基因工程第六章外源基因的表达资料
- 格式:ppt
- 大小:627.00 KB
- 文档页数:61
基因工程各章知识点第一章绪论1.基因工程的首例操作实验三大理论基础:DNA是遗传物质、DNA的双螺旋结构和半保留复制、遗传密码的破译和遗传物质传递方式的确定三大技术基础:限制性核酸内切酶的发现与DNA的切割、DNA连接酶的发现与DNA片段的连接、基因工程载体的研究与应用基因工程的诞生:72年,P.Berg首次实现体外DNA重组:体外用EcoRI分别切割SV40和λDNA,并用T4 DNA连接酶连接成为重组的杂种DNA分子73年,S.Cohen 体外重组DNA并转化:具Kanr的E.Coli质粒R6-5和具Tetr的E.Coli质粒pSC101切割并连接转化的大肠杆菌具有双重抗性S.Cohen 和H.Boyer首次实现真核基因在原核中表达:将非洲爪蟾的DNA与E.Coli质粒(pSC101)体外切割并连接,转化大肠杆菌2.基因工程的基本概念基因工程是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种新物体(受体)内,使之稳定遗传并表达出新产物或具有新性状的DNA体外操作技术,也称为分子克隆或重组DNA 技术。
供体、载体、受体是基因工程的三大基本元件。
3.基因工程的基本操作过程a分离目的DNA片段:酶切、PCR扩增、化学合成等。
b重组:体外连接的DNA和载体DNA,形成重组DNA分子。
c转化:将重组DNA分子导入受体细胞并与之一起增殖。
d筛选:鉴定出获得了重组DNA分子的受体细胞。
e对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。
第二章载体1.理解用PBR322和PUC18作载体的克隆外源基因的原理。
答案不确定PBR322作载体的克隆外源基因的原理:PBR322质粒具有12 种限制性内切酶的单一识别位点:Tet r 基因内有7个酶切位点:Bam HⅠ,SalⅠ:Amp r基因内有3 个酶切位点:PstⅠ。
Eco RⅠ和HindⅢ不在抗生素基因内,不导致插入失活。
基因工程刘夫锋2019.11.18基因工程5 2 3 4 1 6789重组DNA 技术与基因工程的基本概念重组DNA技术与基因工程的基本原理重组DNA技术所需的基本条件重组DNA技术的操作过程目的基因的克隆与基因文库的构建外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达外源基因表达产物的分离纯化6.1 大肠杆菌作为表达外源基因受体菌的特征6 外源基因在大肠杆菌中的表达6.1 大肠杆菌作为表达外源基因受体菌的特征6 外源基因在大肠杆菌中的表达大肠杆菌表达外源基因的优势遗传背景清楚,适合大规模发酵基因克隆表达系统成熟完善培养成本低廉、繁殖迅速、培养简单、操作方便和遗传稳定被美国FDA批准为安全的基因工程受体生物K-12MG1655的全基因组测序,共有4405个开放型阅读框丰富的寄主菌株和载体系列大肠杆菌表达外源基因的劣势缺乏对来源于真核生物蛋白质的复性功能缺乏对来源于真核生物蛋白质的翻译后修饰加工系统内源性蛋白酶会降解三维构象不正确的异源蛋白细胞周质内含有种类繁多的内毒素,痕量就会引起人体热激反应6.1 大肠杆菌作为表达外源基因受体菌的特征6 外源基因在大肠杆菌中的表达外源基因在大肠杆菌中高效表达6 外源基因在大肠杆菌中的表达强化蛋白质生物合成抑制蛋白产物降解维持或恢复蛋白质特异性空间构象外源基因数量(拷贝数)基因转录水平mRNA 翻译速率的时序性控制6.2 外源基因在大肠杆菌中高效表达的原理6 外源基因在大肠杆菌中的表达启动子终止子核糖体结合位点密码子质粒拷贝数基因的基本组成6.2 外源基因在大肠杆菌中高效表达的原理6 外源基因在大肠杆菌中的表达启动子(Promoter)-启动基因转录需要的一段DNA 序列位于基因的编码区上游,与基因的编码方向一致,被细胞内转录因子和RNA聚合酶识别后,可开启基因转录的一段特殊的DNA序列。
启动子E. Coli 中常用的启动子-35 区序列-10 区序列P l L P recA P trp P lac P traA P tac启动子T T G A C A G A T A C T T T G A T A T A T A A T T T G A C A T T A A C T T A G A C A T A A T G T T T T A C A T A T A A T T T G A C AT A T A A T启动子的启动效率:P tac = 3 P trp = 11 P lac启动子启动子的可控性P乳糖启动子P lac 的可控性:OP O高效转录阻遏蛋白诱导乳糖异丙基-b -D-硫代半乳糖苷(IPTG )野生型的P lac 与其控制区O lac 偶联在一起,在没有诱导物存在时,整个操纵子处于基基底水平转录底水平表达;诱导物可以使启动子P lac 介导的转录大幅提高。
基因工程5 2 3 4 16789重组DNA 技术与基因工程的基本概念重组DNA技术与基因工程的基本原理重组DNA技术所需的基本条件重组DNA技术的操作过程目的基因的克隆与基因文库的构建外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达外源基因表达产物的分离纯化6.3 大肠杆菌基因工程菌的构建策略6 外源基因在大肠杆菌中的表达包涵体型异源蛋白的表达分泌型异源蛋白的表达融合型异源蛋白的表达寡聚型异源蛋白的表达整合型异源蛋白的表达蛋白酶抗性或缺陷型表达系统的构建细胞定位包涵体型异源蛋白的表达重组异源蛋白的细胞定位胞质型、周质型(内膜与外膜之间的空隙)和胞外型将重组异源蛋白引导至何种特定的细胞间隔各有利弊。
优选胞质,原因是在胞质型表达的表达水平高。
包涵体型异源蛋白的表达(胞质型)分泌型异源蛋白的表达(周质型或胞外型)融合型异源蛋白的表达寡聚型异源蛋白的表达整合型异源蛋白的表达蛋白酶抗性或缺陷型表达系统的构建单独表达融合表达包涵体型异源蛋白的表达包涵体及其性质在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体(Inclusion Bodies ,IB )。
富含蛋白质的包涵体多见于生长在含有氨基酸类似物培养基的大肠杆菌细胞中,由这些氨基酸类似物所合成的蛋白质往往会丧失其理化特性和生物功能,从而集聚形成包涵体。
由高效表达质粒构建的大肠杆菌工程菌大量合成非天然性的同源或异源蛋白质,后者在一般情况下也以包涵体的形式存在于细菌细胞内。
除此之外,包涵体中还含有少量的DNA 、RNA 和脂多糖等非蛋白分子。
包涵体型异源蛋白的表达以包涵体形式表达目的蛋白的优缺点高效表达重组异源蛋白包涵体表达形式的优点:以包涵体形式表达的重组异源蛋白可达细菌蛋白总量的20%-60%。
具有固相特性,从而简化外源基因表达产物的分离纯化包涵体的水难溶性及其密度远大于其它细胞碎片和细胞成份,菌体经超声波裂解后,直接通过高速离心即可将重组异源蛋白从细菌裂解物中分离出来。
基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体/宿主)内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。
2.基因工程概念的发展:遗传工程→DNA重组技术→分子/基因克隆(Molecular/Gene→基因工程→基因操作。
应用领域以“基因工程”、“DNA重组”为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因(供体):外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子(克隆载体、表达载体)。
宿主(受体):,能摄取外源DNA、并能使其稳定维持的细胞(组织、器官或个体)。
4.基因工程的基本步骤(切、接、转、增、检(大肠杆菌是中心角色)(1)目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片断。
(2)重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记(抗菌素抗性)的载体分子上。
(3)重组体的转化:将重组体(载体)转入适当的受体细胞中。
(4)克隆鉴定:挑选转化成功的细胞克隆(含有目的基因)。
(5)目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。
第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。
限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。
基因工程复习资料第一章核酸的制备1.主要步骤:分、切、接、转、筛、表2.基因工程的概念:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
第二章基因工程工具酶1.生物催化剂:核酶、抗体酶、模拟酶。
2.限制性内切核酸酶:定义:限制性内切核酸酶是一类能识别双链DNA中特殊核苷酸序列(识别序列),并在识别序列上使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
命名:限制性内切核酸酶一般是以第一次提取到这类酶的生物的属名的第一个字母和种名的第一、第二个字母命名的,有的在后面还加菌株(型)代号中的一个字母。
如果从同一种生物中先后提取到多种限制性内切核酸酶,则依次用罗马数字Ⅰ、Ⅱ、Ⅲ表示。
并且名称的前三个字母须用斜体,第一个字母用大写。
3.DNA连接酶:定义:DNA连接酶也称DNA黏合酶,在分子生物学中扮演一个既特殊又关键的角色,那就是连接DNA链3‘-OH末端和,另一DNA链的5’-P末端,使二者生成磷酸二酯键,从而把两段相邻的DNA链连成完整的链的一种酶。
种类:大肠杆菌DNA连接酶、T4DNA连接酶、TscDNA连接酶、真核生物细胞发现的连接酶,如酶Ⅰ、酶Ⅱ、酶Ⅲ等多种类型。
4.DNA片段的连接方法:①具互补黏性末端DNA片段之间的连接:可用E?coli DNA连接酶,也可用T4 DNA连接酶。
②具平末端DNA片段之间的连接:只能用T4 DNA连接酶,并且必须增加酶的用量。
③DNA片段末端修饰后进行连接:DNA片段末端同聚物加尾后进行连接,可按互补粘性末端片段之间的连接方法进行连接;粘性末端修饰成平末端后进行连接;DNA片段5′端脱磷酸化后进行连接;DNA片段加连杆或衔接头后连接。
5.DNA聚合酶:①定义:DNA聚合酶是指以DNA单链为模板,以4种脱氧核苷酸为底物,催化合成一条与模板链序列互补的DNA新链的酶。
基因工程刘夫锋2019.11.27基因工程5 2 3 4 1 6789重组DNA 技术与基因工程的基本概念重组DNA技术与基因工程的基本原理重组DNA技术所需的基本条件重组DNA技术的操作过程目的基因的克隆与基因文库的构建外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达外源基因表达产物的分离纯化7.1酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌的分类学特征酵母菌(Yeast )是一群以芽殖或裂殖方式进行无性繁殖的单细胞真核生物,分属于子囊菌纲(子囊酵母菌)、担子菌纲(担子酵母菌)、半知菌类(半知酵母菌),共由56个属和500多个种组成。
如果说大肠杆菌是外源基因最成熟的原核生物表达系统,则酵母菌是最成熟的真核生物表达系统。
7.1 酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌表达外源基因的优势全基因组测序,基因表达调控机理比较清楚,遗传操作相对简单能将外源基因表达产物分泌至培养基中具有原核细菌无法比拟的真核蛋白翻译后加工系统大规模发酵历史悠久、技术成熟、工艺简单、成本低廉不含有特异性的病毒、不产内毒素,美国FDA 认定为安全的基因工程受体系统,食品工业有数百年历史酵母菌是最简单的真核模式生物7.2 酵母菌的宿主系统7 外源基因在酵母菌中的表达7.2.2提高重组蛋白表达产率的突变宿主菌7.2.3 抑制超糖基化作用的突变宿主菌7.2.4 减少泛素依赖型蛋白降解作用的突变宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌目前已广泛用于外源基因表达和研究的酵母菌包括:酵母属如酿酒酵母(Saccharomyces cerevisiae )克鲁维酵母属如乳酸克鲁维酵母(Kluyveromyces lactis )毕赤酵母属如巴斯德毕赤酵母(Pichia pastoris )裂殖酵母属如非洲酒裂殖酵母(Schizosaccharomyces pombe )汉逊酵母属如多态汉逊酵母(Hansenula polymorpha )裂殖酵母属如粟酒裂殖酵母(Schizosaccharomyces pombe )如解脂耶氏酵母(耶氏酵母属Yarrowia lipolytica )如腺嘌呤阿氏酵母(阿氏酵母属Arxula adeninivorans )其中芽殖型酿酒酵母的遗传学和分子生物学研究最为详尽。
基因工程523 416789重组DNA技术与基因工程的基本概念重组DNA 技术与基因工程的基本原理重组DNA技术所需的基本条件重组DNA技术的操作过程目的基因的克隆与基因文库的构建外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达外源基因表达产物的分离纯化8.4 高等哺乳动物的基因转移8 外源基因在哺乳动物细胞中的表达8.3 高等哺乳动物的载体系统8.2 高等哺乳动物的受体系统8.1 高等哺乳动物基因工程的基本概念8.5 利用哺乳动物工程细胞生产重组蛋白高等哺乳动物细胞的生长特性动物基因工程指利用DNA重组技术对动物所进行的工程操作。
遗传学动物基因工程:外源基因能够通过配子进行垂直传递并稳定的遗传。
非遗传性动物基因工程:转基因仅在当代表现,不能够遗传给子代。
8.1 高等哺乳动物基因工程的基本概念8 外源基因在哺乳动物细胞中的表达高等哺乳动物基因工程高等哺乳动物细胞基因表达技术高等哺乳动物转基因技术转基因动物个体动物工程细胞哺乳动物遗传性状改良药物筛选研究评价模型人体基因治疗蛋白多肽物质大规模生产药物筛选研究评价模型8.1.1 高等哺乳动物细胞的生长特性8.1.2 高等哺乳动物受体细胞的条件8.1.3 高等哺乳动物受体细胞的遗传标记8.1.4 常用的高等哺乳动物受体细胞8.1 高等哺乳动物基因工程的基本概念8 外源基因在哺乳动物细胞中的表达8.1.1 高等哺乳动物细胞的生长特性正常的哺乳类动物细胞具有下列四大生物学特征:锚地依赖性:细胞必须附在固体上或固定的表面才能生长分裂血清依赖性:细胞必须具有生长因子才能生长接触抑制性:细胞与细胞接触后,生长便受到抑制形态依赖性:细胞呈扁平状,并有长纤维网状结构上述特征使得正常的哺乳动物细胞在体外培养中,一般只能存活50代,且在培养皿上以平面的形式生长,即单层细胞生长。
有时,正常细胞会改变某些特征而越过生理临界点,继续增殖并无限制分裂,这种状态称为细胞系形成,此时的细胞称为细胞系。
基因工程复习题题型:名词解释(10个)30分;填空(每空1分) 20分;选择题(每题1分)10分;简答题(4个)20分;论述题(2个)20分。
第一章绪论1.名词解释:基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
遗传工程广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。
狭义:基因工程。
克隆:无性(繁殖)系或纯系。
指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体。
2.什么是基因克隆及基本要点?3.举例说明基因工程发展过程中的三个重大事件。
A) 限制性内切酶和DNA连接酶的发现(标志着DNA重组时代的开始);B) 载体的使用;C) 1970年,逆转录酶及抗性标记的发现。
4.基因工程研究的主要内容是什么?基础研究:基因工程克隆载体的研究基因工程受体系统的研究目的基因的研究基因工程工具酶的研究基因工程新技术的研究应用研究:基因工程药物研究转基因动植物的研究在食品、化学、能源和环境保护等方面的应用研究第二章基因克隆的工具酶1.名词解释:限制性核酸内切酶:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
回文结构:双链DNA中的一段倒置重复序列,当该序列的双链被打开后,可形成发夹结构。
同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶。
同裂酶:不同来源的限制酶可切割同一靶序列和具有相同的识别序列黏性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为粘性末端。
平末端:DNA片段的末端是平齐的。