发电机差动保护动作原因分析
- 格式:doc
- 大小:1.44 MB
- 文档页数:3
某发电厂1号机组高厂变差动保护动作原因分析与防范措施一、动作原因分析:1.供电系统电压异常:高厂变差动保护的主要作用是检测供电系统的电压是否正常,当供电系统的电压超出了设定范围时,保护装置会自动动作。
原因可能包括供电系统电压突然降低或升高,供电系统电压不平衡等问题。
2.发电机故障:高厂变差动保护还能检测发电机的故障情况,如发电机的绝缘损坏、转子短路、接地故障等。
当发电机发生故障时,保护装置会将其断开与电网的连接,以保护设备和人员的安全。
3.电网故障:电网故障包括短路、接地故障等,这些故障会导致系统电压的突变,从而触发高厂变差动保护。
电网的故障通常与其他设备的故障有关,如电缆或绝缘子的损坏、设备的过负荷运行等。
二、防范措施:1.定期检查和维护设备:对高厂变差动保护装置进行定期的检查和维护,确保其正常工作。
检查范围包括外观检查、连接检查、仪表检查等,以及对设备进行及时的维修和更换。
2.加强对供电系统的监控:通过设置电压监控装置,实时监测供电系统的电压波动情况,一旦电压超出设定范围,及时采取措施,防止高厂变差动保护动作。
3.增强电网的可靠性:加强对电网设备的检修和维护工作,确保各设备的正常运行。
特别是对电缆、绝缘子等易损部位进行定期的检查和更换,减少电网故障的发生。
4.加强对发电机的检修和维护工作:对发电机进行定期的巡检和清洁工作,及时发现和排除潜在故障。
此外,还可通过安装振动监测和绝缘监测装置,对发电机的运行状态进行实时监测。
5.提高运维人员的技术水平:培训运维人员,提高其对高厂变差动保护原理和工作原理的掌握程度,以及对故障排查和处理的能力。
只有运维人员具备一定的技术水平,才能有效地防范高厂变差动保护误动作。
总结:针对高厂变差动保护动作的原因,我们可以从加强设备检修和维护、监测电压波动、增强电网可靠性、加强对发电机的检修和维护、提高运维人员的技术水平等多方面进行防范措施的制定和执行。
通过这些措施的合理实施,可以有效地减少高厂变差动保护的误动作,提高发电机组运行的可靠性和稳定性。
发电机差动保护误动原因分析[摘要]差动保护作为发电机的主保护,能否正确动作直接影响到主设备的安全和系统的稳定运行。
本篇主要介绍因线路遭受雷击引起发电机组差动保护误动原因进行分析并提出相应的整改措施及电流互感器对差动保护动作的影响进行分析。
[关键词]差动保护;电流互感器;原因分析;整改措施0 引言多年来,作为主设备主保护的纵联差动(简称纵差或差动)保护,正确动作率始终在50%~60%徘徊,而零序差动保护甚至低到30%左右,这对主设备的安全和系统的稳定运行都很不利。
造成这种局面的原因是多方面的,主要有设计、制造、安装调试和运行维护等。
各部门都有或多或少的责任,实际工作中也在不断改进,但是“原因不明”的主设备保护不正确动作事例仍然为数不少。
发电机纵差保护可以说是最简单的应用,但仍然存在“原因不明”的误动事故发生,比如在同期操作(人工或自动)过程,主要现象是由于操作不规范,偏离同期三要素(频率、电压幅值、相位)的要求,合闸时发电机发出轰鸣声,随即纵差保护跳闸。
1 发电机差动保护动作情况山美水电站#1发电机技术改造后于2005年8月投入运行,运行后一切正常。
发电机所采用的保护为河南许继集团生产的WFB-800系列保护装置。
中性点和机端差动保护电流互感器均为LZZBJ9-10 A2型,10P15 /10P15 级,变比为1500/5,其中中性点电流互感器安装在发电机现场,机端电流互感器安装在新高压开关室,两者相距350m 。
如图1图18月23日由于35KV线路遭受雷击,A、B两相短路,雷电波虽经过了一台110KV三卷变的隔离,但还是引起发电机差动保护范围外的区外短路,导致机能差动保护动作。
差动保护回路因差流存在并达到动作限值引起差动保护动作,装置动作正确。
但因区外短路,故本不应引起发电机差动保护动作。
保护装置记录当时的动作数据如下:机端A相电流13.97∠090°A机端B相电流18.13∠322°A机端C相电流16.52∠175°A中性点A相电流18.91∠252°A中性点B相电流21.92∠117°A中性点C相电流15.62∠354°AA相差动电流8.30AA相制动电流16.10AB相差动电流9.42AB相制动电流19.55AC相差动电流0.14AC相制动电流15.57A2保护动作原因分析2.1客观原因:发电机组中性点电流互感器与机组出口电流互感器距离为350米,两电流互感器间有一段300米的汇流母排,外部设备雷击后,多次谐波被母排及发电机吸收,使机端与发电机中性点电流互感器的一次电流差异较大,引起差动动作,造成发电机事故停机。
主持:朱宁衣电技术k i i a n g a友电与变电l\OI\(;(;L iN D IA N C«')IN GI发电机故障保护动作分析及处理1.1 发电机差动保护动作现象:蜂鸣器响,监控后台将光字信号弹出,机纽事故栏中差动保护光字牌显示红色盖动保护动作机组停机。
处理:若发电机出门断路器未断开,应立即断开检查一次设备.修试人员对发电机绝缘.二次冋路进行全面检杏若无异常,经批准后,可开机作递升加压试验,若有异常,应立即停机检修若升压空载运压降低;机组发出“吼"的声音并较大振动;定子电流、电压值剧烈摆动处理:如果出现发电机组剧烈振动,应立即停机:通知修试人员检査发电机各部绝缘、同期卩|丨路情况以 及定广绕纟 11端部有无变形丼处理尤异常后,经总工程师批准可幵机起励空运行无异常后,屮请并网1.7 发电机转子两点接地现象:蜂鸣器响.监控后台符光字信号弹出.机#IL 私故栏屮转子两点接地光字牌显示红色保护动作.I t l l l洄 SB®茴U3(H>64 I湖北水t*丨水也职业技木伞%乜力系张>n h行3—5 m in无异常时,可申请并网,递增负荷1.2 复压过流保护动作现象:蜂鸣器响,监控后台苻光字信号弹出.机m 事故栌M压过流光字牌红色保护动作,机织停机处理:若发电机出N断路器未断开,应立即断开若益动保护IH常投入,应4调度联系是否系统事故,消除事故后,可复归光字信兮,开机并网1.3 发电机过电压保护动作现象:蜂鸣器响,监控后台有光字信号弹出,发电机的过电压保护光字牌为红色处理:若发电机出丨I断路器未断开,应立即断开,若原丙不明,应玟即停机通知修试人员对发电机进f r 绝缘、厂.次冋路检査检查无异常后,可复n光字信53-,力-机空载运行;空载运行无异常后,申请并网1.4发电机失磁保护动作现象:蜂鸣器响,监控后台有光字信号弹出.机m 事故栏失磁事故光字牌红色保护动作.机纟i i停机处理:若发电机出n断路器米断幵,应立即断开若确系人为误动作引起,可不检立即投人运行;苦其他保护耒动作.如來是冈灭磁开关跳丨起保护动怍,则应观察发电机出n断路器是否断开,如没断开应立即断开.将励磁凋Y/装S退出运行检杳灭磁开关的橾作冋路、操作机构宥无汗常,井及时处理|.5 发电机发生剧烈振荡或失去同步现象:发电机发出有规律的裝鸣声;有功功率、无 功功率、定了-转F电流数值剧烈摆动处理:应尽可能增加发电机的励磁电流;适当调整机纟U有功负疴(荇转速升卨降低苻功负荷,转速降低增加有功负荷);采取措施I m in内无效时,应立B丨J 停机处理;恢釔正常后,屮请幵机并N1.6发电机非同期并列现象:定子电流突然汁高;发电机和母线丨.各电机纽解列停机灭磁汗关跳汗处理:若发屯机出n断路器未断开,应断)「•检 查转子M路有无荇火.若荇火,应立即灭火通知修试人员处理IH常后,以归光字信号,中清开机1.8发电机若火现象:发电机风洞盖板处冒烟、火矶,绝缘烧焦;发电机保护动作.机组解列停机处理:若保护柜动,应按下紧急停机按钮停机并报告车间领导;确认发电机无电压后,打开消防阀丨' 1进行灭火;若热风M打开.应立即关闭2发电机异常运行保护动作分析及处理2.1 发电机过负荷现象:齊铃响,随控后台有光字信号弹出,机組故障柃中过负荷光字牌®示红色处理:监视发电机各个部位的温度,检迕定f电 流是否超过允许值.可根椐具体怙况适当减负荷2.2发电机转子-点接地现象:筲铃响.监控后台有光字倍兮弹出,机组故障衫中转子-点接地光字牌祯示红色处理:/I:保护测控屏丨•.检査正负极对地电阻情况;俭査是否1.作人员不小心所致;沾擦成川气吹杓滑环(防止糾路或接地);无效时,中沾解列.淖机处理2.3 发电机操作、测控、保护电源屮断现象:羚铃响,监控后台有光字信号弹出,机姐故障柃中保护5f.常光字牌敁示红色处■:检杏柁制屏耵断路器是否断〗「•检查直流馈电屏丨:讣关设备是否断汗,豇流系统是否故障检迕后不能确定缺陷原W.通知检修人员处理.2.4 发电机滑环打火有不合格的碳刷运行,滑环打火时,应更换气火花较大可能造成绝缘损坏吋,应立即按F紧急停机按钮停机处理2020-03-0丨收摘第28卷2020年第3期农村电工45。
发电机差动保护原理
发电机差动保护原理是一种用于保护发电机的电气装置。
它的作用是检测发电机定子和励磁绕组之间的电流差异,并在出现故障时迅速切断电源,以防止进一步损坏。
下面是发电机差动保护原理的具体工作过程:
1. 发电机差动保护装置通常由两个部分组成:差动电流互感器和差动继电器。
差动电流互感器安装在发电机的定子和励磁绕组之间,用于检测电流的差异。
差动继电器则根据差动电流互感器的信号来进行判断和控制。
2. 工作时,差动电流互感器通过比较定子和励磁绕组的电流来检测差异。
如果两者的电流相等,则差动电流互感器不会输出信号。
3. 当出现故障时,如发电机内部的绕组短路或接地故障,会导致定子和励磁绕组之间的电流差异增大。
差动电流互感器会通过检测这个差异,并将信号发送到差动继电器。
4. 差动继电器接收到信号后,会进行判断。
如果差动电流超过设定的阈值,差动继电器会发出切断电源的指令。
5. 切断电源后,发电机会停止运行,并由操作员进行修复。
这样可以防止进一步损坏发电机。
发电机差动保护原理通过比较定子和励磁绕组之间的电流差异,并在出现故障时切断电源,起到了保护发电机的作用。
它是发
电设备中重要的保护装置之一,能够有效地提高设备的可靠性和安全性。
发电机差动保护原理发电机差动保护是保护发电机正常运行的重要手段之一,它主要是针对发电机内部的绕组短路故障进行保护。
发电机差动保护的原理是利用发电机绕组之间的电流差值来实现对发电机内部故障的检测和保护。
下面我们将详细介绍发电机差动保护的原理和工作方式。
发电机差动保护的原理是基于基尔霍夫电流定律和法拉第电磁感应定律的。
当发电机内部发生绕组短路故障时,会导致绕组之间的电流发生不平衡,这就产生了差动电流。
差动电流是指发电机绕组之间的电流差值,它是发电机内部故障的重要特征之一。
因此,通过对差动电流进行监测和保护,可以实现对发电机内部故障的及时检测和切除,从而保护发电机的正常运行。
发电机差动保护的工作方式是通过对发电机绕组之间的电流进行差动比较来实现的。
具体来说,差动保护装置会同时监测发电机各个绕组的电流,然后将它们进行相减,得到差动电流。
如果差动电流超过了预设的阈值,就会判定为发电机内部发生了故障,差动保护装置会发出信号,切断发电机的电源,从而实现对发电机的保护。
在实际应用中,发电机差动保护还需要考虑到一些特殊情况,比如说发电机的启动和停机过程,以及负荷变化等因素。
针对这些情况,差动保护装置通常会设置一些延时和灵敏度保护,以确保在正常情况下不误动作,同时在发生故障时能够及时切除故障部分,保护发电机的安全运行。
总的来说,发电机差动保护是通过对发电机绕组之间的电流进行差动比较来实现对发电机内部故障的保护。
它利用差动电流作为故障特征,通过监测和判断差动电流的大小来实现对发电机的保护。
在实际应用中,还需要考虑到一些特殊情况,并设置相应的保护参数和逻辑,以确保差动保护能够可靠地工作。
发电机差动保护在发电机保护系统中占据着重要的地位,它能够有效地保护发电机的安全运行,为电力系统的稳定运行提供了重要保障。
关于平圩发电有限责任公司#2发电机差动保护误动跳机分析及处理情况汇报中电国际安全生产部:根据要求,现将平电公司#2机组12月26日跳机原因分析及处理经过汇报如下:一.事情经过2003年12月26日5时21分,平电公司#2机运行负荷540MW,发电机突然跳闸(跳闸前无异常运行现象),集控室“86-1/2GMT动作”、“发电机差动保护动作”光字牌报警。
5021、5022开关跳闸,磁场开关跳闸,厂用电切换成功。
二.停机后检查情况1、#2机组跳机后,运行值长立即汇报网、省两调、平电公司副总以上生产领导及公司值班,通知生技、安环、运行、仪控、检修公司等生产单位领导;并在规定时间内分别汇报了集团公司调度值班和中电国际安生部领导。
凌晨6:00左右,公司在现场召开紧急会议并作如下安排:1)发电机立即按检修方式布置措施,满足电气、仪控人员检查及试验要求。
2)仪控人员打印所有事故报表,同时对#2机组汽机转子惰走过程中出现#6瓦瓦温瞬间高的异常现象进行分析。
检修人员作好抢修准备。
3)#1机组按紧急启动要求立即安排(#1机组于26日晚18:43并网)。
4)#2机做好防寒防冻工作,生技部准备临检项目并于下午召开项目会议。
5)根据以上安排,在公司统一领导下各副总分工协作,重点负责。
2、经生技、安环、运行、仪控、检修公司有关技术人员多方检查、试验,到上午10点左右重点方面检查试验结束,基本情况为:1)#2机电子室PRP保护盘87-2G/C继电器(发电机C相差动继电器)掉牌,86-1/2GMT出口动作,故障录波器启动。
对发电机出口CT接线盒进行检查,发现C相接线盒内电缆绝缘皮破损且铜芯与接线盒金属外壳接触。
(详见附件一照片及附件二故障录波曲线)2)继保人员对发电机差动交流回路进行检查未发现异常,对CT进行伏安特性试验也未发现异常。
在就地端子箱进行通电试验,未发现异常。
3)对发电机外观进行检查,没有发现其它异常。
拆除发电机一次线,进行发变组回路绝缘、发电机定子绕组绝缘电阻、发电机定子绕组直流电阻、主变低压回路绝缘等试验检查均正常(试验数据见附件三)。
发电机差动保护的原理及作用1. 前言发电机是电力系统的重要组成部分,其正常运行对于电网的稳定运行至关重要。
然而,发电机也面临各种故障的风险,如短路、过载等。
因此,为了确保发电机的安全运行,差动保护系统被广泛应用。
2. 发电机差动保护的原理发电机差动保护的原理是基于电流差动原理,通过对发电机的入口和出口电流进行比较,以便检测和定位故障的发生。
其基本原理如下:2.1 故障状态下的差动电流当发电机出现故障时,故障点处的电流会发生变化。
这是由于故障造成的电路路径改变,导致了电流的分布变化。
因此,在故障点处的电流与正常工作状态下的电流存在差异。
2.2 电流差动计算发电机差动保护系统会对发电机的入口电流和出口电流进行差动计算。
差动计算可以通过以下公式表示:差动电流 = 入口电流 - 出口电流2.3 差动电流的分析与判断差动电流的大小和方向可以用于分析故障位置和类型。
根据差动电流的方向确定故障点的位置,根据差动电流的大小判断故障的类型(例如短路、接地等)。
3. 发电机差动保护的作用发电机差动保护在电力系统中起着重要的作用,下面从以下几个方面进行探讨:3.1 故障检测与定位发电机差动保护系统能够快速检测到发电机的故障,并确定故障位置。
通过及时准确地定位故障点,可以迅速采取措施进行修复,从而减少故障对电网的影响。
3.2 防止故障扩散当发生发电机故障时,如果不及时采取措施进行保护,故障可能会扩散到其他设备甚至整个电网中。
发电机差动保护系统能够及时切除故障电路,从而防止故障扩散。
3.3 提高电网安全性发电机差动保护系统能够快速、准确地检测故障,并自动采取措施进行保护。
这可以有效降低故障发生后的损失,提高电网的安全性和可靠性。
3.4 减少停电时间发电机故障如果得不到及时处理,可能导致电网停电。
而发电机差动保护系统能够迅速检测到故障,并自动进行切除和保护。
这可以大大减少停电时间,提高用户的供电可靠性。
4. 发电机差动保护的应用发电机差动保护系统广泛应用于各种类型的发电机,如水轮发电机、汽轮发电机等。
发电机差动保护动作原因分析
一、事故经过
2012年10月23日07时29分,网控值班员听见巨响声同时发现盘面柴发电源二103-16断路器跳闸,网控值班员立即前往网控10KV配电室发现浓烟,经检查柴发电源二103-16高压柜后盖已被甩出,柜内已烧黑。
2号发电机纵差保护动作,2号发电机组跳闸。
07时33分,低频保护动作,甩负荷至第5轮。
07时33分41秒,1号、3号机组跳闸,全厂失电。
二、故障分析
继电保护人员随后调取事故动作报告,发现发电机差动保护动作时刻,差动电流确实已经远超过了整定值,说明在103-16柜故障时刻发抗组差动回路确实存在很大的不平衡电流。
与此同时为验证发电机差动回路内一次设备是否有故障,对发电机绕组及其一次母线进行对地及相间绝缘检查,未发现异常。
证明发电机等一次设备未发生故障,发抗组保护装臵本身在这次大修期间已经对保护装臵及二次回路连线可靠性及差动极性正确性进行检查均未发现有误之处。
差动动作时间和103-16柜发生故障时间基本同时发生,但是就算在故障过程中产生的瞬间大电流对发电机差动回路来说也应该是一个穿越性电流,不应该对发电机差动保护产生影响。
随后保护人员调取录波图进行分析,发现故障时刻发电机中性点B相电流波形严重畸变。
经过计算,发电机中性点B相电流与发电机机端B相电流之差正好等于装臵
采样的差流值。
从录波图上可以看出,故障时刻发电机中性点B相电流波形发生严重畸变,且故障时刻发电机中性点B相电流与发电机机端电流在同一时刻的相位及幅值均不相同,说明故障电流对发电机中性点电流互感器和发电机机端电流互感器造成的影响不同。
三、波形畸变分析
1、从录波图上可以看出,B相电流波形开始发生畸变前一刻波形
处在波峰点,故障电流预估达到24KA使电流互感器铁心出现暂态饱和是造成波形畸变的主要原因。
2、查看设计图发现,发电机机端侧采用10kV开关柜内的电流互感器,而发电机中性点侧则采用发电机穿墙CT,二者只有变比一致,生产厂家、设备型号、额定容量及短路倍数均不相同,因此即使通过同一瞬间大电流的情况下,电流互感器二次侧所反映的二次电流也不会相同,从而使发电机差动回路中产生不平衡电流。
四、处理措施
1、增加下级保护灵敏度,减小故障时对发电机的冲击。
2、建议对发电机差动保护进行改进,将发电机中性点电流互感器及发电机机端电流互感器选用型号相同、设备参数相同的电流互感器,使两侧电流互感器的伏安特性曲线基本保证一致或相近,减小穿越性的电流对发电机差动保护造成影响。
继电保护
2012年10月27日。