,属于基础题.解题时,首先求出π36x +的范围,再由函数值为零,得到π36x +的取值可得零点个数.40.【2018年高考浙江】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
第三节导数与函数的综合问题A组基础题组1.(2015课标Ⅱ,12,5分)设函数f '(x)是奇函数f(x)(x∈R)的导函数, f(-1)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)2.(2015福建,10,5分)若定义在R上的函数f(x)满足f(0)=-1,其导函数f '(x)满足f '(x)>k>1,则下列结论中一定错误的是( )A.f<B.f>-C.f-<-D.f->-3.(2014课标Ⅰ,11,5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)4.(2015安徽,15,5分)设x3+ax+b=0,其中a,b均为实数.下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①a=-3,b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2;⑤a=1,b=2.5.(2015云南第一次检测,21)已知函数f(x)=ln(1+2x)-.(1)求f(x)的单调区间;(2)若a>0,b>0,求证:ln 2a-ln b≥1-.6.已知函数f(x)=x-(a+1)ln x-(a∈R),g(x)=x 2+e x -xe x.(1)当x∈[1,e]时,求f(x)的最小值;(2)当a<1时,若存在x 1∈[e,e 2],使得对任意的x 2∈[-2,0],f(x 1)<g(x 2)恒成立,求a 的取值范围.B 组 提升题组7.(2015四川,15,5分)已知函数f(x)=2x,g(x)=x 2+ax(其中a∈R). 对于不相等的实数x 1,x 2,设m= ( )- ( ) -,n=( )- ( )-.现有如下命题:①对于任意不相等的实数x 1,x 2,都有m>0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n>0; ③对于任意的a,存在不相等的实数x 1,x 2,使得m=n; ④对于任意的a,存在不相等的实数x 1,x 2,使得m=-n. 其中的真命题有 (写出所有真命题的序号). 8.(2016重庆外国语学校月考)已知函数f(x)=ln x-mx+m,m∈R. (1)讨论函数f(x)的单调性;(2)若函数f(x)≤0在x∈(0,+∞)上恒成立,求实数m 的取值范围; (3)在(2)的条件下,若0<a<b,证明: ( )- ( ) -≤1-a.9.(2015唐山一模,21)已知函数f(x)=e x-(),g(x)=2ln(x+1)+e-x.(1)x∈(-1,+∞)时,证明:f(x)>0;(2)若a>0,g(x)≤ax+1,求a的取值范围.10.设f(x)=+xln x,g(x)=x3-x2-3.(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(2)如果对任意的s,t∈,都有f(s)≥g(t)成立,求实数a的取值范围.答案全解全析A组基础题组1.A 令g(x)=(),则g'(x)= ()-(),由题意知,当x>0时,g (x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数, f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=( )=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0; 当x∈(1,+∞)时,g(x)<0,从而f(x)<0. 又∵g(-x)=(- )-=- ( )-=( )=g(x),∴g(x)是偶函数,∴当x∈(-∞,-1)时,g(x)<0, 从而f(x)>0;当x∈(-1,0)时,g(x)>0,从而f(x)<0. 综上,所求x 的取值范围是(-∞,-1)∪(0,1). 2.C 构造函数g(x)=f(x)-kx+1,则g'(x)=f '(x)-k>0,∴g(x)在R 上为增函数. ∵k>1,∴->0,则g->g(0).而g(0)=f(0)+1=0,∴g-=f---+1>0,即f->--1=-,所以选项C 错误,故选C.3.C (1)当a=0时,显然f(x)有两个零点,不符合题意. (2)当a≠0时, f '(x)=3ax 2-6x, 令f '(x)=0,解得x 1=0,x 2=.当a>0时,>0,所以函数f(x)=ax 3-3x 2+1在(-∞,0)与 , ∞ 上为增函数,在 ,上为减函数,因为f(x)存在唯一零点x 0,且x 0>0,则f(0)<0,即1<0,不成立.当a<0时,<0,所以函数f(x)=ax 3-3x 2+1在 -∞, 和(0,+∞)上为减函数,在, 上为增函数,因为f(x)存在唯一零点x 0,且x 0>0,则f >0,即a· -3·+1>0,解得a>2或a<-2,又因为a<0,故a 的取值范围为(-∞,-2).选C. 4.答案 ①③④⑤ 解析 设f(x)=x 3+ax+b.当a=-3,b=-3时, f(x)=x 3-3x-3, f '(x)=3x 2-3,令f '(x)>0, 得x>1或x<-1;令f '(x)<0,得-1<x<1,故f(x)在(-∞,-1)上为增函数,在(-1,1)上为减函数,在(1,+∞)上为增函数,又f(-1)=-1, f(1)=-5, f(3)=15,故方程f(x)=0只有一个实根,故①正确.当a=-3,b=2时, f(x)=x3-3x+2,易知f(x)在(-∞,-1)上为增函数,在(-1,1)上为减函数,在(1,+∞)上为增函数,又f(-1)=4,f(1)=0,x→-∞时, f(x)→-∞,从而方程f(x)=0有两个根,故②错.当a=-3,b>2时, f(x)=x3-3x+b,易知f(x)的极大值为f(-1)=2+b>0,极小值为f(1)=b-2>0,x→-∞时, f(x)→-∞,故方程f(x)=0有且仅有一个实根,故③正确.当a=0,b=2时, f(x)=x3+2,显然方程f(x)=0有且仅有一个实根,故④正确.当a=1,b=2时, f(x)=x3+x+2,f '(x)=3x2+1>0,则f(x)在(-∞,+∞)上为增函数,易知f(x)的值域为R,故f(x)=0有且仅有一个实根,故⑤正确.综上,正确条件的编号有①③④⑤.5.解析(1)由题意知1+2x>0,则x>-,∴f(x)的定义域为-,∞.∵f(x)=ln(1+2x)-,∴f (x)=--=()-.()令f '(x)>0,得x>-,令f '(x)<0,得-<x<-.∴f(x)的单调递增区间为-,∞,单调递减区间为-,-.(2)证明:由(1)可知当x=-时, f(x)取得最小值.∴f(x)的最小值为f-=-ln 2.∴当x>-时, f(x)≥f-,即f(x)≥-ln 2.∵a>0,b>0,∴-=->-.设x=-,则f-≥-ln 2,由此可得ln 2a-ln b≥1-.∴当a>0,b>0时,ln 2a-ln b≥1-.6.解析(1)f(x)的定义域为(0,+∞),f '(x)=(-)(-).①当a≤1时,x∈[1,e]时, f (x)≥0,f(x)为增函数,f(x)min=f(1)=1-a.②当1<a<e时,x∈[1,a]时, f (x)≤0, f(x)为减函数;x∈(a,e]时, f '(x)>0, f(x)为增函数.所以x∈[1,e]时, f(x)min=f(a)=a-(a+1)·ln a-1.③当a≥e时,x∈[1,e]时, f (x)≤0,f(x)在[1,e]上为减函数.f(x)min=f(e)=e-(a+1)-.综上,在x∈[1,e]上,当a≤1时,f(x)min=1-a;当1<a<e时, f(x)min=a-(a+1)ln a-1;当a≥e时, f(x)min=e-(a+1)-.(2)由题意知,当a<1时,f(x)(x∈[e,e2])的最小值小于g(x)(x∈[-2,0])的最小值.由(1)可知,当a<1时, f(x)在[e,e2]上单调递增,则f(x)min=f(e)=e-(a+1)-,又g'(x)=(1-e x)x,当x∈[-2,0]时,g (x)≤0,g(x)为减函数,g(x)min=g(0)=1,所以e-(a+1)-<1,即a>-, 所以a的取值范围为-,.B 组 提升题组7.答案 ①④解析 ①f(x)=2x是增函数, ∴对任意不相等的实数x 1,x 2, 都有( )- ( ) ->0,即m>0,∴①成立.②由g(x)=x 2+ax 图象可知, 当x∈ -∞,-时,g(x)是减函数, ∴当不相等的实数x 1、x 2∈ -∞,-时, ( )- ( )-<0,即n<0,∴②不成立.③若m=n,则有 ( )- ( ) -=( )- ( )-,即f(x 1)-f(x 2)=g(x 1)-g(x 2), f(x 1)-g(x 1)=f(x 2)-g(x 2), 令h(x)=f(x)-g(x),则h(x)=2x-x 2-ax,h'(x)=2xln 2-2x-a, 令h'(x)=2x ln 2-2x-a=0, 得2xln 2=2x+a.由y=2x ln 2与y=2x+a 的图象知, 存在a 使对任意x∈R 恒有2xln 2>2x+a, 此时h(x)在R 上是增函数. 若h(x 1)=h(x 2),则x 1=x 2, ∴③不成立. ④若m=-n, 则有( )- ( ) -=-( )- ( )-,f(x 1)+g(x 1)=f(x 2)+g(x 2), 令φ(x)=f(x)+g(x), 则φ(x)=2x+x 2+ax,φ'(x)=2x ln 2+2x+a.令φ'(x)=0,得2x ln 2+2x+a=0,即2x ln 2=-2x-a.由y1=2x ln 2与y2=-2x-a的图象可知,对任意的a,存在x0,使x>x0时y1>y2,x<x0时y1<y2, 故对任意的a,存在x0,使x>x0时,φ'(x)>0,x<x0时φ'(x)<0,故对任意的a,φ(x)在R上不是单调函数.故对任意的a,存在不相等的实数x1,x2,使m=-n,∴④成立.综上,①④正确.8.解析(1)f(x)=ln x-mx+m,m∈R的定义域为(0,+∞).f '(x)=-(x>0).当m≤0时, f '(x)>0,函数f(x)在(0,+∞)上为增函数;当m>0时,令f '(x)>0,可得0<x<,令f '(x)<0,可得x>,∴函数f(x)在,上为增函数,在,∞上为减函数.综上,当m≤0时, f(x)在(0,+∞)上为增函数;当m>0时, f(x)在,上为增函数,在,∞上为减函数.(2)由(1)可知,当m≤0时, f(x)≤0不恒成立,当m>0时, f(x)max=f=-ln m-1+m.要使f(x)≤0在x∈(0,+∞)上恒成立,需满足-ln m-1+m≤0(m>0).令h(m)=-ln m-1+m,则h'(m)=-,可得当m∈(0,1)时,h(m)为减函数,当m∈(1,+∞)时,h(m)为增函数,∴仅当m=1时,h(m)取得最小值,且h(m)min=h(1)=0,∴m=1.即m的取值范围是{1}.(3)证明:根据题意,不妨令b=at(t>1),则()-()=-(-)=1-(-),-由(2)可知ln t≤t-1,则-≥1,从而得-(-)≤-a,∴()-()≤1-a.-9.解析(1)证明:令p(x)=f '(x)=e x-x-1,则p'(x)=e x-1,在(-1,0)上,p'(x)<0,p(x)单调递减;在(0,+∞)上,p'(x)>0,p(x)单调递增.所以p(x)在(-1,+∞)上的最小值为p(0)=0,即f (x)≥0对x∈(-1,+∞)恒成立, 所以f(x)在(-1,+∞)上单调递增,故x∈(-1,+∞)时, f(x)>f(-1)>0.(2)令h(x)=g(x)-(ax+1),则h'(x)=-e-x-a,.令q(x)=-e-x-a,则q'(x)=-()由(1)得x∈(-1,+∞)时,q'(x)<0,则q(x)在(-1,+∞)上单调递减.①当a=1时,q(0)=h'(0)=0且h(0)=0.在(-1,0)上,h'(x)>0,h(x)单调递增;在(0,+∞)上,h'(x)<0,h(x)单调递减.所以h(x)的最大值为h(0),即h(x)≤0恒成立.②当a>1时,h'(0)<0,在(-1,0)上,h'(x)=-e-x-a<-1-a,令-1-a=0,解得x=-∈(-1,0).易知在-,上,h'(x)<0,h(x)单调递减,又h(0)=0,所以当x∈-,时,h(x)>0,易知不满足题意.③当0<a<1时,h'(0)>0,在(0,+∞)上,h'(x)=-e-x-a>-1-a,令-1-a=0,解得x=-∈(0,+∞).易知在,-上,h'(x)>0,h(x)单调递增,又h(0)=0,所以当x∈,-时,h(x)>0,易知不满足题意.综上,a的取值范围为{1}.10.解析(1)存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,等价于[g(x1)-g(x2)]max≥M,因为g(x)=x3-x2-3,所以g'(x)=3x2-2x=3x-,列表分析如下:由上表可知在区间[0,2]上,g(x)min=g=-,g(x)max=g(2)=1,所以[g(x1)-g(x2)]max=g(x)max-g(x)min=,所以满足条件的最大整数M=4.(2)对任意的s,t∈,都有f(s)≥g(t)成立等价于在区间,上,函数f(x)的最小值不小于g(x)的最大值.由(1)知,在区间,上,g(x)的最大值为g(2)=1.所以在区间,上, f(x)min≥1.又因为f(1)=a,所以a≥1.下面证当a≥1时,在区间,上, f(x)≥1恒成立.当a≥1且x∈,时,f(x)=+xln x≥+xln x,记h(x)=+xln x,则h'(x)=-+ln x+1,h'(1)=0,当x∈,时,h'(x)=-+ln x+1<0;当x∈(1,2]时,h'(x)=-+ln x+1>0,所以函数h(x)=+xln x在区间,上递减,在区间(1,2]上递增,所以在区间,上,h(x)min=h(1)=1,即h(x)≥1,所以当a≥1且x∈,时, f(x)≥1恒成立, 故满足条件的a的取值范围为[1,+∞).。
2017年高考数学理试题分类汇编:导数及其应用1. (2017年新课标Ⅰ文) 8.函数sin21cos xy x=-的部分图像大致为 (C )2. ( 2017年新课标Ⅱ卷理) 11。
若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1- B 。
32e -- C.35e - D 。
1 【答案】A【解析】由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e-=--,故21()(2)x f x x x e -'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减 所以()f x 极小值(1)f =11(111)1e-=--=-,故选A 。
3. (2017年新课标Ⅰ文) 9.已知函数()ln ln(2)f x x x =+-,则 (C ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称4. (2017年浙江卷)函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.5. (2017年新课标Ⅲ卷理) 11.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C6. ( 2017年新课标Ⅱ卷理)21.已知函数()2ln f x ax ax x x =--,且()0f x ≥。
第二节 导数的应用A 组 三年高考真题(2016~2014年)1.(2016·四川,6)已知a 是函数f (x )=x 3-12x 的极小值点,则a =( ) A.-4 B.-2 C.4D.22.(2015·陕西,9)设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数D .是没有零点的奇函数3.(2015·安徽,10)函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是( ) A .a >0,b <0,c >0,d >0 B .a >0,b <0,c <0,d >0 C .a <0,b <0,c >0,d >0 D .a >0,b >0,c >0,d <04.(2014·新课标全国Ⅱ,11)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)5.(2014·湖南,9)若0<x 1<x 2<1,则( ) A .e2x -e 1x>ln x 2-ln x 1B .e2x -e 1x<ln x 2-ln x 1C .x 2e 1x>x 1e 2x D .x 2e 1x<x 1e 2x6.(2014·新课标全国Ⅰ,12)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(1,+∞) C .(-∞,-2)D .(-∞,-1)7.(2016·新课标全国卷Ⅱ,20)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 8.(2016·新课标全国Ⅲ,21)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x . 9.(2016·山东,20)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围.10.(2016·四川,21)设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立. 11.(2016·北京,20)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. 12.(2015·新课标全国Ⅱ,21)已知f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 13.(2015·新课标全国Ⅰ,21)设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a.14.(2015·福建,22)已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间; (2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).15.(2015·浙江,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b (其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.16.(2015·湖南,21)已知a >0,函数f (x )=a e x cos x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.(1)证明:数列{f (x n )}是等比数列;(2)若对一切n ∈N *,x n ≤|f (x n )|恒成立,求a 的取值范围.17.(2015·山东,20)设函数f (x )=(x +a )ln x ,g (x )=x 2e x . 已知曲线y =f (x ) 在点(1,f (1))处的切线与直线2x -y =0平行. (1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 18.(2015·浙江,20)设函数f (x )=x 2+ax +b (a ,b ∈R ).(1)当b =a 24+1时,求函数f (x )在[-1,1]上的最小值g (a )的表达式;(2)已知函数f (x )在[-1,1]上存在零点,0≤b -2a ≤1,求b 的取值范围. 19.(2015·天津,20)已知函数f (x )=4x -x 4,x ∈R . (1)求f (x )的单调区间;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ), 求证:对于任意的实数x ,都有f (x )≤g (x );(3)若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-a3+134.20.(2015·广东,21)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x 在区间(0,+∞)内的零点个数.21.(2014·安徽,20)设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.22.(2014·广东,21)已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得f (x 0)=f ⎝⎛⎭⎫12. 23.(2014·天津,19)已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值范围. 24.(2014·陕西,21)设函数f (x )=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b)-f (a )b -a<1恒成立,求m 的取值范围.25.(2014·新课标全国Ⅰ,21)设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1, f (1))处的切线斜率为0. (1) 求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围. B 组 两年模拟精选(2016~2015年)1.(2016·河北保定第二次模拟)已知函数f (x )=x 2-2cos x ,则f (0),f ⎝⎛⎭⎫-13,f ⎝⎛⎭⎫25的大小关系是( )A.f (0)<f ⎝⎛⎭⎫-13<f ⎝⎛⎭⎫25 B.f ⎝⎛⎭⎫-13<f (0)<f ⎝⎛⎭⎫25 C.f ⎝⎛⎭⎫25<f ⎝⎛⎭⎫-13<f (0)D.f (0)<f ⎝⎛⎭⎫25<f ⎝⎛⎭⎫-132.(2016·云南师大附中检测)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B.(-∞,3] C.⎣⎡⎭⎫518,+∞D.[3,+∞)3.(2016·四川雅安第三次诊断模拟)设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A.3f (2)>2f (3)B.3f (2)=2f (3)C.3f (2)<2f (3)D.3f (2)与2f (3)大小不确定4.(2016·甘肃兰州诊断)若函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1 (x ≤0),e ax (x >0)在[-2,2]上的最大值为2,则a 的取值范围是( ) A.⎣⎡⎭⎫12ln 2,+∞ B.⎣⎡⎦⎤0,12ln 2 C.(-∞,0]D.⎝⎛⎦⎤-∞,12ln 2 5.(2015·山东省实验中学二诊)已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<13,则f (x )<x 3+23的解集是( )A.{x |-1<x <1}B.{x |x <-1}C.{x |x <-1或x >1}D.{x |x >1}6.(2015·广东佛山调研)若函数f (x )=x 3-3x 在(a ,6-a 2]上有极小值,则实数a 的取值范围是( ) A.(-5,1) B.[-5,1) C.[-2,1)D.(-2,1)7.(2015·赣州市十二县联考)若函数f (x )=13x 3-a2x 2+(3-a )x +b 有三个不同的单调区间,则实数a 的取值范围是________.8.(2015·河南南阳三模)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.9.(2015·河北衡水中学模拟)已知函数f (x )=x ln x ,g (x )=-x 2+ax -3,其中 a 为实数. (1)求函数f (x )在[t ,t +2]上的最小值;(2)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围.答案精析A 组 三年高考真题(2016~2014年)1.解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12, 令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减, ∴f (x )的极小值点为a =2. 答案 D2.解析 f (x )=x -sin x 的定义域为R ,关于原点对称, 且f (-x )=-x -sin(-x )=-x +sin x =-f (x ), 故f (x )为奇函数.又f ′(x )=1-sin x ≥0恒成立,所以f (x )在其定义域内为增函数,故选B. 答案 B3.解析 由已知f (0)=d >0,可排除D ;其导函数f ′(x )=3ax 2+2bx +c 且f ′(0)=c >0,可排除B ; 又f ′(x )=0有两不等实根,且x 1x 2=ca >0,所以a >0.故选A.答案 A4.解析 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.答案 D5.解析 构造函数f (x )=e x -ln x ,则f ′(x )=e x -1x ,故f (x )=e x -ln x 在(0,1)上有一个极值点,即f (x )=e x -ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A 、B 错; 构造函数g (x )=e x x ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2,故函数g (x )=e xx 在(0,1)上单调递减,故g (x 1)>g (x 2),x 2e x 1>x 1e x 2,故选C. 答案 C6. 解析 由题意知f ′(x )=3ax 2-6x =3x (ax -2),当a =0时,不满足题意. 当a ≠0时,令f ′(x )=0,解得x =0或x =2a,当a >0时,f (x )在(-∞,0),⎝⎛⎭⎫2a ,+∞上单调递增,在 ⎝⎛⎭⎫0,2a 上单调递减. 又f (0)=1,此时f (x )在(-∞,0)上存在零点,不满足题意;当a <0时,f (x )在⎝⎛⎭⎫-∞,2a ,(0,+∞)上单调递减,在⎝⎛⎭⎫2a ,0上单调递增, 要使f (x )存在唯一的零点x 0,且x 0>0,则需f ⎝⎛⎭⎫2a >0, 即a ×⎝⎛⎭⎫2a 3-3×⎝⎛⎭⎫2a 2+1>0,解得a <-2,故选C. 答案 C7.解 (1)f (x )的定义域为(0,+∞),当a =4时,f (x )=(x +1)ln x -4(x -1),f ′(x )=ln x +1x -3,f ′(1)=-2,f (1)=0,曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0,设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a(x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.(ⅰ)当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;(ⅱ)当a >2时,令g ′(x )=0得,x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1. 由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此g (x )<0, 综上,a 的取值范围是(-∞,2].8.(1)解 由题设,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明 由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)证明 由题设c >1,设g (x )=1+(c -1)x -c x ,则g ′(x )=c -1-c x ln c ,令g ′(x )=0,解得x 0=ln c -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增;当x >x 0时,g ′(x )<0,g (x )单调递减. 由(2)知1<c -1ln c<c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0. 所以当x ∈(0,1)时,1+(c -1)x >c x . 9.解 (1)由f ′(x )=ln x -2ax +2a .可得g (x )=ln x -2ax +2a ,x ∈(0,+∞), 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0时,x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0时,函数g (x )单调递增, x ∈⎝⎛⎭⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调递增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝⎛⎭⎫0,12a ,单调减区间为⎝⎛⎭⎫12a ,+∞. (2)由(1)知,f ′(1)=0. ①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减, 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增. 可得当x ∈(0,1)时,f ′(x )<0,x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减.所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a <1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )在x =1处取极大值,合题意 . 综上可知,实数a 的取值范围为⎝⎛⎭⎫12,+∞. 10.(1)解 f ′(x )=2ax -1x =2ax 2-1x (x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a. 当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1. 当x >1时,s ′(x )>0,所以e x -1>x , 从而g (x )=1x -1ex -1>0.(3)解 由(2)知,当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1,由(1)有f ⎝⎛⎭⎫12a <f (1)=0,而g ⎝⎛⎭⎫12a >0. 所以f (x )>g (x )在区间(1,+∞)内不恒成立; 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0. 因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0, 即f (x )>g (x )恒成立.综上,a ∈⎣⎡⎭⎫12,+∞.11.(1)解 由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b ,切线斜率k =f ′(0)=b . 又f (0)=c ,所以切点坐标为(0,c ).所以所求切线方程为y -c =b (x -0),即bx -y +c =0.(2)解 由a =b =4得f (x )=x 3+4x 2+4x +c ∴f ′(x )=3x 2+8x +4=(3x +2)(x +2) 令f ′(x )=0,得(3x +2)(x +2)=0, 解得x =-2或x =-23,f ′(x ),f (x )随x 的变化情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-∞,-2),x 2∈⎝⎛⎭⎫-2,-23,x 3∈⎝⎛⎭⎫-23,+∞, 使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝⎛⎭⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点. (3)证明 当Δ=4a 2-12b <0时,即a 2-3b <0, f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞), 此时函数f (x )在区间(-∞,+∞)上单调递增, 所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0, 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点, 所以a 2-3b >0不是f (x )有三个不同零点的充分条件. 因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. 12.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝⎛⎭⎫1a =ln ⎝⎛⎭⎫1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).13.(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,因为e 2x 单调递增,-ax 单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1)可设f ′(x )在(0,+∞)的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a.14.解 (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞).由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52.故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1+52.(2)令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减, 故当x >1时,F (x )<F (1)=0, 即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意. 当k >1时,对于x >1,有f (x )<x -1<k (x -1), 则f (x )<k (x -1),从而不存在x 0>1满足题意. 当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞), 则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x .由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增. 从而当x ∈(1,x 2)时,G (x )>G (1)=0, 即f (x )>k (x -1).综上,k 的取值范围是(-∞,1).15.解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =ax 2+b,得⎩⎨⎧a25+b =40,a 400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x 2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎫t ,1 000t 2, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,y ′=-2 000x 3, 则l 的方程为y -1 000t 2=-2 000t 3(x -t ),由此得A ⎝⎛⎭⎫3t 2,0,B ⎝⎛⎭⎫0,3 000t 2. 故f (t )=⎝⎛⎭⎫3t 22+⎝⎛⎭⎫3 000t 22=32t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5.令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数.从而,当t =102时,函数g (t )有极小值,也是最小值, 所以g (t )min =300,此时f (t )min =15 3.答:当t =102时,公路l 的长度最短,最短长度为153千米. 16.解 (1)f ′(x )=a e x cos x -a e x sin x =2a e x cos ⎝⎛⎭⎫x +π4. 令f ′(x )=0,由x ≥0, 得x +π4=m π-π2,即x =m π-3π4,m ∈N *.而对于cos ⎝⎛⎭⎫x +π4,当k ∈Z 时, 若2k π-π2<x +π4<2k π+π2,即2k π-3π4<x <2k π+π4,则cos ⎝⎛⎭⎫x +π4>0. 若2k π+π2<x +π4<2k π+3π2,即2k π+π4<x <2k π+5π4,则cos ⎝⎛⎭⎫x +π4<0. 因此,在区间⎝⎛⎭⎫(m -1)π,m π-3π4与⎝⎛⎭⎫m π-3π4,m π+π4上,f ′(x )的符号总相反. 于是当x =m π-3π4(m ∈N *)时,f (x )取得极值,所以x n =n π-34π(n ∈N *).此时,f (x n )=a e n π-3π4cos ⎝⎛⎭⎫n π-3π4=(-1)n +12a 2e n π-3π4. 易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +22a 2e (n +1)π-3π4(-1)n +12a 2e n π-3π4=-e π是常数,故数列{f (x n )}是首项为f (x 1)=2a 2e π4,公比为-e π的等比数列.(2)对一切n ∈N *,x n ≤|f (x n )|恒成立,即n π-3π4≤2a 2e n π-3π4恒成立,亦即2a ≤e n π-3π4n π-3π4恒成立(因为a >0).设g (t )=e tt (t >0),则g ′(t )=e t (t -1)t 2.令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减; 当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增. 因为x 1∈(0,1),且当n ≥2时,x n ∈(1,+∞),x n <x n +1, 所以[g (x n )]min =min{g (x 1),g (x 2)} =min ⎩⎨⎧⎭⎬⎫g ⎝⎛⎭⎫π4,g ⎝⎛⎭⎫5π4=g ⎝⎛⎭⎫π4 =4πe π4. 因此,x n ≤|f (x n )|恒成立,当且仅当2a ≤4πe π4,解得a ≥2π4e -π4. 故a 的取值范围是⎣⎡⎭⎫2π4e -π4,+∞.17.解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2, 所以f ′(1)=2,又f ′(x )=ln x +ax +1,所以a =1.(2)k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根. 设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0.又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0. 因为h ′(x )=ln x +1x +1+x (x -2)e x ,所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈(2,+∞)时,h ′(x )>0,所以当x ∈(1,+∞)时,h (x )单调递增,所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根. (3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0. 且x ∈(0,x 0)时,f (x )<g (x ),x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎪⎨⎪⎧(x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0)时,若x ∈(0,1],m (x )≤0; 若x ∈(1,x 0),由m ′(x )=ln x +1x +1>0,可知0<m (x )≤m (x 0); 故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x ,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减; 可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e2.18.解 (1)当b =a 24+1时,f (x )=⎝⎛⎭⎫x +a 22+1,故对称轴为直线x =-a2.当a ≤-2时,g (a )=f (1)=a 24+a +2.当-2<a ≤2时,g (a )=f ⎝⎛⎭⎫-a2=1. 当a >2时,g (a )=f (-1)=a 24-a +2.综上,g (a )=⎩⎪⎨⎪⎧a 24+a +2,a ≤-2,1,-2<a ≤2,a 24-a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则⎩⎪⎨⎪⎧s +t =-a ,st =b ,由于0≤b -2a ≤1,因此-2t t +2≤s ≤1-2tt +2(-1≤t ≤1).当0≤t ≤1时,-2t 2t +2≤st ≤t -2t 2t +2,由于-23≤-2t 2t +2≤0和-13≤t -2t 2t +2≤9-45,所以-32≤b ≤9-4 5.当-1≤t <0时,t -2t 2t +2≤st ≤-2t 2t +2,由于-2≤-2t 2t +2<0和-3≤t -2t 2t +2<0,所以-3≤b <0.故b 的取值范围是[-3,9-45].19.(1)解 由f (x )=4x -x 4,可得f ′(x )=4-4x 3. 当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞). (2)证明 设点P 的坐标为(x 0,0),则x 0=413,f ′(x 0)=-12.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0). 令函数F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)(x -x 0), 则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-4x 3+4在(-∞,+∞)上单调递减, 故F ′(x )在(-∞,+∞)上单调递减,又因为F ′(x 0)=0,所以当x ∈(-∞,x 0)时,F ′(x )>0,当x ∈(x 0,+∞)时,F ′(x )<0, 所以F (x )在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减, 所以对于任意的实数x ,F (x )≤F (x 0)=0, 即对于任意的实数x ,都有f (x )≤g (x ). (3)证明 由(2)知g (x )=-12(x -413).设方程g (x )=a 的根为x 2′, 可得x 2′=-a 12+413.因为g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′), 因此x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ), 可得h (x )=4x .对于任意的x ∈(-∞,+∞),有f (x )-h (x )=-x 4≤0,即f (x )≤h (x ). 设方程h (x )=a 的根为x 1′,可得x 1′=a4.因为h (x )=4x 在(-∞,+∞)上单调递增,且h (x 1′)=a =f (x 1)≤h (x 1),因此x 1′≤x 1, 由此可得x 2-x 1≤x 2′-x 1′=-a 3+413.20.解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1, 当a ≤0时,|a |+a =-a +a =0≤1,显然成立;当a >0,则有|a |+a =2a ≤1,所以a ≤12,所以0<a ≤12,综上所述,a 的取值范围是a ≤12.(2)f (x )=⎩⎪⎨⎪⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a .对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 1=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上,所以f (x )在(-∞,a )上单调递减.综上,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减,(3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2.(ⅰ)当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥2,x 2-5x +4,x <2,令f (x )+4x =0,即f (x )=-4x(x >0),因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2,而y =-4x 在(0,2)上单调递增,y <f (2)=2,所以y =f (x )与y =-4x 在(0,2)无交点.当x ≥2时,f (x )=x 2-3x =-4x,即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0, 因为x ≥2,所以x =2,即当a =2时,f (x )+4x 有一个零点x =2.(ⅱ)当a >2时,f (x )min =f (a )=a -a 2, 当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2,而y =-4x 在x ∈(0,a )上单调递增,当x =a 时,y =-4a ,下面比较f (a )=a -a 2与-4a 的大小,因为a -a 2-⎝⎛⎭⎫-4a =-(a 3-a 2-4)a =-(a -2)(a 2+a +2)a<0 所以f (a )=a -a 2<-4a.结合图象不难得当a >2,y =f (x )与y =-4x有两个交点,综上,当a =2时,f (x )+4x 有一个零点x =2;当a >2,y =f (x )与y =-4x 有两个零点.21.解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2. 令f ′(x )=0,得x 1=-1-4+3a 3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在(-∞,x 1)和(x 2,+∞)内单调递减,在(x 1,x 2)内单调递增. (2)因为a >0,所以x 1<0,x 2>0.①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增, 所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值; 当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 22.解 (1)f ′(x )=x 2+2x +a 开口向上,方程x 2+2x +a =0的判别式Δ=4-4a =4(1-a ),若a ≥1,则Δ≤0,f ′(x )=x 2+2x +a ≥0恒成立,∴f (x )在R 上单调递增.若a <1,则Δ>0,方程x 2+2x +a =0有两个不同的实数根,x 1=-1-1-a ,x 2=-1+1-a , 当x <x 1或x >x 2时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0,∴f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞), 单调递减区间为(-1-1-a ,-1+1-a ). 综上所述,当a ≥1时,f (x )在R 上单调递增;当a <1时,f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞), f (x )的单调递减区间为(-1-1-a ,-1+1-a ).(2)当a <0时,Δ>0,且f (0)=1,f ⎝⎛⎭⎫12=3124+a 2,f (1)=73+a , 此时x 1<0,x 2>0, 令x 2=12得a =-54.①当-54<a <0时,x 1<0<x 2<12,f (x )在(0,x 2)上单调递减,在⎝⎛⎭⎫x 2,12上单调递增,在⎝⎛⎭⎫12,1上单调递增. (ⅰ)若-54<a <-712,则f (0)=1>f ⎝⎛⎭⎫12, ∴存在x 0∈(0,x 2),使得f (x 0)=f ⎝⎛⎭⎫12; (ⅱ)当-712≤a <0时,f (0)≤f ⎝⎛⎭⎫12, ∴不存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得f (x 0)=f ⎝⎛⎭⎫12. ②当a =-54时,f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,1上单调递增. ∴不存在x 0,使得f (x 0)=f ⎝⎛⎭⎫12. ③当-2512<a <-54时,f ⎝⎛⎭⎫12<f (1), ∴存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得f (x 0)=f ⎝⎛⎭⎫12. ④当a ≤-2512时,f ⎝⎛⎭⎫12≥f (1), ∴不存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得f (x 0)=f ⎝⎛⎭⎫12. 综上,当a ∈⎣⎡⎭⎫-712,0∪{-54}∪⎝⎛⎦⎤-∞,-2512时,不存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得 f (x 0)=f ⎝⎛⎭⎫12;当a ∈⎝⎛⎭⎫-2512,-54∪⎝⎛⎭⎫-54,-712时,存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得f (x 0)=f ⎝⎛⎭⎫12. 23.解 (1)由已知,有f ′(x )=2x -2ax 2(a >0). 令f ′(x )=0,解得x =0或x =1a.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的单调递增区间是⎝⎛⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭⎫1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a 时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2. (2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知,当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0;当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0. 设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )|x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B . 显然,0∉B .下面分三种情况讨论:(1)当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (2)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B .所以A ⊆B . (3)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集. 综上,a 的取值范围是⎣⎡⎦⎤34,32.24.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x 2,∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点.∴φ(x )的最大值为φ(1)=23. 又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点; ②当m =23时,函数g (x )有且只有一个零点; ③当0<m <23时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点; 当m =23或m ≤0时,函数g (x )有且只有一个零点; 当0<m <23时,函数g (x )有两个零点. (3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立, 等价于f (b )-b <f (a )-a 恒成立. (*)设h (x )=f (x )-x =ln x +m x-x (x >0), ∴(*)式等价于h (x )在(0,+∞)上单调递减.由h ′(x )=1x -m x 2-1≤0在(0,+∞)上恒成立, 得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立, ∴m ≥14(对m =14,h ′(x )=0仅在x =12时成立), ∴m 的取值范围是⎣⎡⎭⎫14,+∞. 25.解 (1)f ′(x )=a x+(1-a )x -b . 由题设知f ′(1)=0,解得b =1.(2)f (x )的定义域为(0,+∞).由(1)知,f (x )=a ln x +1-a 2x 2-x , f ′(x )=a x +(1-a )x -1=1-a x (x -a 1-a)(x -1). ①若a ≤12,则a 1-a≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)单调递增. 所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f (1)<a a -1,即1-a 2-1<a a -1, 解得-2-1<a <2-1.②若12<a <1,则a 1-a>1, 故当x ∈⎝⎛⎭⎫1,a 1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a 1-a ,+∞时,f ′(x )>0. f (x )在⎝⎛⎭⎫1,a 1-a 单调递减,在⎝⎛⎭⎫a 1-a ,+∞单调递增. 所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝⎛⎭⎫a 1-a <a a -1. 而f ⎝⎛⎭⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>a a -1,所以不合题意. ③若a >1,则f (1)=1-a 2-1=-a -12<a a -1. 综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).B 组 两年模拟精选(2016~2015年)1.解析 f ′(x )=2x +2sin x ,当x ∈[0,1]时f ′(x )>0.∴f (x )为增函数,所以f (0)<f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫25,又f (x )为偶函数,所以f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫13, 则f (0)<f ⎝⎛⎭⎫-13<f ⎝⎛⎭⎫25. 答案 A2.解析 f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 答案 C3.解析 令F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0, 所以F (x )为减函数,f (2)2>f (3)3,所以3f (2)>2f (3). 答案 A4.解析 当x ≤0时,f ′(x )=6x 2+6x ,易知函数f (x )在(-∞,0]上的极大值点是x =-1,且f (-1)=2,故只要在(0,2]上,e ax ≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ln 2x在(0,2]上恒成立,故a ≤12ln 2. 答案 D5.解析 构造函数F (x )=f (x )-⎝⎛⎭⎫x 3+23,F (1)=f (1)-1=0,∵f ′(x )<13,∴F ′(x )=f ′(x )-13<0,∴F (x )在R 上单调递减, f (x )<x 3+23的解集即F (x )<0=F (1)的解集,得x >1. 答案 D6.解析 f (x )=x 3-3x ,f ′(x )=3x 2-3,令f ′(x )=0,解得x =±1,可以判断当x =1时函数有极小值,∴⎩⎪⎨⎪⎧a <1,6-a 2≥1,6-a 2>a ,解得a ∈[-5,1),∴选B.答案 B7.解析 f ′(x )=x 2-ax +3-a ,要使f (x )有三个不同单调区间,需Δ=(-a )2-4(3-a )>0,即a ∈(-∞,-6)∪(2,+∞).答案 (-∞,-6)∪(2,+∞)8.解析 ∵f ′(x )=3x 2+1>0恒成立,∴f (x )在R 上是增函数.又f (-x )=-f (x ),∴y =f (x )为奇函数.由f (mx -2)+f (x )<0得f (mx -2)<-f (x )=f (-x ),∴mx -2<-x ,即mx -2+x <0在m ∈[-2,2]上恒成立.记g (m )=xm -2+x ,则⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧-2x -2+x <0,2x -2+x <0, 解得-2<x <23. 答案 ⎝⎛⎭⎫-2,23 9.解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1,当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,故f (x )在⎝⎛⎭⎫0,1e 上单调递减, 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0.故f (x )在⎝⎛⎭⎫1e ,+∞上单调递增. ①当0<t <t +2<1e时,无解; ②当0<t <1e <t +2,即0<t <1e时, 函数f (x )在[t ,t +2]上的最小值f (x )min =f ⎝⎛⎭⎫1e =-1e; ③当1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增, 故函数f (x )在[t ,t +2]上的最小值f (x )min =f (t )=t ln t .综上可知f (x )min =⎩⎨⎧-1e ,0<t <1e ,t ln t ,t ≥1e .(2)由题知2x ln x ≥-x 2+ax -3,即a ≤2ln x +x +3x对一切x ∈(0,+∞)恒成立. 设h (x )=2ln x +x +3x(x >0), 则h ′(x )=(x +3)(x -1)x 2, 当x ∈(0,1)时,h ′(x )<0,故h (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(1,+∞)上单调递增.所以h (x )在(0,+∞)上有唯一极小值h (1),即为最小值, 所以h (x )min =h (1)=4,因为对一切x ∈(0,+∞),a ≤h (x )恒成立,所以a ≤4.。
第一节 导数的概念及运算A 组 三年高考真题(2016~2014年)1.(2014·大纲全国,7)曲线y =x ex -1在点(1,1)处切线的斜率等于( )A.2eB.eC.2D.12.(2014·新课标全国Ⅱ,8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A.0B.1C.2D.3 3.(2014·陕西,3)定积分⎠⎛01(2x +e x)d x 的值为( )A.e +2B.e +1C.eD.e -1 4.(2014·江西,8)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A.-1B.-13C.13D.15.(2014·山东,6)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A.2 2 B.4 2 C.2 D.4 6.(2014·湖南,9)已知函数f (x )=sin(x -φ),且2π30()d f x x ⎰=0,则函数f (x )的图象的一条对称轴是( )A.x =5π6B.x =7π12C.x =π3D.x =π67.(2014·湖北,6)若函数f (x ),g (x )满足11()()d f x g x x -⎰=0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( )A.0B.1C.2D.38.(2016·全国Ⅲ,15)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.9.(2016·全国Ⅱ,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.10.(2015·陕西,15)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.11.(2015·湖南,11) ⎠⎛02(x -1)d x =________.12.(2015·天津,11)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 13.(2015·陕西,16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为________.14.(2014·江西,13)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.B 组 两年模拟精选(2016~2015年)1.(2016·陕西安康模拟)设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A.e 2B.eC.ln 22D.ln 22.(2016·广东惠州模拟)过点(1,-1)且与曲线y =x 3-2x 相切的切线方程为( ) A. x -y -2=0或5x +4y -1=0 B. x -y -2=0C. x -y +2=0D. x -y -2=0或4x +5y +1=03.(2016·贵州模拟)若函数f (x )满足f (x )=13x 3-f ′(1)x 2-x ,则f ′(1)的值为( )A.0B.2C.1D.-14.(2015·山东潍坊模拟)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,f ′(x )的图象是( )5.(2015·陕西西安模拟)曲线f (x )=x 3+x -2在p 0处的切线平行于直线y =4x -1,则p 0点的坐标为( )A.(1,0)B.(2,8)C.(1,0)和(-1,-4)D.(2,8)和(-1,-4)6.(2016·河北沧州高三上学期质量检测)已知函数f (x )=x 33-b2x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′(x )a在点(b ,g (b ))处切线的斜率的最小值是______.7.(2016·山东师大附中10月第二次模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x,x ∈(1,e].(其中e 为自然对数的底数),则⎠⎛0e f (x )d x 的值为________.8.(2015·广东模拟)设球的半径为时间t 的函数R (t ),若球的体积以均匀速度12增长,则球的表面积的增长速度与球半径的乘积为________.9.(2015·绵阳诊断)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ). (1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.10.(2015·湖南十二校联考)已知函数f (x )=x 3-ax 2+10. (1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.答案精析A 组 三年高考真题(2016~2014年)1.C [由题意可得y ′=e x -1+x ex -1,所以曲线在点(1,1)处切线的斜率等于2,故选C.]2.D [y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.] 3.C [∫10(2x +e x)d x =(x 2+e x )|10=(1+e)-(0+e 0)=e ,因此选C.]4.B [因为∫10f (x )d x 是常数,所以f ′(x )=2x ,所以可设f (x )=x 2+c (c 为常数),所以x 2+c =x 2+2(13x 3+cx )|10,解得c =-23,∫10f (x )d x =∫10(x 2+c )d x =∫10(x 2-23)d x =⎝ ⎛⎭⎪⎫13x 3-23x |10=-13.]5.D [由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为∫20(4x -x 3)d x =⎝⎛⎭⎪⎫2x 2-14x 4|20=4.]6.A [由定积分∫2π30sin(x -φ)d x =-cos(x -φ)|2π30=12cos φ-32sin φ+cosφ=0,得tan φ=3,所以φ=π3+k π(k ∈Z ),所以f (x )=sin(x -π3-k π)(k ∈Z ),由正弦函数的性质知y =sin(x -π3-k π)与y =sin(x -π3)的图象的对称轴相同,令x -π3=k π+π2,则x =k π+5π6(k ∈Z ),所以函数f (x )的图象的对称轴为x =k π+56π(k ∈Z ),当k =0,得x =5π6,选A.] 7.C [对于①,∫1-1sin 12x cos 12x d x =∫1-112sin x d x =0,所以①是一组正交函数;对于②,∫1-1(x +1)(x -1)d x =∫1-1(x 2-1)d x ≠0,所以②不是一组正交函数;对于③, ∫1-1x ·x 2d x =∫1-1x 3d x =0,所以③是一组正交函数.选C.]8. 2x +y +1=0 [设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2,切线方程为y =-2x -1.]9. 1-ln 2 [y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1,(设切点横坐标为x 2). ∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.]10.(1,1) [∵(e x)′|x =0=e 0=1,设P (x 0,y 0),有⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20=-1, 又∵x 0>0,∴x 0=1,故x P (1,1).]11.0 [∫20(x -1)d x =⎝⎛⎪⎪⎪⎭⎪⎫12x 2-x 20=12×22-2=0.] 12.16 [曲线y =x 2与直线y =x 所围成的封闭图形如图,由⎩⎪⎨⎪⎧y =x 2,y =x ,得A (1,1),面积S =∫1x d x -∫10x 2d x =12x 2⎪⎪⎪⎪⎪⎪10-13x 210=12-13=16.]13.1.2 [由题意可知最大流量的比即为横截面面积的比,建立以抛物线顶点为原点的直角坐标系,设抛物线方程为y =ax 2,将点(5,2)代入抛物线方程得a =225,故抛物线方程为y =225x 2,抛物线的横截面面积为S 1=2∫5⎝ ⎛⎭⎪⎫2-225x 2d x =2⎝⎛⎭⎪⎫2x -275x 3⎪⎪⎪50=403(m 2), 而原梯形上底为10-2tan 45°×2=6(m),故原梯形面积为S 2=12(10+6)×2=16,S 2S 1=16403=1.2.]14.(-ln 2,2) [由题意有y ′=-e -x,设P (m ,n ),直线2x +y +1=0的斜率为-2,则由题意得-e -m=-2,解得m =-ln 2,所以n =e -(-ln 2)=2.]B 组 两年模拟精选(2016~2015年)1.B [f ′(x )=ln x +x ·1x=ln x +1.∴ln x 0+1=2,得ln x 0=1,即x 0=e.]2.A [由于点(1,-1)在y =x 3-2x 上,当(1,-1)为切点时,切线斜率为y ′|x =1=1,切线方程为y =x -2.当(1,-1)不是切点时,设切点为(x 0,x 30-2x 0), 可得切线方程为y -x 30+2x 0=(3x 20-2)·(x -x 0), 又切线过点(1,-1),可得x 0=-12,故切线方程为5x +4y =1.]3.A [因为f ′(x )=x 2-2f ′(1)x -1,令x =1得f ′(1)=1-2f ′(1)-1.所以f ′(1)=0,故选A.]4.A [因为f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,所以f ′(x )=12x -sin x 为奇函数,且f ′⎝ ⎛⎭⎪⎫π6<0,故选A.]5.C [设p 0(x 0,y 0),则3x 20+1=4,所以x 0=±1,所以p 0点的坐标为(1,0)和(-1,-4).故选C.]6.2 [因为a >0,b >0,又g ′(x )=a x +2x -b a ,则g ′(b )=a b +2b -b a =a b +ba≥2,所以斜率的最小值为2.]7.-23 [⎠⎛0e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1xd x =13x 3|10-ln x |e1=13-1=-23.]8.1 [设球的体积以均匀速度c 增长,由题意可知球的体积为V (t )=43πR 3(t ),则c=4πR 2(t )R ′(t ),则cR (t )R ′(t )=4πR (t ),则球的表面积的增长速度为V 表=S ′(t )=(4πR 2(t ))′=8πR (t )R ′(t )=2cR (t ),即球的表面积的增长速度与球的半径的乘积为V 表·R (t )=2c =1.]9.解 f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或1.(2)∵曲线y =f (x )存在两条垂直于y 轴的切线,∴关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, ∴Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0,∴a ≠-12.∴a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 10.解 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14, 曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -14=8(x -2),即8x -y -2=0.(2)由已知得a >x 3+10x 2=x +10x 2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x3,∵1≤x ≤2,∴g ′(x )<0,∴g (x )在[1,2]上是减函数.g (x )min =g (2)=92,∴a >92,即实数a 的取值范围是⎝ ⎛⎭⎪⎫92,+∞.。