八年级数学分式15.2分式的运算15.2.2分式的加减第2课时分式的混合运算作业课件新人教版
- 格式:pptx
- 大小:614.24 KB
- 文档页数:10
八年级数学(上)15.2 分式的运算知识网络重难突破知识点一分式的约分约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去。
最简公式的定义:分子与分母没有公因式的分式。
分式约分步骤:1)提分子、分母公因式2)约去公因式3)观察结果,是否是最简分式或整式。
注意:1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式典例1(2019·西城区期中)下列各式约分正确的是( )A.B.C.D.典例2(2019·静安区期中)下列分式中,是最简分式的是()A.22222x yx xy y--+B.C.D.典例3(2020·泰安市期中)化简的结果是()A.1x-B.C.D.典例4(2019·宁阳县期中)下列运算正确的是()A.B.C.D.典例5(2019·临淄区期中)下列分式中,最简分式是( )A.615xB.236xx--C.D.22a ba b-+知识点二分式的通分通分的定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
分式通分的关键:确定最简公分母确定分式的最简公分母的方法1.因式分解2.系数:各分式分母系数的最小公倍数;3.字母:各分母的所有字母的最高次幂4.多项式:各分母所有多项式因式的最高次幂5.积约分与通分的相同点:典例1(2019·绵阳市期末)分式的最简公分母是()A.B.C.D.典例2(2019·郓城县期末)分式,,的最简公分母是( )A .(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B .(a+b )²(a -b )²C .(a+b )²(a -b )²(a²-b²)D . 44a b -典例3(2019·市中区期末)下列各题所求的最简公分母,错误的是 ( ) A .的最简公分母是6x 2 B .的最简公分母是6a 2b 2cC .的最简公分母是x 2-9D .的最简公分母是mn (x+y )·(x -y )典例4 (2018·五莲县期末)把分式-xx y,,的分母化为x 2-y 2后,各分式的分子之和是( ) A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy -y 2+2D .x 2-2xy +y 2+2 典例5(2018·聊城市期末)把、、通分过程中,不正确的是( )A .最简公分母是(x -2)(x +3)2B .C .D .知识点三 分式的四则运算与分式的乘方1)分式的乘除法法则:用分子的积作为积的分子,分母的积作为积的分母。
第2课时分式混合运算
◇教学目标◇
【知识与技能】
明确分式混合运算的顺序.
【过程与方法】
经历探索分式混合运算步骤的过程,能熟练地进行分式的混合运算.【情感、态度与价值观】
结合已有的数学经验解决新问题,获得成就感和克服困难的方法和勇气.
◇教学重难点◇
【教学重点】
分式混合运算的顺序.
【教学难点】
分式的混合运算.
◇教学过程◇
一、情境导入
我们学习了分式的加减乘除、乘方运算,你能解决下面的问题吗?
化简:.
二、合作探究
探究点1分式乘除混合运算
典例1化简:.
[解析]原式=-=-.
探究点2分式混合运算
第 1 页共 2 页
典例2先化简,再求值:,其中x=5.
[解析]原式=
=
=-(x-2)
=-x+2.
当x=5时,原式=-5+2=-3.
探究点3化简求值
典例3先化简,再求值:.其中x的值从不等式组的整数解中选取.
[解析]由不等式组可解得-1<x≤2.
∵x是整数,
∴x=0或1或2.
∴原式==(x+2)·,
当x=0时,原式=0.
当x=2时,原式=.
当x=1时,原式=.
三、板书设计
分式混合运算
分式混合运算
◇教学反思◇
本节是一节习题课,内容是分式的混合运算,要把握运算顺序.不少学生在分式运算中出错,就是因为不重视审题,题没看完就动笔计算,或者受题中部分算式的特殊结构的影响而不遵循运算顺序,如化简,就常出现乱约分而不遵循运算顺序的典型错误,要同学通过练习、板演充分暴露问题所在,纠正,最后总结出容易忽视和出错的地方,提醒自己.
第 2 页共 2 页。
人教版八年级数学上册说课稿15.2 分式的运算一. 教材分析本次说课的内容是人教版八年级数学上册的15.2分式的运算。
这部分内容是学生在学习了分式的概念、分式的性质和分式的化简等知识的基础上进行学习的,是进一步培养学生对分式的理解和运用能力的重要环节。
在这部分内容中,学生需要掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
二. 学情分析学生在学习这部分内容时,已经具备了分式的基本知识,对分式的概念和性质有一定的理解。
但学生在进行分式的运算时,还存在着对运算规则理解不深,运算步骤不清晰等问题。
因此,在教学过程中,需要引导学生深入理解分式运算的规则,明确运算的步骤,提高学生的运算能力。
三. 说教学目标1.知识与技能目标:学生能够掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
2.过程与方法目标:通过学生的自主学习和合作交流,培养学生对分式运算的理解和运用能力。
3.情感态度与价值观目标:培养学生对数学学习的兴趣,提高学生对数学学习的自信心。
四. 说教学重难点1.教学重点:分式的加减乘除运算规则的掌握和运用。
2.教学难点:分式运算步骤的清晰和运算规则的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件进行教学,引导学生通过观察、思考、讨论和总结,深入理解分式的运算规则。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生进入分式的运算学习。
2.自主学习:学生通过自主学习,掌握分式的加减乘除运算规则。
3.合作交流:学生分组进行合作交流,通过讨论和总结,明确分式运算的步骤。
4.案例分析:通过分析典型案例,引导学生理解和掌握分式运算的规则。
5.练习巩固:学生进行练习,巩固所学的内容。
6.总结提升:教师引导学生进行总结提升,明确分式运算的重点和难点。
七. 说板书设计板书设计要清晰、简洁,能够突出教学的重点和难点。
在板书中,可以将分式的加减乘除运算规则用图示的方式进行展示,让学生一目了然。
15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。
人教版八年级数学上册15.2.2.2《分式的混合运算》教案一. 教材分析人教版八年级数学上册15.2.2.2《分式的混合运算》一节,主要让学生掌握分式的加减乘除运算规则,以及混合运算的运算顺序。
这一节内容在分式知识体系中占据重要地位,为后续分式方程和不等式的学习打下基础。
教材通过例题和练习,使学生熟练掌握分式混合运算的方法和技巧。
二. 学情分析八年级的学生已经学习了分式的基本概念和运算规则,对分式有了一定的认识。
但学生在混合运算方面,可能会存在运算顺序混乱、对运算规则理解不深等问题。
因此,在教学过程中,需要引导学生理清运算顺序,加深对运算规则的理解。
三. 教学目标1.让学生掌握分式的加减乘除运算规则。
2.培养学生解决分式混合运算问题的能力。
3.提高学生对数学运算的兴趣和自信心。
四. 教学重难点1.重点:分式的加减乘除运算规则,混合运算的运算顺序。
2.难点:理解并运用运算规则解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究分式混合运算的规则。
2.用实例讲解,让学生在实际问题中体会运算规则的应用。
3.运用小组合作学习,培养学生团队合作精神。
4.及时反馈,激发学生学习兴趣。
六. 教学准备1.准备相关例题和练习题,涵盖分式混合运算的各种情况。
2.制作课件,辅助讲解和展示。
3.准备黑板,用于板书关键步骤和结论。
七. 教学过程1. 导入(5分钟)以一个实际问题引入:某商店举行打折活动,原价100元的商品,打8折后售价是多少?让学生尝试用分式混合运算解决这个问题。
2. 呈现(10分钟)讲解分式混合运算的规则,通过PPT展示各种类型的题目,让学生观察和分析,引导学生发现运算规律。
3. 操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时解答学生的疑问。
4. 巩固(10分钟)学生分组讨论,互相检查答案,教师随机抽取学生回答,检验掌握情况。
5. 拓展(10分钟)让学生举例说明分式混合运算在实际生活中的应用,分享给其他同学。
第2课时 分式的乘方及乘方与乘除的混合运算1.进一步熟练分式的乘除法法则,会进行分式的乘、除法的混合运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.重点分式的乘方运算,分式的乘除法、乘方混合运算. 难点分式的乘除法、乘方混合运算,以及分式乘法、除法、乘方运算中符号的确定.一、复习引入1.分式的乘除法法则.分式的乘法法则:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.乘方的意义: a n=a·a·a·…·a(n 为正整数). 二、探究新知例1(教材例4) 计算2x 5x -3÷325x 2-9·x5x +3. 解:2x 5x -3÷325x 2-9·x 5x +3=2x 5x -3·25x 2-93·x 5x +3 (先把除法统一成乘法运算) =2x23.(约分到最简公式) 分式乘除运算的一般步骤: (1)先把除法统一成乘法运算;(2)分子、分母中能分解因式的多项式分解因式; (3)确定分式的符号,然后约分; (4)结果应是最简分式.1.由整式的乘方引出分式的乘方,并由特殊到一般地引导学生进行归纳. (1)(a b )2=a b ·a b =a 2b2;↑ ↑由乘方的意义 由分式的乘法法则 (2)同理:(a b )3=a b ·a b ·a b =a 3b3; (a b )n =a b ·a b ·…·a b n 个=a ·a ·…·an 个b ·b ·…·bn 个 =a nb n . 2.分式乘方法则:分式:(a b )n =anbn .(n 为正整数)文字叙述:分式乘方是把分子、分母分别乘方.3.目前为止,正整数指数幂的运算法则都有什么?(1)a n ·a n =a m +n ;(2)a m ÷a n =a m -n;(3)(a m )n =a mn ;(4)(ab)n =a n b n; (5)(a b )n =a nb n .三、举例分析 例2 计算: (1)(-2a 2b 3c)2;(2)(a 2b -cd 3)3÷2a d 3·(c 2a )2. (3)(-x 2y )2·(-y 2x )3÷(-y x )4;(4)a 2-b 2a 2+b 2÷(a -b a +b)2. 解:(1)原式=(-2a 2b )2(3c )2=4a 4b 29c 2; (2)原式=a 6b 3-c 3d 9·d 32a ·c 24a 2=-a 3b38cd 6;(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5;(4)原式=(a +b )(a -b )a 2+b 2·(a +b )2(a -b )2=(a +b )3(a -b )(a 2+b 2). 学生板演、纠错并及时总结做题方法及应注意的地方:①对于乘、除和乘方的混合运算,应注意运算顺序,但在做乘方运算的同时,可将除变乘;②做乘方运算要先确定符号.例3 计算:(1)b 3n -1c 2a 2n +1·a2n -1b3n -2;(2)(xy -x 2)÷x 2-2xy +y 2xy ·x -y x2;(3)(a 2-b 2ab )2÷(a -b a )2.解:(1)原式=b 3n -2·b ·c 2a 2n -1·a 2·a 2n -1b 3n -2=bc 2a2; (2)原式=-x (x -y )1·xy (x -y )2·x -yx 2=-y ;(3)原式=(a +b )2(a -b )2a 2b 2·a 2(a -b )2=a 2+2ab +b2b2. 本例题是本节课运算题目的拓展,对于(1)指数为字母,不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进一步让学生熟悉运算顺序,注意做题步骤.四、巩固练习教材第139页练习第1,2题.五、课堂小结1.分式的乘方法则.2.运算中的注意事项.六、布置作业教材第146页习题15.2第3题.分式的乘方运算这一课的教学先让学生回忆以前学过的分数的乘方的运算方法,然后采用类比的方法让学生得出分式的乘方法则.在讲解例题和练习时充分调动学生的积极性,使大家都参与进来,提高学习效率.2 一定是直角三角形吗一、选择题:1、以下面每组中的三条线段为边的三角形中,是直角三角形的是( ) A 5cm ,12cm ,13cm B 5cm ,8cm ,11cm C 5cm ,13cm ,11cm D 8cm ,13cm ,11cm2、⊿ABC 中,如果三边满足关系2BC =2AB +2AC ,则⊿ABC 的直角是( ) A ∠ C B ∠AC ∠BD 不能确定3、由下列线段组成的三角形中,不是直角三角形的是( ) A a=7,b=25,c=24 B a=2.5,b=2,c=1.5 C a=45,b=1,c= 32 D a=15,b=20,c=254、三角形的三边长a 、b 、c 满足ab c b a 2)(22=-+,则此三角形是( ) A 直角三角形 B 锐角三角形C 钝角三角形D 等腰三角形5、小红要求△ABC 最长边上的高,测得AB =8 cm ,AC =6 cm ,BC =10 cm ,则可知最长边上的高是6.满足下列条件的△ABC ,不是直角三角形的是A.b 2=c 2-a 2B.a ∶b ∶c =3∶4∶5C.∠C =∠A -∠BD.∠A ∶∠B ∶∠C =12∶13∶157.在下列长度的各组线段中,能组成直角三角形的是A.5,6,7B.1,4,9C.5,12,13D.5,11,128.若一个三角形的三边长的平方分别为:32,42,x 2则此三角形是直角三角形的x 2的值是A.42B.52C.7D.52或79.如果△ABC 的三边分别为m 2-1,2 m ,m 2+1(m >1)那么A.△ABC 是直角三角形,且斜边长为m 2+1 B.△ABC 是直角三角形,且斜边长2 为mC.△ABC 是直角三角形,但斜边长需由m 的大小确定D.△ABC 不是直角三角形 二、填空题:10、若一个三角形的三边长分别是m+1,m+2,m+3,则当m= ,它是直角三角形。
第2课时分式的混合运算一、新课导入1.导入课题:你还记得分数的四则混合运算顺序吗?分式的混合运算是否类似呢?2.学习目标:(1)会进行简单分式的加减乘除运算,能从数的四则运算类比分式的四则混合运算.(2)明确分式混合运算的顺序,熟练地进行分式的混合运算.3.学习重、难点:重点:混合运算运算顺序的确定.难点:通分和约分在计算中的运用.二、分层学习1.自学指导:(1)自学内容:教材第141页例7.(2)自学时间:5分钟.(3)自学方法:回忆有理数的四则混合运算,然后思考分式四则混合运算的顺序.(4)自学参考提纲:①有乘方运算的混合运算的顺序先算乘方,再算乘除,最后算加减,有括号,先算括号里面的.②例7中计算顺序是先乘方,再乘除,后减法③计算结果中如果分子与分母中有公因式,应约去公因式,化成最简分式.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否能从例题计算的每一步中总结出分式混合运算的顺序.②差异指导:对部分运算顺序不清的学生引导阅读和总结.(2)生助生:学生之间相互交流互相帮助.4.强化:(1)分式的混合运算顺序:先乘方,再乘除,然后加减.(2)计算:1.自学指导:(1)自学内容:教材第141页例8.(2)自学时间:5分钟.(3)自学方法:认真阅读计算的每一步变形方法及依据,总结分式混合运算的思路和方法步骤要点.(4)自学参考提纲:①计算(1)题中有括号,应先算括号里面的,m+2+52m的最简公分母是2-m.②计算(2)题中,括号内的分母是多项式,应先因式分解,这样便于确定最简公分母,然后进行通分,再相减,最后将除法统一成乘法,约分后得出结果.2.自学:学生边看例题边围绕自学提纲进行学习.3.助学:(1)师助生:①明了学情:了解学生是否看懂例题中每步计算的依据及方法.②差异指导:指导学生如何将括号内分式进行通分.(2)生助生:学生之间相互交流帮助.三、评价1.学生的自我评价:学生代表交流自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行总结点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思)一、基础巩固(60分)1.计算:二、综合应用(20分)三、拓展延伸(20分)1.起重机的底座、人字架、输电线路支架等,在日常生产生活中,很多物体都采用三角形结构,是利用三角形的__________.2.有下列图形:①正方形;②长方形;③直角三角形;④平行四边形.其中具有稳定性的是_________.(填序号).3.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是_________.4.要使五边形木架(用5根木条钉成)不变形,至少要钉上_________根木条.5.铁栅门和多功能挂衣架能够伸缩自如,是利用四边形的_________.6.在建筑工地我们常可看见如图7-31所示,用木条EF固定矩形门框ABCD的情形.这种做法根据( )A.两点之间线段最短B.两点确定一条直线C.三角形的稳定性D.矩形的四个角都是直角7.探究:如图,用钉子把木棒AB、BC和CD分别在端点B、C处连接起来,用橡皮筋把AD连接起来,设橡皮筋AD的长是x,(1)若AB=5,CD=3,BC=11,试求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?答案:(1)三角形的稳定性和四边形的不稳定性 (2)由折叠示意图b的第三个图形和第四个图形可知,在折叠过程中有:AB+AD=CD+BC,即6+AD=15+30,AD=39[ ]参考答案:1. 稳定性 2.③ 3.三角形具有稳定性 4.2 5.不稳定性6.C7. (1)最大值为19,最小值为3 (2)3<x<19正方形由于正方形的性质特征和判定方法较多,教科书中没有明确列举,因而教学时要注意:1.通过“大家谈谈”,让学生摘清正方形和平行四边形、矩形和菱形的关系。
第2课时 分式的乘方1.理解并记住分式乘方的法则.(重点)2.能运用乘方法则熟练地进行分式乘方运算.(重点)3.能分清乘方、乘除的运算顺序,进行分式的乘除、乘方混合运算.(难点)一、情境导入复习乘方的意义:a m=a ×a ×a ×a ×…×a,\s \do 4(m 个)) (m 为正整数),指出底数a 可以代表一个数,一个整式或代数式,也可以是一个分式,当底数为分式,m 为正整数时,(b a)m表示分式的乘方.那么,分式的乘方怎么计算呢?二、合作探究探究点一:分式的乘除混合运算计算:a -1a +2·a 2-4a 2-2a +1÷1a 2-1.解析:先将除法变为乘法,再根据分式的乘法运算法则进行运算. 解:原式=a -1a +2·(a +2)(a -2)(a -1)2·(a +1)(a -1)1=(a -2)(a +1)=a 2-a -2. 方法总结:分式乘除混合运算要注意以下几点:(1)利用分式除法法则把除法变成乘法;(2)进行约分,计算出结果.特别提醒:分式运算的最后结果是最简分式或整式.探究点二:分式的乘方【类型一】 分式的乘方运算下列运算结果不正确的是( )A .(8a 2bx 26ab 2x )2=(4ax 3b )2=16a 2x 29b2B .[-(x 32y )2]3=-(x 32y )6=-x 1864y 6C .[y -x (x -y )2]3=(1y -x )3=1(y -x )3D .(-x n y 2n )n =x 2ny3n解析:A 、B 、C 计算都正确;D 中(-x n y 2n )n =(-1)n xn 2y 2n 2,原题计算错误.故选D. 方法总结:分式的乘方就是分子、分母分别乘方,最后化为最简分式.【类型二】 分式的乘除、乘方混合运算计算:(1)(-x 2y )2·(-y 2x )3·(-1x)4;(2)(2-x )(4-x )x 2-16÷(x -24-3x )2·x 2+2x -8(x -3)(3x -4). 解析:(1)先算乘方,然后约分化简,注意符号;(2)先算乘方,再将除法转换为乘法,把分子、分母分解因式,再进行约分化简.解:(1)原式=x 4y 2·(-y 6x 3)·1x 4=-y 4x3;(2)原式=(x -2)(x -4)(x +4)(x -4)·(3x -4)2(x -2)2·(x -2)(x +4)(x -3)(3x -4)=3x -4x -3. 方法总结:进行分式的乘除、乘方混合运算时,要严格按照运算顺序进行运算.先算乘方,再算乘除.注意结果一定要化成一个整式或最简分式的形式.【类型三】 分式乘方的应用通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d ,已知球的体积公式为V =43πR 3(其中R 为球的半径),求:(1)西瓜瓤与整个西瓜的体积各是多少? (2)西瓜瓤与整个西瓜的体积比是多少?解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R -d )3;整个西瓜的体积是43πR 3;(2)西瓜瓤与整个西瓜的体积比是43π(R -d )343πR 3=(R -d )3R 3.方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.【类型四】 分式的化简求值化简求值:(2xy 2x +y )3÷(xy 3x 2-y 2)2·[12(x -y )]2,其中x =-12,y =23. 解析:按分式混合运算的顺序化简,再代入数值计算即可.解:原式=8x 3y 6(x +y )3·(x +y )2(x -y )2x 2y 6·14(x -y )2=2x x +y .将x =-12,y =23代入,得原式=-6.方法总结:先算乘方再算乘除,将原式化为最简形式,是解决此类问题的常用方法.三、板书设计分式的乘方1.分式乘方的法则:分式的乘方就是把分子、分母分别乘方.2.分式的混合运算顺序:先乘方,再乘除,最后加减.在分式乘方的教学中,通过回忆乘方的定义,让学生利用乘方的定义和分式的乘除法则进行一些具体的计算,进而归纳出分式的乘方法则,再通过一组练习加深对乘方法则的理解和应用.本节课知识点较多,对运算法则的推理过程占了相当多的时间,因此,对基本法则的理解和熟练程度还有待在后续的练习中予以加强.12.2 一次函数第6课时一次函数与一元一次方程、一元一次不等式【学习目标】1.通过具体实例,初步体会一次函数与一元一次方程、一元一次不等式的内在联系.2.了解一次函数、一元一次方程、一元一次不等式在解决问题过程中的作用和联系.【重、难点】重点:运用一元一次方程、一元一次不等式解决一次函数问题.难点:运用一次函数的图像解一元一次不等式.【新知预习】1. 已知一次函数y=2x-3,(1)当x取什么值时,一次函数y=2x-3的值是0;(2) 当x取什么值时,一次函数y=2x-3的值是正数;(3)当x取什么值时,一次函数y=2x-3的值是负数?【导学过程】一、活动问题1:一根长25cm的弹簧,一端固定,另一端挂物体(2)画出函数图像;(3)求出这根弹簧在所允许的限度内所挂物体的最大质量;(4)请用一元一次不等式求这根弹簧在所允许的限度内所挂物体的最大质量?问题2:已知一次函数y=2x+4的图像.(1)根据一次函数y=2x+4的图像,求出2x+4=0的解;(2)根据一次函数y=2x+4的图像,求出2x+4>0的解集;(3)根据一次函数y=2x+4的图像,求出2x+4<0的解集?问题3:一辆汽车行驶35km 后,驶入高速公路,并以105km/h 的速度匀速行驶了xh .(1) 请根据上述情境,提出一个用一次函数来解决的问题,并解答; (2) 请根据上述情境,提出一个用一元一次方程来解决的问题,并解答; (3) 请根据上述情境,提出一个用一元一次不等式来解决的问题,并解答?二、例题1.已知函数y =32x +3,先画出函数的图像,再根据图像回答下列问题:(1)当x 取哪些值时,函数值y 等于0、大于0、小于0?(2)在函数图象中,y 值等于0的点在什么位置;(3)y 值大于0的点对应的横坐标在什么范围;(4)y 值小于0的点对应的横坐标在什么范围?2.已知y 1=-x+1,y 2=4x-2,当x 取何值时,(1)y 1=y 2;(2)y 1>y 2;(3)y 1<y 2?【反馈练习】1.已知函数y 1=2x -4与y 2=-2x +8的图像,观察图像并回答问题: (1)x 取何值时,2x -4>0; (2)x 取何值时,-2x +8<0; (3)当-4≤x ≤8,求y 1的范围; (4)当-4≤y 2≤8,求x 的范围?第3课时平行四边形的判定[知识与技能]1.在探索平行四边形的判别条件中 , 理解并掌握用边、対角线来判定平行四边形的方式.2.会综合运用平行四边形的判定方式和性质来解决问题.3.培养用类比、逆向联想及运动的思维方式来研究问题.[过程与方式]经历平行四边形判定条件的探索过程 , 发展学生的合情推理意识和表述能力.[情感态度]培养学生合情推理能力 , 以及严谨的书写表达 , 体会几何思维的真正内涵.[教学重点]理解和掌握平行四边形的判定定理.[教学难点]几何推理方式的应用.(一)创设情境 , 导入新课小明的父亲手中有一些木条 , 他想通过适当的测量、割剪 , 钉制一个平行四边形框架 , 你能帮他想出一些方式来吗?[教学说明]通过创设情境激发学生探究的兴趣 , 让学生实际动手操作以使学生印象深刻.(二)合作探究 , 探索新知1.平行四边形的定义是什么?有两组対边分别平行的四边形是平行四边形2.让学生利用手中的学具——硬纸板条通过观察、测量、猜测、验证、探索构成平行四边形的条件 , 思考并探讨 :〔1〕你能适当选择手中的硬纸板条搭建一个平行四边形吗?〔2〕你怎样验证你搭建的四边形一定是平行四边形?〔3〕你能说出你的做法及其道理吗?〔4〕能否将你的探索结论作为平行四边形的一种判别方式?你能用文字语言表述出来吗?〔5〕你还能找出其他方式吗?3.从探究中得到 :平行四边形判定方式1 两组対边分别相等的四边形是平行四边形.平行四边形判定方式2 対角线互相平分的四边形是平行四边形.4、取两根等长的木条AB、CD , 将它们平行放置 , 再用两根木条BC、AD加固 , 得到的四边形ABCD是平行四边形吗?结论 : 一组対边平行且相等的四边形是平行四边形.[教学说明]学生先动手实际操作 , 然后教师引导学生根据拼接画出相应的图形 , 先观察图形 , 再进行证明 , 最后教师再引导学生进行总结.教师要注意引导学生探究的方向 , 在总结时一定要结合具体的图形进行 , 使学生能充分理解和掌握平行四边形的判定方式.(三)例如讲解 , 掌握新知例已知 : 如以下图 , □ABCD中 , E、F分别是AD、BC的中点 , 求证 : BE=DF.[分析]证明BE=DF , 可以证明两个三角形全等 , 也可以证明四边形BEDF是平行四边形 , 比拟方式 , 可以看出第二种方式简单.证明 : ∵四边形ABCD是平行四边形 ,∴AD∥CB , AD=BC.∵E、F分别是AD、BC的中点 ,∴DE∥BF , 且DE=12AD , BF=12BC.∴DE=BF.∴四边形BEDF是平行四边形〔一组対边平行且相等的四边形是平行四边形〕.∴BE=DF[教学说明]此题综合运用了平行四边形的性质和判定 , 先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件 , 再应用平行四边形的性质得出结论 ; 题目虽不复杂 , 但层次有三 , 且利用知识较多 , 因此应使学生获得清晰的证明思路.(四)练习反馈 , 巩固提高1.在四边形ABCD中,AB=4 , BC=5 , 当CD=_______ , DA=_______时 , 四边形ABCD 是平行四边形.2.如以下图 , AC是四边形ABCD的対角线 , ∠1=∠2,要使四边形ABCD是平行四边形 , 还需增加的一个条件是_______.第2题第3题3.如以下图 , AD是△ABC的中线 , CF , BE分别垂直于AD , 垂足分别为F , E , 那么四边形BECF是______________ , 理由是____________________________.4.已知 : 如以下图 , 在□ABCD中 , BN=DM,BE=DF.求证 : 四边形MENF是平行四边形.[答案]1.4;5 2.∠3=∠4等3.平行四边形対角线互相平分的四边形是平行四边形4.解 : ∵四边形ABCD是平行四边形 ,∴AD∥BC ,∴∠MDF=∠NBE,又∵BN=DM,BE=DF∴△MDF≌△NBE(SAS),∴EN=MF,∠BEN=∠DFM,∴∠MFE=∠NEF,∴MF∥EN,∴四边形MENF是平行四边形.[教学说明]学生尝试独立完成 , 教师要提醒学生先观察图形 , 再结合条件 , 选择合适的判定方式.(五)师生互动 , 课堂小结我们学习了平行四边形的定义、性质、判定、画法 , 平行四边形的性质和判定尤为重要 , 同学们要掌握好.[教学说明]用图表的形式対平行四边形的性质和判定进行总结 , 教师要求学生分清性质和判定 , 并理解它们之间的联系.完成同步练习册中本课时的练习.现行教材中的定理教学 , 多数是沿用〞定义—定理—证明—应用〞这样的模式.按照这样的程序去教学 , 教学的结果往往只限于几条枯燥乏味的结论.长此以往 , 学生不易引起兴趣 , 教师也感到索然无味.怎么才能把兴趣还给学生 , 把信心留给教师 , 使课堂散发出魅力和活力 , 使学生得到思考的乐趣和机会 , 充分展示数学的魅力所在呢?本节课的设计是让定理的教学充分展现知识的发生 , 发展过程.既対定理的产生有探索过程 , 又対论证方式有发现过程 , 既教发现 , 又教证明.教师要充分发挥引导者的作用 , 以学生为主体 , 让学生自主探究 , 在探究的教程中 , 鼓励学生大胆尝试 , 从中获得成功的体验 , 由学生充分的动脑 , 动口 , 动手完成知识的迁移 , 通过探索式证明学习 , 开拓学生的思路 , 发展学生的思维能力 ; 通过尝试的过程中 , 发展学生的合情推理意识、主动探究的习惯 , 激发学生学习数学的热情和兴趣.7。
八年级上册数学第十五章
分式15.1 分式
15.1.1 从分数到分式分式的定义
如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式
分式中,A叫做分子,B叫做分母
B
A
B
A
15.1.2 分式的基本性质
分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变
相关概念
约分把一个分式的分子或分母的公因式约去,叫做分式的约分
最简分式分子与分母没有公式式的分式
通分把几个异分母的分式分别化成雨原来分式相等的同分母的分式
最简公分母各分母的所有因式的最高次幂的积作公分母
15.2 分式的运算
15.2.1 分式的乘除
乘法法则1
除法法则2
分式乘方要把分子、分母分别乘方
15.2.2 分式的加减
加法法则3
减法法则4
15.2.3 整数指数幂 这条性质对于m,n是任意整数的情形仍然适用
a∗
m a=
n a m+
(n)
15.3 分式方程
概念分母中含未知数的方程
检验
将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是
原分式方程的解;否则,这个解不是原分式方程的解
八年级上册数学总大纲
备注:
1. 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母
2. 分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘
3. 同分母分式相加减,分母不变,把分子相加减
4. 异分母分式相加减,先通分,变为同分母的分式,再加减。
15.2.2分式的加减教案篇一:15.2.2《分式的加减--1》教案12篇二:15.2.2分式的加减教学设计(一)许镇中心初中电子备课教学设计篇三:15.2.2《分式的加减--2》教案12篇四:15.2.2分式的加减教案20XX0108《15.2.2分式的加减》导学案123篇五:20XX年新人教版八年级上15.2.2分式的加减教案(新版) 分式的加减一、教学目标:(1)熟练地进行同分母的分式加减法的运算. (2)会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.三、例、习题的意图分析1.P15问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的11?.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,nn?3从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.P15[思考]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P16例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运(:15.2.2分式的加减教案)算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P17例7是一道物理的电路题,学生首先要有并联电路总电阻R 与各支路电阻R1,R2,?,Rn的关系为1?1?1?????1.若知道这个公式,就比较容易地用含有R1的式子RR1R2Rn表示R2,列出1?1?RR11,下面的计算就是异分母的分式加法的运算了,得到R1?5012R1?50,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知?RR1(R1?50)识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂引入1.出示P15问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出确定方法吗?五、例题讲解(P16)例6.计算[分析]第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)111的最简公分母是什么?你能说出最简公分母的,,234222xy3xy9xyx?3yx?2y2x?3y??x2?y2x2?y2x2?y2[分析]第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:x?3yx?2y2x?3y??x2?y2x2?y2x2?y2(x?3y)?(x?2y)?(2x?3y)x2?y22x?2y22x?y2(x?y)(x?y)(x?y)2x?y11?x6??2x?36?2xx?9====(2)[分析]第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:11?x6??2x?36?2xx?9=11?x6??x?32(x?3)(x?3)(x?3)2(x?3)?(1?x)(x?3)?122(x?3)(x?3)=?(x2?6x?9)=2(x?3)(x?3)?(x?3)2=2(x?3)(x?3)=?x?32x?6。
15.2.2 分式的加减(1)1.使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算.2.通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式的通分,培养学生分式运算的能力.重点:让学生熟练地掌握同分母、异分母分式的加减法.难点:分式的分子是多项式的做减法时注意符号,去括号法则的应用.一、自学指导自学1:自学课本P139-140页“问题3、问题4、思考、例6”,掌握同分母、异分母分式加减的方法,完成填空.(7分钟)①计算:15+25,15-25,12+13,12-13.总结归纳:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减.a c +bc =a +b c ;a b +cd =ad bd +bc bd =ad +bc bd. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 1.课本P141页练习题1,2. 2.计算:(1)2x -5x 2;(2)x 2+xy xy -x 2-xy xy ;(3)a -2a +1-2a -3a +1; (4)a +1a -1-a -1a +1; (5)x 2x -2-4x x -2+4x -2; (6)2m -n n -m +m m -n +n n -m.点拨精讲:分式加减的结果要化为最简分式.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟) 探究1 已知A x -1+B x +1=x -3x 2-1,求A 与B 的值.解:∵A x -1+B x +1=A (x +1)(x +1)(x -1)+B (x -1)(x +1)(x -1)=A (x +1)+B (x -1)(x +1)(x -1)=(A +B )x +(A -B )(x +1)(x -1),又∵A x -1+B x +1=x -3x 2-1,∴⎩⎪⎨⎪⎧A +B =1,A -B =-3,∴⎩⎪⎨⎪⎧A =-1,B =2.点拨精讲:先将左边相加,再与右边对比即可. 探究2 计算:11-x +11+x +21+x 2+41+x4.解:原式=21-x 2+21+x 2+41+x 4=41-x 4+41+x 4=81-x 8.点拨精讲:巧用乘法公式,逐项通分.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.计算:(1)(5a +3b a +b +3b -4a a +b -a +3ba +b ;(2)12-x +4x 2-4+x -12+x ; (3)a -b +2b2a +b.2.分式1a +1+1a (a +1)的计算结果是1a .3.先化简,再求值:a2a -1-a -1,其中a =-1.解:(略)(3分钟)1.异分母分式的加减法步骤:①正确地找出各分式的最简公分母;②准确地得出各分式的分子、分母应乘的因式;③通分后进行同分母分式的加减运算;④公分母保持积的形式,将各分子展开;⑤将得到的结果化成最简分式(整式).求最简公分母概括为:①取各分母系数的最小公倍数;②凡出现以字母为底数的幂的因式都要取;③相同字母的幂的因式取指数最大的.这些因式的积就是最简公分母.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)4 分式方程第1课时分式方程的概念及解法【知识与技能]1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程 ;3.学生掌握解分式方程的基本方式和步骤.【过程与方式]通过列出的方程归纳出它们的共同特点 , 得出分式方程的概念.了解分式的概念 , 明确分式和整式的区别 ; 经历和体会解分式方程的必要步骤 ; 使学生进一步了解数学思想中的〞转化〞思想.【情感态度]在建立分式方程的数学模型的过程中培养能力和克服困难的勇气 , 并从中获得成就感 , 提高解决问题的能力.【教学重点]掌握分式方程的解法、解 , 分式方程要验根.【教学难点]掌握分式方程的解法、解 , 分式方程要验根.一.情景导入 , 初步认知在这一章的第一节【分式]中 , 我们曾研究过一个〞固沙造林 , 绿化家园〞的问题.面対日益严重的土地沙化问题 , 某县决定分期分批固沙造林 , 一期工程计划在一定期限内固沙造林2400公顷 , 实际每月固沙造林的面积比原计划多30公顷 , 结果提前4个月完成计划任务.原计划每月固沙造林多少公顷?分析 : 这一问题中有哪些已知量和未知量?已知量 : 造林总面积2400公顷实际每月造林面积比原计划多30公顷提前4个月完成原任务未知量 : 原计划每月固沙造林多少公顷这一问题中有哪些等量关系?实际每月固沙造林的面积=计划每月固沙造林的面积+30公顷原计划完成的时间-完成实际的时间=4个月我们设原计划每月固沙造林x公顷 , 那么原计划完成一期工程需要_____个月 , 实际完成一期工程用了______个月 , 根据题意 , 可得方程____________.【教学说明]为了让学生经历从实际问题抽象.概括分式方程这一〞数学化〞的过程 , 体会分式方程的模型在解决实际生活问题中作用 , 利用第一节【分式]中一个熟悉的问题 , 引导学生努力寻找问题中的所有等量关系 , 发展学生分析问题.解决问题的能力.二.思考探究 , 获取新知探究1 : 分式方程的概念问题 : 甲.乙两地相距 1400 km , 乘高铁列车从甲地到乙地比乘特快列车少用 9 h , 已知高铁列车的平均行驶速度是特快列车的 2.8 倍.〔1〕你能找出这一问题中的所有等量关系吗?〔2〕如果设特快列车的平均行驶速度为 x km/h , 那么 x 满足怎样的方程?〔3〕如果设小明乘高铁列车从甲地到乙地需 y h , 那么 y 满足怎样的方程?问题 : 为了帮助遭受自然灾害的地区重建家园 , 某学校号召同学们自愿捐款.已知初一同学捐款总额为4800 元 , 初二同学捐款总额为5000元 , 初二捐款人数比初一多20人 , 而且两个年级人均捐款额恰好相等.如果设初一捐款人数为 x 人 , 那么 x 满足怎样的方程?【教学说明]再次让学生经历从实际问题抽象.概括分式方程这一〞数学化〞的过程 , 体会分式方程的模型作用.回顾刚才我们得出的 4个方程 :它们和我们以前所碰到的方程一样吗?有什么不一样的地方?上面所得到的方程有什么共同特点?【教学说明]【归纳结论]分母中中含有未知数的方程叫做分式方程探究2 : 分式方程的解法1.解以下分式方程 :【教学说明]通过观察 , 使学生发现可以将分式方程通过去分母转化成一元一次方程来求解.通过教师対例题讲解 , 让学生明确解分式方程的一般步骤.【归纳结论]1.解分式方程的一般步骤 :〔1〕去分母〔即在方程的两边都乘以最简公分母〕 , 把原分式方程化为_____ ;〔2〕解这个整式方程 ;2.以下哪种解法正确?解分式方程解法一 : 将原方程变形为方程两边都乘以x-2,得 : 1-x=-1-2解这个方程 , 得 : x=4.解法二 : 将原方程变形为方程两边都乘以x-2 ,得 : 1-x=-1-2(x-2)解这个方程 , 得 : x=2你认为x=2是原方程的根?与同伴交流.【归纳结论]增根概念 : 将分式方程变形为整式方程时 , 方程两边同乘以一个含未知数的整式 , 并约去分母 , 有时可能产生不适合原分式方程的解(或根) , 这种根通常称为增根 ;认识增根 :①增根是去分母后所得的根 ;①增根使最简公分母的值为 ;③增根〔填〞是〞或〞不是〞〕原方程的根.三.运用新知 , 深化理解A.2个 B.3个 C.4个 D.5个答案 : B.〔〕是分式方程,〔〕是整式方程.答案 : B;A、C3.王军同学准备在课外活动时间组织局部同学参加电脑网络培训 , 按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍 , 费用享受了优惠 , 一共只需要480元 , 参加活动的每个同学平均分摊的费用比原计划少4元 , 原定的人数是多少?如果设原定是x人 , 那么 x 满足怎样的分式方程?解 : 方程两边都乘以y〔y-1〕 ,得2y2+y〔y-1〕=〔y-1〕〔3y-1〕 ,2y2+y2-y=3y2-4y+1 , 3y=1 ,解得y=1/3.检验 : 当y=1/3时 , y〔y-1〕=1/3×1/3-1=-2/9≠0 ,∴y=1/3是原方程的解 ,∴原方程的解为y=1/3.解 : 两边同时乘以〔x+1〕〔x-2〕 ,得x〔x-2〕-〔x+1〕〔x-2〕=3.解这个方程 , 得x=-1.检验 : x=-1时〔x+1〕〔x-2〕=0 , x=-1不是原分式方程的解 ,∴原分式方程无解.〔3〕解 : 方程的两边同乘〔x-1〕〔x+1〕 ,得3x+3-x-3=0 , 解得x=0.检验 : 把x=0代入〔x-1〕〔x+1〕=-1≠0.∴原方程的解为 : x=0.〔4〕解 : 方程的两边同乘〔x+2〕〔x-2〕 , 得2-〔x-2〕=0 , 解得x=4.检验 : 把x=4代入〔x+2〕〔x-2〕=12≠0.∴原方程的解为 : x=4.再两边同乘以3x-1 , 得3〔3x-1〕-1=2 , 3x-1=1 , x=2/3.检验 : 把x=2/3代入〔3x-1〕 : 〔3x-1〕≠0 ,∴x=2/3是原方程的根.∴原方程的解为x=2/3.〔6〕解 : 方程两边同乘以2〔3x-1〕 ,得 : -2+3x-1=3 , 解得 : x=2 ,检验 : x=2时 , 2〔3x-1〕≠0.所以x=2是原方程的解.【教学说明]通过学生的反馈练习 , 考察学生対分式方程概念的理解 ; 以及解分式方程.使教师能全面了解学生対解分式方程是否清楚 , 以便教师能及时地进行查缺补漏.四.师生互动,课堂小结1.什么样的方程是分式方程?2.解分式方程的一般步骤 :〔1〕去分母〔即在方程的两边都乘以最简公分母〕 , 把原分式方程化为_____ ;〔2〕解这个整式方程 ;〔3〕检验 : 把整式方程的根代入最简公分母 , 使最简公分母的值不等于零的根是原分式方程的_____ , 使最简公分母的值等于零的根是原方程的_____.五.教学板书布置作业:教材〞习题5.7”中第1、2、3题.〞习题5.8”中第1、2题.虽然在课堂上做了很多 , 但也存在许多缺乏的地方 , 以下是教师在教学中应该注意的地方 : 第一 , 讲例题时 , 先讲一个产生增根的较好 , 这样便于说明分式方程有时无解的原因 , 也便于讲清分式方程检验的必要性 , 也是解分式方程与整式方程最大的区别所在 , 从而再强调解分式方程必须检验 , 不能省略不写这一步 ; 第二 , 给学生的鼓励不是很多.鼓励可以让学生有充分的自信心.〞信心是成功的一半〞 , 在今后的课堂教学中 , 应尊重其差异性 , 尽可能分层教学 , 评价标准多样化 , 多鼓励 , 少批评 ; 多肯定 , 少指责.用动态的、发展的、积极的眼光看待每个学生 , 帮助他们树立自信心.赞美的力量是巨大的 , 有时 , 一句赞美的话 , 可以改变人的一生.一句肯定的话、一个赞许的点头、一张表示优秀的卡片 , 都是很好的鼓励 , 会起到意想不到的良好结果.巧用“规形”性质求星形角度之和如图1,这种图形形似圆规,我们不妨称之为“规形”.它有一条重要性质:∠BOC=∠A+∠B+∠C.证明留给读者.本文运用这条性质来求一类星形角度和,既快又准确.例1 如图2,∠1+∠2+∠3+∠4+∠5=__.(第三届“希望杯”初二试题)解依“规形”性质得:∠7=∠6=∠5+∠2+∠4.而∠1+∠3+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.例2 如图3,∠A+∠B+∠C+∠D+∠E+∠F=__.(1986年吉林省八市初中数学赛题)解依“规形”性质得:∠1=∠2=∠B+∠C+∠D,而∠A+∠1+∠E+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.例3 如图4所示的七角星形中,已知∠B=14°,∠C=15°,∠F=16°,并且∠A+∠D+∠E+∠G=k·45°,则k=__.(1991年北京市初二数学赛题)解依“规形”性质得:∠2=∠1=∠B+∠F+∠C,∠4=∠3=∠A+∠D+∠G.而∠E+∠2+∠4=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°,∴k·45°+14°+15°+16°=180°,∴k=3.。