2013年中考数学综合题《一》
- 格式:doc
- 大小:732.00 KB
- 文档页数:8
2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。
2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。
3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。
2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。
2013年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不得分)1.(4分)﹣2的绝对值是()A.2B.﹣2C.0D.【考点】15:绝对值.【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)计算3a•(2b)的结果是()A.3ab B.6a C.6ab D.5ab【考点】49:单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:3a•(2b)=3×2a•b=6ab.故选:C.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.3.(4分)地球半径约为6400000米,则此数用科学记数法表示为()A.0.64×109B.6.4×106C.6.4×104D.64×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 400 000=6.4×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】细心观察图中几何体摆放的位置,根据主视图是从正面看到的图象判定则可.【解答】解:从正面可看到从左往右三列小正方形的个数为:1,1,2.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(4分)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解答】解:根据题意可得:袋子中有3个白球,2个黄球和1个红球,共6个,从袋子中随机摸出一个球,它是黄球的概率2÷6=.故选:B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(4分)绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选:D.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.7.(4分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°【考点】MP:圆锥的计算.【分析】设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,然后设正圆锥的侧面展开图的圆心角是n°,利用弧长的计算公式即可求解.【解答】解:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选:D.【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(4分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.【考点】E6:函数的图象.【分析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【解答】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.故选:C.【点评】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.9.(4分)小敏在作⊙O的内接正五边形时,先做了如下几个步骤:(1)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()A.BD2=OD B.BD2=OD C.BD2=OD D.BD2=OD 【考点】MM:正多边形和圆.【分析】首先连接BM,根据题意得:OB=OA=1,AD⊥OB,BM=DM,然后由勾股定理可求得BM与OD的长,继而求得BD2的值.【解答】解:如图2,连接BM,根据题意得:OB=OA=1,AD⊥OB,BM=DM,∵OA的垂直平分线交OA于点M,∴OM=AM=OA=,∴BM==,∴DM=,∴OD=DM﹣OM=﹣=,∴BD2=OD2+OB2===OD.故选:C.【点评】此题考查了勾股定理、线段垂直平分线的性质以及分母有理化的知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.(4分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:50【考点】GA:反比例函数的应用.【专题】16:压轴题.【分析】第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.【解答】解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1x+b得k1=10,b=30∴y=10x+30(0≤x≤7),令y=50,解得x=2;设反比例函数关系式为:y=,将(7,100)代入y=得k=700,∴y=,将y=30代入y=,解得x=;∴y=(7≤x≤),令y=50,解得x=14.所以,饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤时间段内,故不可行;选项C:7:45至8:45之间有60分钟.60﹣×2=≈13.3,不在0≤x≤2及14≤x≤时间段内,故不可行;选项D:7:50至8:45之间有55分钟.55﹣×2=≈8.3,不在0≤x≤2及14≤x ≤时间段内,故不可行.综上所述,四个选项中,唯有7:20符合题意.故选:A.【点评】本题主要考查了一次函数及反比例函数的应用题,还有时间的讨论问题.同学们在解答时要读懂题意,才不易出错.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣y2=(x+y)(x﹣y).【考点】54:因式分解﹣运用公式法.【分析】因为是两个数的平方差,所以利用平方差公式分解即可.【解答】解:x2﹣y2=(x+y)(x﹣y).故答案是:(x+y)(x﹣y).【点评】本题考查了平方差公式因式分解,熟记平方差公式的特点:两项平方项,符号相反,是解题的关键.12.(5分)分式方程=3的解是x=3.【考点】B3:解分式方程.【专题】11:计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(5分)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有22只,兔有11只.【考点】9A:二元一次方程组的应用.【分析】设鸡有x只,兔有y只,就有x+y=33,2x+4y=88,将这两个方程构成方程组求出其解即可.【解答】解:设鸡有x只,兔有y只,由题意,得:,解得:,∴鸡有22只,兔有11只.故答案为:22,11.【点评】本题考查了列二元一次方程解生活实际问题的运用,二元一次方程的解法的运用,根据条件找到反映全题题意的等量关系建立方程是关键.14.(5分)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.【考点】G6:反比例函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】根据反比例函数的性质得出B点坐标,进而得出A点坐标.【解答】解:如图所示:∵点A与双曲线y=上的点B重合,点B的纵坐标是1,∴点B的横坐标是,∴OB==2,∵A点可能在x轴的正半轴也可能在负半轴,∴A点坐标为:(2,0),(﹣2,0).故答案为:2或﹣2.【点评】此题主要考查了勾股定理以及反比例函数的性质等知识,根据已知得出BO的长是解题关键.15.(5分)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.【考点】KH:等腰三角形的性质.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AP7P8,∠AP8P7,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.故答案为:12°.【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.16.(5分)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 2.8.【考点】RB:几何变换综合题.【专题】16:压轴题.【分析】如解答图所示,本题要点如下:(1)证明矩形的四个顶点A、B、C、D均在菱形EFGH的边上,且点A、C分别为各自边的中点;(2)证明菱形的边长等于矩形的对角线长;(3)求出线段AP的长度,证明△AOP为等腰三角形;(4)利用勾股定理求出线段OP的长度;(5)同理求出OQ的长度,从而得到PQ的长度.【解答】解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠P AF+∠P AE=2∠P AB+2∠P AD=2(∠P AB+∠P AD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD于点O,则有AF=CG,且AF∥CG,∴四边形ACGF为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB•AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.【点评】本题是几何变换综合题,难度较大.首先根据题意画出图形,然后结合轴对称性质、矩形性质、菱形性质进行分析,明确线段之间的数量关系,最后由等腰三角形和勾股定理求得结果.三、解答题(本大题共有8小题,第17--20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出毕必要的文字说明、演算步骤或证明过程)17.(8分)(1)化简:(a﹣1)2+2(a+1)(2)解不等式:+≤1.【考点】4I:整式的混合运算;C6:解一元一次不等式.【专题】11:计算题.【分析】(1)原式第一项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:(1)原式=a2﹣2a+1+2a+2=a2+3;(2)去分母得:3(x+1)+2(x﹣1)≤6,去括号得:3x+3+2x﹣2≤6,解得:x≤1.【点评】此题考查了整式的混合运算,以及解一元一次不等式,涉及的知识有:完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.【考点】FH:一次函数的应用.【分析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x的值.【解答】解:(1)由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得,解得:,故y与x的函数关系式为:y=2x+2;(2)∵32元>8元,∴当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.【点评】本题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.19.(8分)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n∁n D n(n>2).(1)求AB1和AB2的长.(2)若AB n的长为56,求n.【考点】8A:一元一次方程的应用;LB:矩形的性质;Q2:平移的性质.【专题】2A:规律型.【分析】(1)根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,进而求出AB1和AB2的长;(2)根据(1)中所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.【解答】解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;(2)∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.【点评】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.20.(8分)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)利用条形统计图可得喜欢羽毛球的人数有30人,根据扇形统计图可得喜欢羽毛球的人数有15%,利用30÷15%即可得到被调查的总人数;用总人数﹣喜欢乒乓球的人数﹣喜欢篮球的人数﹣喜欢羽毛球的人数﹣喜欢排球的人数可得喜欢跳绳的人数,再补图即可;(2)计算出调查的人数中喜欢篮球和排球的人数所占百分比,再乘以1200即可.【解答】解:(1)这次被调查的学生总数:30÷15%=200(人),跳绳人数:200﹣70﹣40﹣30﹣12=48,如图所示:(2)1200××100%=312(人).答:全校有1200名同学,估计全校最喜欢篮球和排球的共有312名同学.【点评】本题考查的是条形统计图和扇形统计图的综合运用,以及样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度363636368686(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.【考点】T8:解直角三角形的应用.【分析】(1)根据AM=AE+DE求解即可;(2)先根据角平分线的定义得出∠EAD=∠BAC=52°,再过点E作EG⊥AD于G,由等腰三角形的性质得出AD=2AG,然后在△AEG中,利用余弦函数的定义求出AG的长,进而得到AD的长度.【解答】解:(1)由题意,得AM=AE+DE=36+36=72(cm).故AM的长为72cm;(2)∵AD平分∠BAC,∠BAC=104°,∴∠EAD=∠BAC=52°.过点E作EG⊥AD于G,∵AE=DE=36,∴AG=DG,AD=2AG.在△AEG中,∵∠AGE=90°,∴AG=AE•cos∠EAG=36•cos52°=36×0.6157=22.1652,∴AD=2AG=2×22.1652≈44(cm).故AD的长约为44cm.【点评】本题考查了解直角三角形在实际生活中的应用,其中涉及到角平分线的定义,等腰三角形的性质,三角函数的定义,难度适中.22.(12分)若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD 中,BC=2AB,则称ABCD为方形.(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.【考点】LO:四边形综合题.【专题】16:压轴题;23:新定义.【分析】(1)答案不唯一,根据已知举出即可;(2)①求出△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,推出==,==,==,==,求出B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,MN=GN=GH=HE=4,B1Q=B2O=B3Z=B4K=4,根据已知判断即可;②设AM=h,根据△ABC∽△AB3C3,得出==,求出MN=GN=GH=HE =h,分为两种情况:当B3C3=2×h时,当B3C3=×h时,代入求出即可.【解答】解:(1)答案不唯一,如a=2,b=4;(2)①以B1C1为一边的矩形不是方形.理由是:过A作AM⊥BC于M,交B1C1于E,交B2C2于H,交B3C3于G,交B4C4于N,则AM⊥B4C4,AM⊥B3C3,AM⊥B2C2,AM⊥B1C1,∵由矩形的性质得:BC∥B1C1∥B2C2∥B3C3∥B4C4,∴△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,∴==,==,==,==,∵AM=20,BC=25,∴B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,∴MN=GN=GH=HE=4,∴B1Q=B2O=B3Z=B4K=4,即B1C1≠2B1Q,B1Q≠2B1C1,∴以B1C1为一边的矩形不是方形;②∵以B3C3为一边的矩形为方形,设AM=h,∴△ABC∽△AB3C3,∴==,则AG=h,∴MN=GN=GH=HE=h,当B3C3=2×h时,==;当B3C3=×h时,==.综合上述:BC与BC边上的高之比是或.【点评】本题考查了相似三角形的性质和判定和矩形的性质的应用,注意:相似三角形的对应高的比等于相似比.23.(12分)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD 交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.【考点】KD:全等三角形的判定与性质;S9:相似三角形的判定与性质.【专题】16:压轴题.【分析】(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB 的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD;(2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值.【解答】(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sin B==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.24.(14分)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标.(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)解方程(x﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),确定点B的坐标为(3,0);将y=(x﹣3)(x+1)配方,写成顶点式为y=x2﹣2x﹣3=(x﹣1)2﹣4,即可确定顶点D的坐标;(2)①根据抛物线y=(x﹣3)(x+1),得到点C、点E的坐标.连接BC,过点C作CH⊥DE于H,由勾股定理得出CD=,CB=3,证明△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q的坐标(﹣9,0),运用待定系数法求出直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6,解方程组,即可求出点P的坐标;②分两种情况进行讨论:(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,所以点M不存在.【解答】解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,∴CG=FG+FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=5,∴M(5,12);(Ⅱ)当点M在对称轴左侧时.∵∠CMN=∠BDE<45°,∴∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,∴点M不存在.综上可知,点M坐标为(,﹣)或(5,12).【点评】本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.。
2013年数学中考试题和答案◆ 注意事项:1、本卷满分150分,考试时间120分钟;2、所有题目必须在答题卷上作答,否则不予计分。
一、选择题(本大题共6小题,每小题5分,共30分。
每小题均给出了A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的,不填、多填或错填均得0分)1、若不等式组⎩⎨⎧<+>232a x x 有解,则实数a 的取值范围为( )A .21≤aB .21<aC .21≥aD .21>a2、化简2)28cos 28(sin ︒-︒等于( )A .︒-︒28cos 28sinB .0C .︒-︒28sin 28cosD .以上都不对3、若,012=--x x 则522234+-+-x x x x =( )A .0B .5C .52+D .5252-+或4、如图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为( )A B .123 C .24 D .24+ 5、已知=++=+=+=+zx yz xy xyzx z zx z y yz y x xy ,则61,51,31( ) A .41 B .21 C .71 D .916、已知关于x 的方程0)21(542=+⋅++-xa x x ,若a 为正实数,则下列判断正确的是( )A .有三个不等实数根B .有两个不等实数根C .有一个实数根D .无实数根4题图二、填空题(本大题共8小题,每小题6分,共48分) 7、a a 13--与a a 13--是相反数,计算aa 1+= . 8、若[]x 表示不超过x 的最大整数,0444311311311⎪⎪⎭⎫⎝⎛-+++-=A , 则[]A = .9、如图,N M 、分别为ABC ∆两边BC AC 、的中点,AN 与BM 交于点O ,则的面积的面积ABC BON ∆∆ = .10、如图,已知圆O 的面积为3π,AB 为直径,弧AC 的度数为︒80,弧BD 的度数为︒20,点P 为直径AB 上任一点,则PD PC +的最小值为 . 11、观察下列各式:),4131(1331133133),3121(1221122122),211(1111111111222222222--=+-=+-+--=+-=+-+--=+-=+-+ ……计算:201120111201120113311225212222+-+++++++ = .12、从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a ,是3的倍数的个数为b ,则样本96、、、b a 的中位数是 .13、若3-x 为正整数,且是13522+-x x 的约数,则x 的所有可能值总和为 .14、由直线12-+=k kx y 和直线12)1(+++=k x k y (k 是正整数)与x 轴及y 轴所围成的图形面积为S ,则S 的最小值是 .三、解答题(本大题共5小题,共计72分)15、(14分)已知抛物线)0(2>++-=c c bx x y 过点)0,1(-C ,且与直线x y 27-=只有一个交点.⑴ 求抛物线的解析式;⑵ 若直线3+-=x y 与抛物线相交于两点B A 、,则在抛物线的对称轴上是否存在点Q ,使ABQ ∆是等腰三角形? 若存在,求出Q 点坐标;若不存在,说明理由.BACN MO PO AC DB第10题图第9题图B A DE C PFO 1 O 2MH GN第18题图 16、(14分)如图,过正方形ABCD 的顶点C 在形外引一条直线分别交AD AB 、延长线于点N M 、,DM 与BN 交于点H ,DM 与BC 交于点E ,BN 与DC 交于点F .⑴ 猜想:CE 与DF 的大小关系? 并证明你的猜想. ⑵ 猜想:H 是AEF ∆的什么心? 并证明你的猜想.17、(14分)设关于x 的方程0222)1(42=-+--+-y x y x x 恰有两个实数根,求y 的负整数值.18、(15分)如图,已知菱形ABCD 边长为36,︒=∠120ABC ,点P 在线段BC 延长线上,半径为1r 的圆1O 与DP CP DC 、、分别相切于点N F H 、、,半径为2r 的圆2O 与PD 延长线、CB 延长线和BD 分别相切于点G E M 、、.(1)求菱形的面积; (2)求证:MN EF =; (3)求21r r +的值.19、(15分)某企业某年年初建厂生产某种产品,其年产量为y 件,每件产品的利润为2200元,建厂年数为x ,y 与x 的函数关系式为504022++-=x x y .由于设备老化,从2011年起,年产量开始下滑.若该企业2012年投入100万元用于更换所有设备,则预计当年可生产产品122件,且以后每年都比上一年增产14件. ⑴ 若更换设备后,至少几年可收回投入成本? ⑵ 试写出更换设备后,年产量Q 件与企业建厂年数x 的函数关系式;并求出,到哪一年年产量可超过假定设备没有更换的年产量?AB MC E DF H N第16题图2012年蚌埠二中高一自主招生考试科学素养 数学答题卷一、 选择题 (本大题共6小题,每小题5分,共30分)二、填空题(本大题共8小题,每小题6分,共48分)7、8、 9、 10、 11、12、 13、 14、三、解答题(本大题共5小题,共计72分)15、(14分) 解:解:17、(14分)解:ABMCED FHN第16题图BA DEC PFO 1 O 2M H GN第18题图解: 19、(15分)解:2012年蚌埠二中自主招生考试数学参考答案一、 选择题 (本大题共6小题,每小题5分,共30分)1、B2、C3、C4、D5、C6、C二、填空题(本大题共8小题,每小题6分,共48分)7、5 8、-2 9、61 10、3 11、201220112(或其它形式)12、5.5 13、46 14、47三、解答题(本大题共5小题,27'15'1541'14'14'=++'++) 15、(14分)解:(1)322++-=x x y (6分)(2)Q )1,1()14,1()173,1(或或±±(14分)16、(14分)(1)DF CE =.(2分)证:∵正方形ABCD ∴AD ∥BC,DC ∥AB ∴NA BC MN MC ND CE ==,(4分)NANDAB DF =(6分) ∴NA ND BC CE =∴BCCEAB DF =又BC AB =∴DF CE =(7分) (2)垂心. (9分)易证ADF ∆≌CE D ∆(11分)∴FDE DAF ∠=∠又∴︒=∠+∠90ADE DAF ∴DE AF ⊥(13分)同理AE FB ⊥. H 为AEF ∆的垂心. (14分) (其他解法酌情给分)17、(14分)解:原式可变为0222)1(22=----+-y x y x()[]0)1(222=++---y x x ∴)1(222+-=-=-y x x 或∴0)1()1(2<+-+-=y y 或∴13->-=y y 或∴y 的负整数值为3-. (或也可去绝对值。
2014年中考数学试题一、选择题(本大题共10小题,每小题3分,共30分)1、2的值等于 ( ) A 、2 B 、-2 C 、2 D 、22、函数31+-=x y 中,自变量x 的取值围是 ( )A 、1>xB 、1≥xC 、1≤xD 、1≠x3、方程0312=--xx 的解为 ( ) A 、2=x B 、2-=x C 、3=x D 、3-=x4、已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( ) A 、4,15 B 、3,15 C 、4,16 D 、3,165、下列说法中正确的是 ( ) A 、两直线被第三条直线所截得的同位角相等 B 、两直线被第三条直线所截得的同旁角互补C 、两平行线被第三条直线所截得的同位角的平分线互相垂直D 、两平行线被第三条直线所截得的同旁角的平分线互相垂直20. 已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( )A 、30cm 2B 、30πcm 2C 、15cm 2D 、15πcm 27、如图,A 、B 、C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是 ( ) A 、35°B 、140°C 、70°D 、70°或140°8、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( ) A 、21 B 、41C 、81D 、1611、如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60°,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于( ) A 、3:4 B 、3:52 C 、13:62 D 、32:1310、已知点A (0,0),B (0,4),C (3,t +4),D (3,t ). 记N (t )为□ABCD 部(不含边界)整 点第7题图第8题图第9题图的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为 ( )A 、6,7B 、7,8C 、6,7,8D 、6,8,9二、填空题(本大题共8小题,每小题2分,共16分) 11、分解因式:2x 2-4x =。
2013年中考数学模拟试题汇编 四边形综合题一、选择题1. 如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( ) ①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4a b+ ④四边形A n B n C n D n 的面积是12n ab+.A 、①②B 、②③C 、②③④D 、①②③④2.如图,在平行四边形 ABCD 中(AB≠BC),直线EF 经过其对角线的交点O,且分别交AD 、BC 于点M 、 N ,交BA 、DC 的延长线于点E 、F ,下列结论: ①AO=BO;②OE=OF; ③△EAM∽△EBN; ④△EAO≌△CNO,其中正确的是A. ①②B. ②③C. ②④D.③④9题图B3. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .44. 己知直角梯形ABCD 中,AD∥BC.∠BCD=90°,BC=CD=2AD ,E 、F 分别是BC 、CD 边的中点.连接BF 、DF 交于点P .连接CP 并延长交AB 于点Q ,连揍AF ,则下列结论不正确...的是( ). A .CP 平分∠BCDB .四边形ABED 为平行四边形C ,CQ 将直角梯形ABCD 分为面积相等的两部分 D .△A BF 为等腰三角形5.如图,在平行四边形ABCD 中,E 为AB 的中点,F 为AD 上一点,EF 交AC 于G ,AF=2cm ,DF=4cm ,AG=3cm ,则AC 的长为( )A 、9cmB 、14cmC 、15cmD 、18cm6.下列四边形中,对角线相等且互相垂直平分的是( ) A 、平行四边形 B 、正方形 C 、等腰梯形 D 、矩形ABC D FE G10题图8.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=2OA;(4)AE2+CF2=2OP•OB,正确的结论有()个.A、1B、2C、3D、49.)A、6B、12C、D、二、填空题1.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是60 °.2. 1.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是3. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC 边上一动点,则DP长的最小值为 4 .三、解答题1. 如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证四边形ABFC是矩形.2.如图5所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=12BE.EDCBA3.如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.AB EGCDF24题图图54. 如图,四边形ABCD 是矩形,直线l 垂直平分线段AC ,垂足为O ,直线l 分别与线段AD 、CB 的延长线交于点E 、F .(1)△ABC 与△FOA 相似吗?为什么? (2)试判定四边形AFCE 的形状,并说明理由.5. 如图,矩形ABCD 中,AB =6,BC点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧.设运动的时间为t 秒(t ≥0). (1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存大,求出对应的t 的值;若不存在,请说明理由.AD26题图6.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=32,求AG,MN的长.7.如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.8.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.9.如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.(1)求AC的长.(2)求∠AOB的度数.(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.11.如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.12.以四边形ABCD的边AB.BC.CD.DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E.F.G.H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.13.如图,在▱ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.14.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=2,求EB的长.15.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.16.如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).17.如图,四边形ABCD是平行四边形,AC是对角线,BE⊥AC,垂足为E,DF⊥AC,垂足为F.求证:DF=BE.18.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.19.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.20.如图,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.21.如图.矩形ABCD的对角线相交于点0.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为AC的长.22.矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的相等;或者先证明四边形是菱形,在证明这个菱形有一个角是.(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.23. 把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F两点均在BD 上),折痕分别为BH 、DG 。
《一次函数》中考题专项训练【陈老师的话】“一次函数”是中考必考内容之一,题型多样,形式灵活,综合性、就用性强,一般以选择题、填空题、解答题及综合题的形式考查一次函数的图象和性质。
并且在课程标准指导下,一次函数在中考中的命题趋势一般体现以下特点:1、考查函数自变量的取值范围,如2009年广州第7题,2011年广州第9题;2、画一次函数(正比例函数)的图象,并掌握其性质,如2009年佛山第14题;3、根据已知条件,得用待定系数法求一次函数解析式,如2012年湖南湘潭第21题;4、考查一次函数与方程(组)、不等式的关系,如2012年贵州贵阳第7题;5、正确利用一次函数解决实际问题,如2012年广州市第23题。
《广州市初中毕业生学习考试指导书》的目标要求也正对应着以上的几个特点,而且同学们在刚结束的期末考试第24题(内容为一次函数的应用)丢分过多,所以我们需要加强一些综合性题的训练,提高分析问题和解决问题的能力。
费话少说,同学们,开练吧!!【主要知识点】1、正比例函数的定义:形如y=kx(k≠0的)的函数是正比例函数。
2、一次函数的定义:形如y=kx+b(k≠0)的函数是一次函数。
3、正比例函数与一次函数的关系:当b=0时,一次函数变为正比例函数,也就是说正比例函数是一次函数的特殊情形。
4、一次函数y=kx+b的图象及性质:【真题特训】 一、变量与函数1、(2012四川成都,第2题,3分)函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠-2、(2009年广州市,第7题,3分)下列函数中,自变量x 的取值范围是x ≥3的是( )A 、31-=x y B 、31-=x y C 、3-=x y D 、3-=x y3、(2011广东广州市,9,3分)当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ).A .y ≥-7B .y ≥9C .y >9D .y ≤94、(2012浙江省绍兴,14,5分)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家.父亲在报亭看了10分报纸后,用15分钟返回家.则表示父亲、母亲离家距离与时间之间的关系的图象分别是 ___ (只需填写序号).5、(2012四川省资阳市,7,3分)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是[来源:%@中~︿教*网]二、一次函数的图象6、(2012浙江省温州市,4,4分)一次函数24y x =-+的图象与y 轴的交点坐标是( ) A . (0,4) B .(4,0) C .(2,0) D .(0,2)7、(2009 年佛山市,14题)画出一次函数24y x =-+的图象,并回答:当函数值为正时,x 的取值范围是 .三、一次函数的性质8、(2012贵州贵阳,13,4分)在正比例函数y =-3mx 中,函数y 的值随x 的值的增大而增大,则P (m ,5)在第 象限.9、(2008年广州市,第6题,3分)一次函数34y x =-的图象不经过( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限四、一次函数与方程(组)、不等式10、(2012浙江省湖州市,15,4分)一次函数b kx +=y (k .b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =4的解为 。
2013年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 ( ) A 。
39。
6×102 B 。
3.96×103 C. 3。
96×104 D. 3.96×104 考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将3960用科学记数法表示为3。
96×103.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.43-的倒数是 ( )A. 34B. 43C. 43-D. 34-考点:倒数分析:据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数 解答:D点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A. 51 B 。
52 C 。
53 D. 54考点:概率公式分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 解答:C点评:本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率n mA P)(,难度适中。
2013年红河州哈尼族彝族自治州初中学业水平考试数学试题一、选择题(本大题共8个小题,每小题只有一个选项符合题目要求,每小题3分,满分24分) 1.12-的倒数是(A )A .2-B .2C .12-D .12【答案】A2.右图是某个几何体的三视图,该几何体是(B ) A .正方体 B .圆柱 C .圆锥 D .球【答案】B3.下列运算正确的是(D )A .2a a a +=B .632a a a ÷= C .0( 3.14)0π-= D.=【答案】D4.不等式组3x x <⎧⎨⎩≥1的解集在数轴上表示为 (C )【答案】CABCD主视图俯视图左视图5.B)A.3-B.3C.9-C.9【答案】B6.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为(C)A.60°B.65°C.70°D.75°【答案】C7.在平面直角坐标系中,已知点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是(C)A.(-1,2)B.(1,-2)C.(1,2)D.(2,1)【答案】C8.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分ABC∠,则下列结论错误的是(D)A.AD DC=B.AD DC= C.ADB ACB∠=∠D.DAB CBA∠=∠【答案】DABA CDE二、填空题(本大题共6个小题,每小题3分,满分18分)9.红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4 500 000用科学记数法表示为 . 【答案】64.510⨯10.分解因式:29ax a -= . 【答案】()()33a x x +-11.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是 . 【答案】 100 12.在函数11y x =-中,自变量x 的取值范围是 . 【答案】1x ≠13.已知扇形的半径是30cm ,圆心角是60,则该扇形的弧长为 cm (结果保留π). 【答案】 10 π14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有 个实心圆.【答案】 42三、解答题(本大题共9个小题,满分58分)……(1) (2) (3)BACD E15.解方程212xx x +=+. 【答案】解:方程两边同时乘以(2)x x +得:22(2)(2)x x x x +++=. 22242x x x x +++=.1x =-.检验:把1x =-代入(2)0x x +≠. ………………………………4分 ∴1x =-是原方程的解. ………………………………5分16.如图,D 是△ABC 的边AB 上一点,E 是AC 的中点,过点C 作//CF AB ,交DE 的延长线于点F .求证:AD = CF . 【答案】证明:∵E 是AC 的中点,∴AE = CE . ………………………1分 ∵CF ∥AB ,∴∠A =∠ECF , ∠ADE =∠F . ………………………………3分 在△ADE 与△CFE 中,,,,ADE F A ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CFE (AAS ). ……………………………4分 ∴AD CF =. ……………………………5分17.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:=100%⨯售价-进价利润率进价)【答案】解:设这件外衣的标价为x 元,依题意得: ……………………………1分0.820020010%x -=⨯. ……………………………3分0.820200x =+.0.8220x =.275x =. ……………………………5分答:这件外衣的标价为275元. ……………………………6分 18.今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整; (2)求抽样的50名学生植树数量的平均数;(3)根据抽样数据,估计该校800名学生的植树数量. 【答案】解:(1)统计表和条形统计图补充如下:…………………………………………………………3分植树数量(棵)植树数量(棵)(2)抽样的50名学生植树的平均数是:354205156104.650x ⨯+⨯+⨯+⨯==(棵).……………………5分 (3)∵样本数据的平均数是4.6,∴估计该校800名学生参加这次植树活动的总体平均数是4.6棵. 于是4.6×800 =3 680(棵),∴估计该校800名学生植树约为3 680棵. ……………………………7分19.今年“五·一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率. 【答案】解:(1)列表法表示如下:或树形图:……………………………………………………………………4分(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种, 所以抽奖人员的获奖概率为61122p ==. …………………………7分 20.如图,某山顶上建有手机信号中转塔AB ,在地面D 处测得塔尖的仰角60ADC ∠=,塔底的仰角45BDC ∠=,点D 距塔AB 的距离DC 为100米,求手机信号中转塔AB 的高度(结果保留根号).【答案】解:由题意可知,△ACD 与△BCD 都是直角三角形.在Rt △BCD 中, ∵∠BDC = 45°,∴BC = CD = 100.在Rt △ACD 中,∵∠ADC = 60°,CD = 100, ∴tan60ACCD=, 即100AC= 1234211332443开 始D6045∴AC = …………………………4分 ∴AB AC BC =-1)=. …………………………5分答:手机信号中转塔的高度为1)米. …………………………6分21.(2013云南红河州,21,6分)如图,正比例函数1y x =的图象与反比例函数2ky x=(0k ≠)的图象相交于A 、B 两点,点A 的纵坐标为2. (1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当12y y >时,自变量x 的取值范围. 【答案】解:(1)设A 点的坐标为(m ,2)2m =,所以点A 的坐标为(2,2). ∴224k =⨯=.∴反比例函数的解析式为:24y x=.…………………………3分 (2)当12y y =时,4x x=. 解得2x =±.∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2). 由图象可知,当12y y >时,自变量x 的取值范围是:20x -<<或2x >.……………………………………………………………………6分22.(2013云南红河州,22,7分)如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E .(1)判断四边形ACED 的形状,并说明理由; (2)若BD = 8cm ,求线段BE 的长.BACDE【答案】解:(1)四边形ACED 是平行四边形. ………………………………1分理由如下:∵四边形ABCD 是正方形, ∴AD ∥BC ,即AD ∥CE . ∵DE ∥AC ,∴四边形ACED 是平行四边形. ………………………………3分 (2)由(1)知,BC = AD = CE = CD , 在Rt △BCD 中, 令BC CD x ==,则2228x x +=. ………………………………5分解得1x =2x =-.∴2)BE x cm ==. ………………………………7分23.(2013云南红河州,23,9分)如图,抛物线24y x =-+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 是抛物线上的一个动点且在第一象限,过点P 作x 轴的垂线,垂足为D ,交直线BC 于点E .(1)求点A 、B 、C 的坐标和直线BC 的解析式; (2)求△ODE 面积的最大值及相应的点E 的坐标;(3)是否存在以点P 、O 、D 为顶点的三角形与△OAC 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.【答案】解:(1)在24y x =-+中,当y =0时,即240x -+=,解得2x =±.当0x =时,即04y =+,解得4y =.所以点A 、B 、C 的坐标依次是A (-2,0)、 B (2,0)、C (0,4).设直线BC 的解析式为y kx b =+(0k ≠),则204k b b +=⎧⎨=⎩,解得24k b =-⎧⎨=⎩. 所以直线BC 的解析式为24y x =-+. ………………………………3分 (2)∵点E 在直线BC 上,∴设点E 的坐标为(, 24)x x -+,则△ODE 的面积S 可表示为:221(24)2(1)12S x x x x x =-+=-+=--+. ∴当1x =时,△ODE 的面积有最大值1.此时,242142x -+=-⨯+=,∴点E 的坐标为(1,2). …………………5分 (3)存在以点P 、O 、D 为顶点的三角形与△OAC 相似,理由如下: 设点P 的坐标为2(, 4)x x -+,02x <<.因为△OAC 与△OPD 都是直角三角形,分两种情况: ①当△PDO ∽△COA 时,PD ODCO AO=, 2442x x-+=,解得11x,21x =(不符合题意,舍去).当1x =时,21)42y =-+=. 此时,点P的坐标为2).②当△PDO ∽△AOC 时,PD OD AO CO=, 2424x x -+=,解得3x =,4x =(不符合题意,舍去).当x =24y =-+此时,点P的坐标为. 综上可得,满足条件的点P 有两个:112)P,2P . ………………………9分 (注:本卷中所有解答题,若有其它方法得出正确结论的,请参照评分标准给分)。
四边形综合2、(2013陕西)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC ,若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留根号)考点:三角形面积的求法及特殊角的应用。
解析:BD 平分AC ,所以OA=OC=3,因为∠BOC=120°,所以∠DOC=∠A0B=60°,过C 作CH ⊥BD 于H ,过A 作AG ⊥BD 于G ,在△CHO 中,∠C0H=60°,OC=3,所以CH=323,同理:AG=323, 所以四边形ABCD 的面积=3123238=⨯=+∆∆CBD ABD S S 。
3、(2013河南省)如图,在等边三角形ABC 中,6BC cm =,射线AG BC ∥,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,同时点F 从点B 出发沿射线BC 以2/cm s 的速度运动,设运动时间为()t s(1)连接EF ,当EF 经过AC 边的中点D 时,求证:ADE CDF ≅ 证明:∵AG BC ∥ ∴EAD ACB ∠=∠ ∵D 是AC 边的中点A B D CO H G第14题图文并茂∴AD CD =又∵ADE CDF ∠=∠ ∴ADE CDF ≅(2)填空:①当为 s 时,四边形ACFE 是菱形;②当为 s 时,以,,,A F C E 为顶点的四边形是直角梯形。
【解析】①∵当四边形ACFE 是菱形时,∴AE AC CF EF === 由题意可知:,26AE t CF t ==-,∴6t = ②若四边形ACFE 是直角梯形,此时EF AG ⊥过C 作CM AG ⊥于M ,3AG =,可以得到AE CF AM -=, 即(26)3t t --=,∴3t =,此时,C F 与重合,不符合题意,舍去。
若四边形若四边形AFCE 是直角梯形,此时AF BC ⊥, ∵△ABC 是等边三角形,F 是BC 中点, ∴23t =,得到32t =经检验,符合题意。
2013年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.22.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.56.(3分)(2013•广东)如图,AC∥DF,AB∥EF ,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣528.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=_________.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=_________.13.(4分)(2013•广东)一个六边形的内角和是_________.14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=_________.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是_________.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是_________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1_________ S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= _________度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.2013年广东省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013•广东)2的相反数是()A.B.C.﹣2 D.2考点:相反数.分析:根据相反数的概念解答即可.解答:解:2的相反数是﹣2,故选:C.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•广东)下列四个几何体中,俯视图为四边形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看,所得到的图形.解答:解:A、五棱柱的俯视图是五边形,故此选项错误;B、三棱锥的俯视图是,故此选项错误;C、球的俯视图是圆,故此选项错误;D、正方体俯视图是正方形,故此选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2013•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.0.126×1012元B.1.26×1012元C.1.26×1011元D.12.6×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1260 000 000 000有13位,所以可以确定n=13﹣1=12.解答:解:1260 000 000 000=1.26×1012.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2013•广东)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.D.3a>3b考点:不等式的性质.分析:以及等式的基本性质即可作出判断.解答:解:A、a>b,则a﹣5>b﹣5,选项错误;B、a>b,则2+a>2+b,选项错误;C、a>b,则>,选项错误;D、正确.故选D.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)(2013•广东)数学1、2、5、3、5、3、3的中位数是()A.1B.2C.3D.5考点:中位数.分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答:解:将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.故选C.点评:本题考查了中位数的知识,属于基础题,掌握中位数的定义及计算方法是关键.6.(3分)(2013•广东)如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是()A.30°B.40°C.50°D.60°考点:平行线的性质.分析:由AC∥DF,AB∥EF,根据两直线平行,同位角相等,即可求得∠1=∠A=∠2=50°.解答:解:∵AB∥EF,∴∠A=∠2=50°,∵AC∥DF,∴∠1=∠A=50°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等订立的应用,注意掌握数形结合思想的应用.7.(3分)(2013•广东)下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣52考点:负整数指数幂;同底数幂的乘法;同底数幂的除法;零指数幂.分析:根据负整数指数幂:a﹣p=(a≠0,p为正整数),零指数幂:a0=1(a≠0),同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.同底数幂的除法法则:底数不变,指数相减分别进行计算,可得答案.解答:解:A、(﹣1)﹣3=﹣1,故此选项错误;B、(﹣4)0=1,故此选项正确;C、(﹣2)2×(﹣2)3=﹣25,故此选项错误;D、(﹣5)4÷(﹣5)2=52,故此选项错误;故选:B.点评:此题主要考查了负整数指数幂、零指数幂、同底数幂的乘除法,关键是熟练掌握各运算的计算法则,不要混淆.8.(3分)(2013•广东)不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:存在型.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(3分)(2013•广东)下列图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断即可得出答案.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.(3分)(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据反比例函数的图象性质及正比例函数的图象性质可作出判断.解答:解:∵k1<0<k2,b=﹣1<0∴直线过二、三、四象限;双曲线位于一、三象限.故选A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(4分)(2013•平凉)分解因式:x2﹣9=(x+3)(x﹣3).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)(2013•广东)若实数a、b满足|a+2|,则=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:,则原式==1.故答案是:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.(4分)(2013•广东)一个六边形的内角和是720°.考点:多边形内角与外角.分析:根据多边形内角和公式进行计算即可.解答:解:由内角和公式可得:(6﹣2)×180°=720°.故答案为:720°.点评:此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2).180°(n≥3)且n为整数).14.(4分)(2013•广东)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.考点:锐角三角函数的定义;勾股定理.分析:首先由勾股定理求得斜边AC=5;然后由锐角三角函数的定义知sinA=,然后将相关线段的长度代入计算即可.解答:解:∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5(勾股定理).∴sinA==.故答案是:.点评:本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.(4分)(2013•广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是平行四边形.考点:图形的剪拼.分析:四边形ACE′E的形状是平行四边形;首先根据三角形中位线的性质可得DE∥AC,DE=AC,再根据旋转可得DE=DE′,然后可根据一组对边平行且相等的四边形是平行四边形进行判定即可.解答:解:四边形ACE′E的形状是平行四边形;∵DE是△ABC的中线,∴DE∥AC,DE=AC,∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,∴DE=DE′,∴EE′=2DE=AC,∴四边形ACE′E的形状是平行四边形,故答案为:平行四边形.点评:此题主要考查了图形的剪拼,以及平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.16.(4分)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).考点:扇形面积的计算.分析:阴影部分可看成是圆心角为135°,半径为1是扇形.解答:解:根据图示知,∠1+∠2=180°﹣90°﹣45°=45°,∴图中阴影部分的圆心角的和是90°+90°﹣∠1﹣∠2=135°,∴阴影部分的面积应为:S==.故答案是:.点评:本题考查学生的观察能力及计算能力.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•广东)解方程组.考点:解二元一次方程组.专题:计算题.分析:将方程组中的第一个方程代入第二个方程消去x求出y的值,进而求出x的值,即可得到方程组的解.解答:解:,将①代入②得:2(y+1)+y=8,去括号得:2y+2+y=8,解得:y=2,将y=2代入①得:x=2+1=3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(5分)(2013•广东)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值.考点:分式的化简求值.专题:开放型.分析:选②与③构造出分式,再根据分式混合运算的法则把原式进行化简,把a、b的值代入进行计算即可.解答:解:选②与③构造出分式,,原式==,当a=6,b=3时,原式==.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.19.(5分)(2013•广东)如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.考点:作图—复杂作图;全等三角形的判定;平行四边形的性质.分析:(1)根据题目要求画出图形即可;(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.解答:(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥BC,∴∠DAF=∠CEF,∵在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).点评:此题主要考查了平行四边形的性质,以及全等三角形的判定,关键是正确画出图形,掌握平行四边形的性质.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•广东)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%考点:条形统计图;用样本估计总体;统计表.专题:计算题.分析:(1)由排球的人数除以所占的百分比求出总人数,乘以篮球所占的百分比即可求出篮球的人数,补全条形统计图,如图所示,求出羽毛球所占的百分比,补全人数分布图,如图所示;(2)用人数乘以羽毛球所占的百分比即可求出人数.解答:解:(1)3÷6%=50人,则篮球的人数为50×20%=10人,则补全条形统计图如下:羽毛球占总数的百分比为:15÷50=30%,补全人数分布表为:类别人数百分比排球 3 6%乒乓球14 28%羽毛球15 30%篮球10 20%足球8 16%合计50 100%(2)920×30%=276人.则七年级学生喜爱羽毛球运动项目的人数为276人.点评:此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.21.(8分)(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?考点:一元二次方程的应用.专题:增长率问题.分析:(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.解答:解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.点评:本题考查了一元二次方程的应用,列方程的依据是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数.22.(8分)(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1=S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.考点:相似三角形的判定;矩形的性质.分析:(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.点评:本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•广东)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.考点:二次函数综合题.分析:(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y轴交点即可;(3)根据当P、C、D共线时PC+PD最短,利用平行线分线段成比例定理得出PO 的长即可得出答案.解答:解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2﹣2mx+m2﹣1,得出:m2﹣1=0,解得:m=±1,∴二次函数的解析式为:y=x2﹣2x或y=x2+2x;(2)∵m=2,∴二次函数y=x2﹣2mx+m2﹣1得:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点为:D(2,﹣1),当x=0时,y=3,∴C点坐标为:(0,3);(3)当P、C、D共线时PC+PD最短,过点D作DE⊥y轴于点E,∵PO∥DE,∴=,∴=,解得:PO=,∴PC+PD最短时,P点的坐标为:P(,0).点评:此题主要考查了二次函数的综合应用以及配方法求二次函数顶点坐标以及最短路线问题等知识,根据数形结合得出是解题关键.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.解答:(1)证明:∵BD=BA,∴∠BDA=∠BAD,∵∠BCA=∠BDA(圆周角定理),∴∠BCA=∠BAD.(2)解:∵∠BDE=∠CAB(圆周角定理),∠BED=∠CBA=90°,∴△BED∽△CBA,∴=,即=,解得:DE=.(3)证明:连结OB,OD,在△ABO和△DBO中,∵,∴△ABO≌△DBO,∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.点评:本题考查了切线的判定及圆周角定理的知识,综合考查的知识点较多,解答本题要求同学们熟练掌握一些定理的内容.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= 15度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.考点:相似形综合题.分析:(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在Rt△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I)当0≤x≤2时,如答图1所示;(II)当2<x≤6﹣时,如答图2所示;(III)当6﹣<x≤6时,如答图3所示.解答:解:(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE=,∴tan∠DFE==,∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE﹣∠ABC=60°﹣45°=15°;(2)如题图3所示,当EF经过点C时,FC====;(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△BDG﹣S△BFM=BD•DG﹣BF•MN=(x+4)2﹣x•x=x2+4x+8;(II)当2<x≤6﹣时,如答图2所示:过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△ABC﹣S△BFM=AB•AC﹣BF•MN=×62﹣x•x=x2+18;(III)当6﹣<x≤6时,如答图3所示:由BF=x,则AF=AB﹣BF=6﹣x,设AC与EF交于点M,则AM=AF•tan60°=(6﹣x).y=S△AFM=AF•AM=(6﹣x)•(6﹣x)=x2﹣x+.综上所述,y与x的函数解析式为:y=.点评:本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.。
2013年中考数学压轴题及解析分类汇编2013年中考数学压轴题及解析分类汇编2013中考数学压轴:相似三角形问题2013中考数学压轴题函数相似三角形问题(一)2013中考数学压轴题函数相似三角形问题(二)2013中考数学压轴题函数相似三角形问题(三)2013中考数学压轴:等腰三角形问题2013中考数学压轴题函数等腰三角形问题(一)2013中考数学压轴题函数等腰三角形问题(二)2013中考数学压轴题函数等腰三角形问题(三)2013中考数学压轴:直角三角形问题2013中考数学压轴题函数直角三角形问题(一)2013中考数学压轴题函数直角三角形问题(二)2013中考数学压轴题函数直角三角形问题(三)2013中考数学压轴:平行四边形问题2013中考数学压轴题函数平行四边形问题(一)2013中考数学压轴题函数平行四边形问题(二)2013中考数学压轴题函数平行四边形问题(三)2013中考数学压轴:梯形问题2013中考数学压轴题函数梯形问题(一)2013中考数学压轴题函数梯形问题(二)2013中考数学压轴题函数梯形问题(三)2013中考数学压轴:面积问题2013中考数学压轴题函数面积问题(一)2013中考数学压轴题函数面积问题(二)2013中考数学压轴题函数面积问题(三)2013中考数学压轴题:函数相似三角形问题(一) 例1直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11闸北25”,拖动点Q在直线BG上运动,可以体验到,△ABQ的两条直角边的比为1∶3共有四种情况,点B上、下各有两种.思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ=90°是解题的前提.4.△ABQ与△COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况:①当3BQ BA =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --. ②当13BQ BA =时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ ==.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=cos 1∠=①当3BQ BA=时,BQ =. 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -.例2Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“11杨浦24”,拖动点A 在x 轴上运动,可以体验到,直线AB 保持斜率不变,n 始终等于m 的2倍,双击按钮“面积BDE =2”,可以看到,点E 正好在BD 的垂直平分线上,FD //x 轴.拖动点P 在射线FD 上运动,可以体验到,△AEO 与△EFP 相似存在两种情况.思路点拨1.探求m 与n 的数量关系,用m 表示点B 、D 、E 的坐标,是解题的突破口.2.第(2)题留给第(3)题的隐含条件是FD //x 轴.3.如果△AEO 与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况. 满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数k y x=的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m . (2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1). 已知△BDE 的面积为2,所以11(1)2222BD EH m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3). 因为点D (4,1)在反比例函数k y x =的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得34,22.k bk b=+⎧⎨=+⎩解得12k=,1 b=.因此直线AB的函数解析式为112y x=+.图2 图3 图4(3)如图3,因为直线112y x=+与y轴交于点F(0,1),点D的坐标为(4,1),所以FD// x轴,∠EFP=∠EAO.因此△AEO与△EFP相似存在两种情况:①如图3,当EA EFAO FP=时,255=.解得FP=1.此时点P的坐标为(1,1).②如图4,当EA FPAO EF=时,255=.解得FP=5.此时点P的坐标为(5,1).考点伸展本题的题设部分有条件“Rt△ABC在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m与n的数量关系不变.第(2)题反比例函数的解析式为12yx=-,直线AB为172y x=-.第(3)题FD不再与x轴平行,△AEO与△EFP也不可能相似.图52013中考数学压轴题函数相似三角形问题(二) 例3如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2动感体验请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图像,可以体验到,x2-x1随S的增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果∠GAF=∠GQE,那么△GAF与△GQE相似.思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4 考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1动感体验请打开几何画板文件名“10宝山24”,拖动点A ′向右平移,可以体验到,平移5个单位后,四边形A A ′B ′B 为菱形.再拖动点D 在x 轴上运动,可以体验到,△B ′CD 与△ABC 相似有两种情况.思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B′(6,0),可得A B′=45.如图2,由AM//CN,可得''''B N B CB M B A=,即2845=.解得'5B C=.所以35AC=.根据菱形的性质,在△ABC与△B′CD中,∠BAC=∠CB′D.①如图3,当''AB B CAC B D=时,535=,解得'3B D=.此时OD=3,点D的坐标为(3,0).②如图4,当''AB B DAC B C=时,355=,解得5'3B D=.此时OD=133,点D的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B′CD与△AB B′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B′CD与△C B B′相似,这两个三角形有一组公共角∠B,根据对应边成比例,分两种情况计算.2013中考数学压轴题函数相似三角形问题(三) 例5如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1动感体验请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,△PAM的形状在变化,分别双击按钮“P在B左侧”、“P在x轴上方”和“P在A右侧”,可以显示△PAM与△OAC相似的三个情景.双击按钮“第(3)题”,拖动点D在x轴上方的抛物线上运动,观察△DCA的形状和面积随D变化的图象,可以体验到,E是AC的中点时,△DCA的面积最大.思路点拨1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---xx x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---xxx,得0=x.此时点P与点O重合,不合题意.综上所述,符合条件的点P的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为221-=xy.设点D的横坐标为m)41(<<m,那么点D的坐标为)22521,(2-+-mmm,点E的坐标为)221,(-mm.所以)221()22521(2---+-=mmmDE mm2212+-=.因此4)221(212⨯+-=∆mmSDACmm42+-=4)2(2+--=m.当2=m时,△DCA的面积最大,此时点D的坐标为(2,1).图5 图6第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图动感体验请打开几何画板文件名“09闸北25”,拖动点D 可以在射线BA 上运动.双击按钮“第(2)题”,拖动点D 可以体验到两圆可以外切一次,内切两次.双击按钮“第(3)题”,再分别双击按钮“DE 为腰”和“DE 为底边”,可以体验到,△DEF 为等腰三角形.1.先解读背景图,△ABC是等腰三角形,那么第(3)题中符合条件的△DEF也是等腰三角形.2.用含有x的式子表示BD、DE、MN是解答第(2)题的先决条件,注意点E的位置不同,DE、MN表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题.满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310 AHAB=,所以AH=32=12AC.所以BH垂直平分AC,△ABC为等腰三角形,AB=CB=5.因为DE//BC,所以AB ACDB EC=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以DE AEBC AC=,MN ANBC AC=,即|3|53DE x-=,1|3|253xMN-=.因此5|3|3xDE-=,圆心距5|6|6xMN-=.图2 图3 图4 在⊙M中,115226Mr BD y x===,在⊙N中,1122Nr CE x==.①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.图1动感体验请打开几何画板文件名“08杭州24”,拖动点A 在y 轴上运动,可以体验到,AQ 与BC 保持平行,OA ∶OB 与OA ∶OB ′保持3∶2.双击按钮“t =3”,“t =0.6”,“t =-0.6”,“t =-3”,抛物线正好经过点B (或B ′).思路点拨1.数形结合思想,把OC OB OA ⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b)|-=2|t 22|OA t tb ==.即22bt t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=. (2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5). ②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2013中考数学压轴题函数等腰三角形问题(一) 例1如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2动感体验请打开几何画板文件名“11湖州24”,拖动点P在OC上运动,可以体验到,△APD的三个顶点有四次机会可以落在对边的垂直平分线上.双击按钮“第(3)题”,拖动点P由O向C运动,可以体验到,点H在以OM为直径的圆上运动.双击按钮“第(2)题”可以切换.思路点拨1.用含m的代数式表示表示△APD的三边长,为解等腰三角形做好准备.2.探求△APD是等腰三角形,分三种情况列方程求解.3.猜想点H的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt△OHM的斜边长OM是定值,以OM为直径的圆过点H、C.满分解答(1)因为PC //DB ,所以1CP PM MC BD DM MB ===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 5. 考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单: ①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =. 第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O—C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图像中可以看到,△APR的面积有一个时刻等于8.观察△APQ,可以体验到,P在OC上时,只存在AP=AQ的情况;P在CA上时,有三个时刻,△APQ是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答(1)解方程组7, 4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x=-+=,得7x=.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由8APR ACP PORCORAS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t-⨯-⨯⨯--⨯-=(.整理,得28120t t-+=.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.因此,当t=2时,以A、P、R为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B . 如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.2013中考数学压轴题函数等腰三角形问题(二) 例3如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1动感体验请打开几何画板文件名“10闸北25”,拖动点M在CA上运动,可以看到△BNP 与△MNA的形状随M的运动而改变.双击按钮“△BNP∽△MNA”,可以体验到,此刻两个三角形都是直角三角形.分别双击按钮“BP=BN,N在AB上”、“NB=NP”和“BP=BN,N在AB的延长线上”,可以准确显示等腰三角形BNP的三种情况.思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒. 在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=. (Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1动感体验请打开几何画板文件名“10南通27”,拖动点E在BC上运动,观察y随x变化的函数图像,可以体验到,y是x的二次函数,抛物线的开口向下.对照图形和图像,可以看到,当E是BC的中点时,y取得最大值.双击按钮“m=8”,拖动E到BC的中点,可以体验到,点F是AB的四等分点.拖动点A可以改变m的值,再拖动图像中标签为“y随x”的点到射线y=x上,从图形中可以看到,此时△DCE≌△EBF.思路点拨1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m =,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.2013中考数学压轴题函数相似三角形问题(三)例5已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1动感体验请打开几何画板文件名“09重庆26”,拖动点G 在OC 上运动,可以体验到,△DCG 与△DEF 保持全等,双击按钮“M 的横坐标为1.2”,可以看到,EF =2,GO =1.拖动点P 在AB 上运动的过程中,可以体验到,存在三个时刻,△PCG 可以成为等腰三角形.。
2013年广东省初中毕业生学业考试数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 2的相反数是 A.21- B. 21 C.-2 D.2 答案:C解析:2的相反数为-2,选C ,本题较简单。
2.下列几何体中,俯视图为四边形的是答案:D解析:A 、B 、C 的俯视图分别为五边形、三角形、圆,只有D 符合。
3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 答案:B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 1 260 000 000 000=1.26×1012元4.已知实数a 、b ,若a >b ,则下列结论正确的是A.55-<-b aB.b a +<+22C.33b a < D.b a 33> 答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误,选D 。
数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65- D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215-4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( )A .4B .5C .6D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E , 若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 .12.一个四边形中,它的最大的内角不能小于 . 13.二次函数xxy 2212+-=,当x 时,0<y;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BCDE = .15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为 ⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:1)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.A20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A 出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A 与小岛C 之间的距离 (2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分=822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭ 解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分 (2)解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,画树状图由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315=3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH∴FC=FB.............................4分【知识应用】过点C作CM⊥x轴于点M,过点A作AN⊥x轴于点N,过点B作BP⊥x轴于点P则点P的坐标为(x2,0),点N的坐标为(x1,0)由探究的结论可知,MN=MP∴点M的坐标为(221xx+,0)∴点C的横坐标为221xx+同理可求点C的纵坐标为221yy+∴点C的坐标为(221xx+,221yy+).8分【知识拓展】当AB是平行四边形一条边,且点C在x轴的正半轴时,AD与BC互相平分,设点C的坐标为(a,0),点D的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C的坐标为(10,0),点D的坐标为(0,-6)同理,当AB是平行四边形一条边,且点C在x轴的负半轴时求得点C的坐标为(-10,0),点D的坐标为(0,6)当AB是对角线时点C的坐标为(-2,0),点D的坐标为(0,4).............................14分- 11 -。
中考数学综合题专题【成都中考B 卷填空题】专题精选一1.如图,已知△ABC 中,AB =5,AC =3,则BC 边上的中线AD 的取值范围是________________.2.如图,已知抛物线y =x2+bx +c 经过点(0,-3),请你确定一个b 的值,使该抛物线与x0)和(3,0)之间,你所确定的b 的值是_________.3.如图,△ABC 中,∠C =90°,点O 在边BC 上,以O 为圆心,OC 为半径的圆交边AB 于点D 、E ,交边BC 于点F ,若D 、E 三等分AB ,AC =2,则⊙O 的半径为__________.4.已知点P (x ,y )位于第二象限,且y ≤2x +6,x 、y 为整数,则满足条件的点P 的个数是_________.5.半径分别为10和17的两圆相交,公共弦长为16,则两圆的圆心距为__________.6.已知方程(2011x)2-2010·2012x -1=0的较大根为a ,方程x2+2010x -2011=0的较小根为b ,则a -b =__________.7.从甲地到乙地有A 1、A 2两条路线,从乙地到丙地有B 1、B 2、B 3三条路线,从丙地到丁地有C 1、C 2两条路线.一个人任意选了一条从甲地到丁地的路线,他恰好选到B 2路线的概率是_________.8.如图,在半径为4,圆心角为90°的扇形OAB 的AB ︵上有一动点P ,过P 作PH ⊥OA 于H .设△OPH 的内心为I ,当点P 在AB ︵上从点A 运动到点B 时,内心I 所经过的路径长为___________.AB C DC9.已知二次函数y =ax2+bx +c 图象的一部分如图所示,则a 的取值范围是_______________.10.在平面直角坐标系中,已知点P 1的坐标为(1,0),将其绕原点按逆时针方向旋转30°得到点P 2,延长OP 2到点P 3,使OP 3=2OP 2,再将点P 3绕原点按逆时针方向旋转30°得到P 4,延长OP 4到点P 5,使OP 5=2OP 4,如此继续下去,则点P 2011的坐标是_____________.11.木工师傅可以用角尺测量并计算出圆的半径r .如图,用角尺的较短边紧靠⊙O ,并使较长边与⊙O 相切于点C .假设角尺的较长边足够长,角尺的顶点为B ,较短边AB =8cm .若________________.y =12x(x >0)图象上的动点,PC ⊥x___________.13.在平面直角坐标系中,已知点A (2,4),B (4,2),C (1,1),点P 在x 轴上,且四2倍,则点P 的坐标为________________.B O14.已知关于x ,y 的方程组 ⎩⎪⎨⎪⎧tx +3y =22x +(t -1)y =t 的解满足|x |<|y |,则实数t 的取值范围是_______________.15.如图,已知P 为△ABC 外一点,P 在边AC 之外,∠B 之内,若S △PAB :S △PBC :S △PAC=3 : 4 :2,且△ABC 三边a ,b ,c 上的高分别为h a =3,h b =5,h c =6,则P 点到三边的距离之和为___________.16.一袋装有四个分别标有数字1、2、3、4,除数字外其它完全相同的小球,摇匀后,甲从中任意抽取1个,记下数字后放回摇匀,乙再从中任意抽取一个,记下数字,然后把这两个数相加,当两数之和为3时,甲胜,反之乙胜.若甲胜一次得7分,那么乙胜一次得__________分,这个游戏对双方才公平.17.如图,已知点A (0,4),B (4,0),C (10,0),点P 在直线AB 上,且∠OPC =90º,18.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.B a cC A P bA CDFH GMENK T图2图119.如图,在平面直角坐标系中,点A的坐标是(-2,4),AB⊥y轴于B,抛物线y=-x2-2x+c经过点A,将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△AOB的,则m的取值范围是______________.他们从食品安全监督部门获取了一份快若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,则其中所含碳水化合物质量的最大值为__________克.y=2x(x>0)的图象上,顶点A1、B P2P3A2B2,顶点P3在反比例函数y=2x(xP3的坐标为______________.22.已知n、k均为正整数,且满足815<nn+k<713,则n的最小值为_________.23.如图,在平面直角坐标系中,点A在第二象限,点B在x轴的负半轴上,△AOB的外接圆与y轴交于点C(0,2),∠AOB=45°,∠BAO=60°,则点A的坐标为______________.24.如图,图①中的圆与正方形各边都相切,设这个圆的周长为C 1;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长之和为C 2;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长之和为C 3;…,依此规律,当正方形边长为2时,则C 1+C 2+C 3+…+C 99+C 100=____________. 25.如图,在平行四边形ABCD 中,AB =3,BC =4,∠B =60°,E 是BC 的中点,EF ⊥AB 于点F .26.如图,将一块直角三角板OAB 放在平面直角坐标系中,点B 坐标为(2,0),∠AOB =60°,点A 在第一象限,双曲线y =kx经过点A .点P 在x 轴上,过点P 作直线OA 的垂线l ,以直线l为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标为___________; (2)设P (t ,0),当O ′B ′与双曲线有交点时,t 的取值范围是______________.27.已知抛物线y =x2-(m -1)x -m -1与x 轴交于A 、B 两点,顶点为为C ,则△ABC 的面积的最小值为__________.28.如图,E 、F 、G 、H 分别为四边形ABCD 的边AB ,BC ,CD ,DA 的中点,并且图中四个小三角形的面积的和为1,即S 1+S 2+S 3+S 4=1,则图中阴影部分的面积为___________.图② 图③ 图①A BD CE FG HS 1S 2S 3S 429.在平面直角坐标系中,A 、B 两点的坐标分别为(-1,1)、(2,2),直线y =kx -1与线段AB 的延长线相交(交点不包括B ),则实数k 的取值范围是______________.30.如图,正方形ABCD 的面积为12,点E 在正方形ABCD 内,△ABE 是等边三角形,点P 在对角线AC 上,则PD +PE 的最小值为___________.31.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,分别以AE 、BE 为直径作两个大小不同的⊙O 1和⊙O 2,若CD =16,则图中阴影部分的面积为___________(结果保留π).32.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.33.如图,已知一次函数y =-x +8与反比例函数y =kx的图象在第一象限内交于A 、B 两点,且△AOB 的面积为24,则k =_________A B D C E PA B34.已知x =3154)(+-3154)(-,则x3+12x 的算术平方根是__________.35.有三个含30°角的直角三角形,它们的大小互不相同,但均有一条长为a 的边,那么,这三个三角形按照从小到大的顺序,它们的面积比为______________.36.已知点P 是抛物线y =-x2+3x 在y 轴右侧..部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于B 、A 两点.若△PAB 与△AOB 相似,则点P 的坐标为_____________________________.37.如图,直线y =-x +22 交x 轴、y 轴于点B 、A ,点C 的坐标为(42,0),P 是直线AB 上一点,且∠OPC =45º,则点P 的坐标为38.如图,在△ABC 中,AB =AC =5,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F在AC 的延长线上,且∠CBF =1 2 ∠A ,sin ∠CBF =55,则BF 的长为39.如图,Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .将△ABC 绕点D 按顺时针旋转角α(0<α<180°)后,点B 恰好落在初始Rt △ABC 的边上,那么α=____________°.40.如图,直线y =kx -2(k >0)与双曲线y =kx在第一象限内交于点A 别交于点B 、C .AD ⊥x 轴于点D ,且△ABD 与△OBC 的面积相等,则k41.在“传箴言”活动中,某党支部的全体党员在一个月内所发箴言条数情况如下:发了三条箴言的党员中有两位男党员,发了四条箴言的党员有两位女党员.如果在发了三条箴言和四条箴言的党员中分别选出一位参加区委组织的“传箴言”活动总结会,那么所选两位党员恰好是一男一女的概率为_________.42.如图,在△ABC 中,∠ACB =90°,∠A =20°.将△ABC 绕点C 按逆时针方向旋转角α后得△A ′B ′C ,此时点B 在A ′B ′上,CA ′ 交AB 于点D .则∠BDC 的度数为__________.43.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程1-ax x -2+2=12-x有正整数解的概率为_________.44.如图,等边△ABC 的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边△CEF ,连接BF 并延长至点N ,M 为BN 上一点,且CM =CN =5,则MN 的长为__________.45.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点EB CDA ′B ′ABCD E F M的坐标为(0,2).点F (a ,0)在边AB 上运动,若过点E 、F 的直线将矩形ABCD 的周长分成2 :1两部分,则a 的值为__________.46.如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =4,设AD =x ,CF =y ,则y 关于x 的函数关系式为_______________.47.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =1048.已知关于x 的方程(1-a2)x2+2ax -1=0的两个根一个小于0,另一个大于1,则a 的取值范围是_____________.49.已知二次函数y =ax2+bx +c 的图象与x 轴交于(-2,0)、(x 1,0)两点,且1<x 1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a <b <0;②2a +c >0;③4a +c <0;④2a -b +1>0.其中正确结论的序号是________________.50.如图,点A 、B 在反比例函数y =kx若S △AOB=3,则k 的值为_________.51.方程x +2x -1+x -2x -1=x -1的解为x =__________.52.如图,PA 、PB 是⊙O 的切线,PEC 是⊙O 的割线,AB 与PC 相交于点D .若PE =2,DC =1,则DE 的长为___________.53.若一直角梯形的两条对角线的长分别为9和11,上、下两底长都是整数,则该梯形的高为________.54.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x ,朝下一面的数为y ,得到平面直角坐标系中的一个点(x ,y ).已知小华前二次掷得的两个点所确定的直线经过点P (4,7),那么他第三次掷得的点也在这条直线上的概率为_________.55.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,∠ABC =30°,直角边BC 在x 轴上,其内切圆的圆心坐标为I (0,1),抛物线y =ax2+2ax +1的顶点为A ,则a =___________.56.已知方程ax2+bx +c =0(a >b >c )的一个根为α=1,则另一个根β的取值范围是________________.3 5 1 1 2 357.如图,在△ABC中,∠ABC和∠ACB的平分线相交于O,过O作EF∥BC交AB于E,交AC于F,过O作OD⊥AC于D.下列四个结论:①EF是△ABC的中位线;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=2n,则S△AEF=mn;④∠BOC=90º+12∠A;其中正确的结论是________________.58.方程1x2+3x+2+1x2+5x+6+1x2+7x+12+1x2+9x+20=18的解是x=___________.59.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则DEDF的值为__________.60.如图,已知点A(1,0),B(3,0),P是直线y=-34x+3上的动点,则当∠APB最大时,点P的坐标为______________.61.如图,AB是⊙O的直径,AC是弦,将△ABC沿AC翻折,点B落在点D 处,AD交⊙O于点E,连接EC.若EC∥AB,则∠BAC=_________°.62.已知△ABC的一条边长为5,另两条边长恰好是一元二次方程2x2-12x+m=0的两个根,则实数m的取值范围是________________.63.如图,已知直线y=12x与双曲线y=kx(k>0)交于A、B两点,且点A的横坐标为4,过原点O的另一条直线交双曲线y=kx(k>0)于B、C、D为顶点的四边形的面积为24,则点COABEDCFA EDFCBB64.如图1,直线l 1∥l 2,l 1、l 2之间的距离为6,圆心为O 、半径为4的半圆形纸片的直径AB 在l 1上,点P 为半圆上一点,设∠AOP =α.将扇形纸片BOP 剪掉,使扇形纸片AOP 绕点A 按逆时针方向旋转(如图2).要使点P 能落在直线l 2上,则α的取值范围是______________.(参考数据:sin49°=3 4,tan37°=34)65.如图,矩形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,OA =3,OC =4,D 为边OC 的中点,E 、F 为边OA 上的两个动点,且EF =2,当四边形BDEF 的周长最小时,点E 的坐标为____________.66.如图,将直线y =x 向下平移b 反比例函数y =3x(x >0)的图象相交于点A ,与x 则OA2-OB2=__________.67.如图,矩形ABCD 的周长为32cm ,E 是AD F 是AB 上一点,EF ⊥EC ,且EF =EC ,则矩形__________cm 2.l 1 l 2图1 l 1l 2图268.如图,AB 是⊙O 的直径,点D 、T 是圆上的两点,且AT 平分∠BAD ,过点T 作AD 延长线的垂线PQ ,垂足为C .若⊙O 的半径为2,TC =3,则图中阴影部分的面积为______________.69.若关于x 的方程2kx -1-xx2-x=kx +1x只有一个解,则k =____________.70.如图,正方形ABCD 的边长为l ,点P 为边BC 上任意一点(可与点B 、C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别为B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为_________;最小值为_________.71.如图,矩形纸片ABCD ,BC =10,点E 是AB 上一点,把△BCE 沿EC 向上翻折,使点B 落在AD 边上点F 处,若⊙O 内切于以B 、C 、F 、E 为顶点的四边形,且AE :EB =3 :5,则⊙O 的半径为_________.72.已知点P (a +1,a -1)关于x 轴的对称点在反比例函数y =-8x(x >0)的图像上,y关于x 的函数y =k2x2-(2k +1)x +1的图像与坐标轴只有两个不同的交点A ﹑B ,则△PAB 的面积为_____________.73.如图,等腰Rt △ABC 的直角边长为4,以A 为圆心,直角边AB 为半径作弧BC 1,交斜边AC 于点C 1,C 1B 1⊥AB 于点B 1,设弧BC 1与线段C 1B 1、B 1B 围成的阴影部分的面积为S 1,AC BD D ′ B ′ C ′ PC D再以A 为圆心,AB 1为半径作弧B 1C 2,交斜边AC 于点C 2,C 2B 2⊥AB 于点B 2,设弧B 1C 2与线段C 2B 2,B 2B 1围成的阴影部分的面积为S 2,按此规律继续作下去,则S 1+S 2+S 3+…+S n =________________.(用含有n 的代数式表示)74.如图,边长为4的正方形AOBC 的顶点O 在坐标原点,顶点A 、B 分别在y 轴正半轴和x 轴正半轴上,P 为OB 边上一动点(不与O 、B 重合),DP ⊥OB 交AB 于D .将正方形AOBC 折叠,使点C 与点D 重合,折痕EF 与PD 的延长线交于点Q ,设点Q 的坐标为(x ,y ),则y 关于x 的函数关系式为_______________.75.已知点A 、B 的坐标分别为(1,0),(2,0),若二次函数y =x2+(a -3)x +3的图象与线段AB 恰有一个交点,则a 的取值范围是___________________.76.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是____________m .(结果用π表示)77.如图,在边长为1的正方形ABCD 中,以BC 为边在正方形内作等边△BCE ,并与正方形的对角线交于点F 、G ,则图中阴影图形AFEGD 的面积为______________.1234l78.将水平相当的A 、B 、C 、D 四人随机平均分成甲、乙两组进行乒乓球单打比赛,每组的胜者进入下一轮决赛.(1)A 、B 被分在同一组的概率是___________;(2)A 、B 在下一轮决赛中相遇的概率是___________.79.已知点P 是一次函数y =-x +4的图象在第一、四象限上的动点,点Q 是反比例函数y =3x(x >0)图象上的动点,PP 1⊥x 轴于P 1,PP 2⊥y 轴于P 2,QQ 1⊥x 轴于Q 1,QQ 2⊥y 轴于Q 2,设点P 的横坐标为x ,矩形PP 1OP 2的面积为S 1S 1<S 2时,x 的取值范围是________________________.80.如图,在5×5的正方形网格中,△ABC 的三个顶点都在格点上,若△A 1B 1C 1的三个顶点也在格点上,且与△ABC 相似,面积最大,则△A 1B 1C 1的面积为__________.81.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶t (h )后,与B 港的距离分别为S 1、S 2(km ),S 1、S 2与t 的函数关系如图所示.若甲、乙两船的距离不超过10 km 时可以相互看见,则两船可以相互看见时t 的取值范围是82.如图所示,在梯形ABCD 中,AD ∥BC ,CE 是∠BCD 的平分线,且CE ⊥AB ,E 为垂足,BE =2AE ,若四边形AECD 的面积为1,则梯形ABCD 的面积为___________.CAB B CD A E83.在平面直角坐标系中,反比例函数y =2kx(k ≠0)满足:当x <0时,y 随x 的增大而减小.若该反比例函数的图象与直线y =-x +3k 都经过点P ,且|OP |=7,则k =___________.84.如图所示,AC 为⊙O 的直径,PA ⊥AC 于点A ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,且DBDP=DCDO=23,则cos ∠BCA 的值等于_________85.已知反比例函数y =kx图象经过点A (-1,-3),点P是反比例函数图象在第一象限上的动点,以OA 、OP _____________.86.如图所示,在矩形ABCD 中,AB =nBC ,E 为BC 中点,DE ⊥AC ,则n =__________.87.如图,直线y =3x 和y =2x 分别与直线x =2相交于点A 、B ,将抛物线y =x2沿线段OB 移动,使其顶点始终在线段OB 上,抛物线与直线x =2相交于点C ,设△AOC 的面积为S ,则S 的取值范围是________________.APF D B A CE88.已知a2+b2=1,-2≤a +b ≤2,记t =a +b +ab ,则t 的取值范围是_______________.89.如图,平行四边形DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,则△ABC 的面积为__________.90.在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点.如图,⊙O 的半径是 5,圆心与坐标原点重合,l 为经过⊙O 上任意两个格点的直线,则直线l 同时经过第一、二、四象限的概率为________.91.已知二次函数y =x2+bx +c 的图象与x 轴交于不同的两点A 、B ,顶点为C ,且△ABC 的面积S ≤1,则b2-4c 的取值范围是________________.92.如图,已知正方形纸片ABCD 的边长是⊙O 半径的4倍,圆心O 是正方形ABCD 的中心,将纸片按图示方式折叠,使EA 1恰好与⊙O 相切于点A 1,则tan ∠A 1EF 的值为_________.93.已知a 、b 均为正整数,且满足 20092010<ab<20102011,则当b 最小时,分数 ab=_________.94.如图,将边长为2的正方形ABCD 沿直线l 向右无滑动地连续翻滚2011次,则正方形ABCD 的中心经过的路线长为_______________,顶点A 经过的路线长为_______________.A B DGD95.如图,半圆O 的直径AB =8,C 为AO 的中点,CD ⊥AB 交半圆于点D ,以C 为圆心,CD 为半径画弧DE 交AB 于E 点,则图中阴影部分的面积为_____________.2ax -2b +1和y =-x2+(a -3)x +b2-1的图象都经过x 轴上两个不同的点M ,N ,则a =________,b =________.97.在平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,E 、F 为垂足,连接EF .若AB =13,BE =5,EC =9,则EF 的长为____________.98.已知抛物线y =-x2+bx +c 过点A (4,0)、B (1,3),对称轴为直线l ,点P 是抛物线上第四象限的一点,点P 关于直线l 的对称点为C ,点C 关于y 轴的对称点为D ,若四边形OAPD 的面积为20,则点P 的坐标为____________.99.如图,在△AB C 中,AB =AC =5,BC =6,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG ,连接BG ,当△BDG 是等腰三角形时,AD 的长为____________________.100.已知在平面直角坐标系中,点A (8,0),B (0,6),直线BC 平分∠OBA ,交x 轴于A B C (B ) l D (A ) (D ) A B C D …A B C DE FD AB CEFG点C,过O点作OD⊥BC,交AB于点D.P是射线BC上一动点,若S△AOP=S△ADP,则P点坐标为______________.。
xy OAB 第10题图 2013年中考数学综合题《一》(2013考试说明样题)一、选择题(共12小题,每小题3分,共36分).1.在0,-1,2,-1.5这四个数中,是负整数的是( )A. -1B. 0C. 2D. -1.5 2.如图,与∠1 是同位角的是( )A .∠2B .∠3C .∠4D .∠53.如图,数轴上点N 表示的数可能是( ) A.10B.5 C.3 D.24.下面四个图案,其中没有用到图形的平移、旋转或轴对称设计的是( )5.在一次多人参加的男子马拉松长跑比赛中,其中一名选手要判断自己的成绩是否比一半以上选手的成绩好,他可以根据这次比赛中全部选手成绩的哪一个统计结果进行比较( ) (A )平均数 (B )众数 (C ) 极差 (D )中位数 6.下列计算正确的是( )(A) 222)(n m m m -=- (B) 62232)2(b a ab = (C)a a a283= (D) xy xy xy 532=+7.图l 是由六个小正方体组合而成的一个立体图形,它的主视图是( )8.若分式xx x 2422--的值为零,则x 的值为( )A. -2 B. 2 C. 0 D.-2或2 9.一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则 此圆锥的侧面积是( )A. 260cm π B. 248cm π C. 296cm π D. 230cm π 10.如图,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,O A B △的面积将会( )A.逐渐增大 B .不变 C .逐渐减小 D .先增大后减小 11.一个边长为4的等边三角形ABC 的高与⊙O 的直径相等,如图放置, ⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长是( ): A. 32 B .3 C .2 D .3ECABO第11题图第2题图第3题图12.如图,已知扇形的圆心角为︒60,半径为1,将它沿着箭头方向无滑动滚动到B A O '''位置,则有:①点O 到O '的路径是1OO →21O O →O O '2;②点O 到O '的路径是⋂1OO →⌒21O O →⋂'O O 2; ③点O 在1O →2O 段上的运动路径是线段21O O ;④点O 到O '所经过的路径长为π34;以上命题正确的序号是: () A. ②③ B .③④ C .①④ D .②④ 二、填空题(共6小题,每小题3分,共18分). 13.函数42-=x y 的自变量x 的取值范围是___________。
14.长度单位1纳米=910-米,目前发现一种新型病毒直径为23150纳米,用科学计数法表示,该病毒直径是 米(保留两个有效数字)15.为了保证婴幼儿的饮食安全,质检部门准备对某品牌罐装牛奶进行质量检测,这种检测适合用的调查是 .(抽样调查或普查)16.如图,每个小方格都是边长为1的正方形,点A 、B 是方格 纸的两个格点(即正方形的顶点),在这个44⨯的方格纸中,找 出格点C ,使ABC ∆是等腰三角形,这样的点C 共有 个 17.请写出一个二次函数2y a x b x c =++,使它同时具有如下性质:①图象关于直线1x =对称;②当x =2时,y >0;③当x =-2时,y <0.答:. 18.若111a m=-,2111a a =-,3211a a =-,… ;则2013a 的值为 .(用含m 的代数式表示)三、解答题(本大题共8题,共66分,请将答案写在答题..卡.上). 19.(本题满分6分)计算: ()445cos 21812012-++--︒.20.(本题满分6分)解不等式组⎪⎩⎪⎨⎧->+≤+133453x x ,并求它的整数解.21.(本题满分6分)在两个不透明的口袋中分别装有三个颜色分别为红色、白色、绿色的小球,这三个小球除颜色外其他都相同,(1)在其中一个口袋中一次性随机摸出两个球,请写出在这一过程中的一个必然事件;(2)若分别从两个袋中随机取出一个球,试求出两个小球颜色相同的概率。
第16题图 第12题图第23题图22.(本题满分8分)如图,在等腰梯形ABCD 中,∠C=60°,AD ∥BC ,且AD=DC ,E 、F 分别在AD 、DC 的延长线上,且DE=CF ,AF 、BE 交于点P . (1)求证:AF=BE ;(2)请你猜测∠BPF 的度数,并证明你的结论。
23.(本题满分8分)图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知斜屋面的倾斜角为︒25,长度为2.1米的真空管AB 与水平线AD 的夹角为︒40,安装热水器的铁架水平管BC 长0.2米, 求:(1)真空管上端B 到AD 的距离(结果精确到0.01米).(2)铁架垂直管CE 的长度(结果精确到0.01米). (8391.040tan ,7660.040cos ,6428.040sin ≈︒≈︒≈︒, 4663.025tan ,9063.025cos ,4226.025sin ≈︒≈︒≈︒)24.(本题满分10分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.求: (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)PCDAEFB第22题图第25题图O A BCDEyx112y x =-+第26题图25.(本题满分10分)如图:等圆⊙O 1和⊙O 2相交于A 、B 两点,⊙O 1经过⊙O 2的圆心,顺次连接A 、O 1、B 、O 2. (1)求证:四边形AO 1BO 2是菱形;(2)过直径AC 的端点C 作⊙O 1的切线CE 交AB 的延长线于E ,连接CO 2交AE 于D ,求证:CE =2DO 2;(3)在(2)的条件下,若12=∆D AO S ,求DB O S 2∆的值.26.(本题满分12分)如图,已知直线121+-=x y 交坐标轴于B A ,两点,以线段AB 为边向上作正方形ABCD ,过点C D ,A ,的抛物线与直线另一个交点为E . (1)请直接写出点D C ,的坐标; (2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;初中毕业升学考试试卷样卷数学参考答案及评分标准一、选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ACBCDDBAACDB二、填空题:13. 2≥x 14. 5103.2-⨯ 15. 抽样调查 16. 8 17.322++-=x x y 等(答案不唯一)18. m三、解答题:19.(本题满分6分)解:原式=13222-++ ·········· 4分(求出一个值给1分) =322- ······························································ 6分20.(本题满分6分)解:⎪⎩⎪⎨⎧->+≤+133453x x解不等式①得:2≤x ····················································· 2分 解不等式②得: x < 23- ······················································ 4分不等式的解集223≤<-x ·························································· 5分所以不等式组的整数解为2,1,0,1-. ······································· 6分21.(本题满分6分)(1)答案不唯一,如:摸出两个球颜色不相同(3分)(2)31 ( 6分 )22.(本题满分8分)(1)∵在等腰梯形ABCD 中∴︒=∠=∠∠=∠=60,,DCB ABC ADF BAE DC AB ......1分又∵DC AD =, ∴AB AD =; .......2分又∵CF DE =,∴DF AE =; .......3分∴ADF BAE ∆≅∆,∴BE AF =; .......4分(2)猜测︒=∠120BPF .......5分∵ADF BAE ∆≅∆,∴DAF ABE ∠=∠ .......6分 ∵BAD BAP ABE BPF ∠=∠+∠=∠ .......7分∵AD ∥BC ,∴︒=∠︒=∠︒=∠+∠120,120,180BPF BAD BAD ABC 即.......8分 23.(本题满分8分)解:(1)过B 作F AD BF 于⊥. .......1分① ②PC DAEFB在,sin ABBF BAF ABF Rt =∠∆ 中,.......2分350.140sin 1.2sin ≈︒=∠=∴BAF AB BF .......3分∴真空管上端.35.1米的距离约为到AD B .......4分(2) 在,cos ABAF BAF ABF Rt =∠∆ 中,609.140cos 1.2cos ≈︒=∠=∴BAF AB AF .......5分∵BF ⊥AD , CD ⊥AD ,有BC ∥FD ,∴四边形BFDC 是矩形,∴BF=CD,BC=FD . .......6分在,tan ADED EAD EAD Rt =∠∆ 中,844.025tan 809.1tan ≈︒=∠=∴EAD AD ED .......7分∴CE =CD-ED =1.35-0.844=0.506≈0.51∴安装铁架上垂直管CE 的长度约为0.51米. .......8分24.(本题满分10分)(1)设商场第一次购进x 套运动服,由题意得:....1分6800032000102xx-=; ........3分解这个方程,得200x =. .......4分 经检验,200x =是所列方程的根. .......5分 22200200600x x +=⨯+=.答:商场两次共购进这种运动服600套. .......6分 (2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y --+≥, .......8分解这个不等式,得200y ≥, ......9分 答:每套运动服的售价至少是200元. .......10分25.(本题满分10分)证明:(1)∵⊙O 1与⊙O 2是等圆,∴1122A O O B B O O A===························· 1分∴四边形12A O B O 是菱形. ··························· 2分 (2)∵四边形12A O B O 是菱形 ∴∠1O A B =∠2O A B·································· 3分∵CE 是⊙O 1的切线,AC 是⊙O 1的直径,∴∠A C E =∠2A O C =90° ············································································ 4分 ∴△ACE ∽△AO 2D ·································································································· 5分第25题图25°C BADEF2212D O A OE CA C==即22C E D O =····························································· 6分(3)∵四边形12A O B O 是菱形∴A C ∥2B O ∴△ACD ∽△2B O D , ························································ 8分 ∴212B O D B A DA C== ∴2A D B D =, ························································· 9分∵21A O D S ∆= ∴212OD BS ∆=······················································· 10分26.(本题满分12分)(1))3,1(),2,3(D C ; .........2分 (2)设抛物线为c bx axy ++=2, 抛物线过点),1,0()3,1(),2,3(,∴⎪⎩⎪⎨⎧=++=++=.239,3,1c b a c b a c 解得5,617,61.a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩ ........4分∴1617652++-=x xy . ........5分(3)①当点A 运动到点F 时,,1=t 当01t <≤时,如图1, ∵'O F A G F B ∠=∠, ,21tan ==∠OFOA OFA∴,215''''tan ===∠t GB FB GB GFB ∴,25't GB =...6分∴2115552224F BG t S F B G B t t '''=⨯=⨯=△; .....7分②当点C 运动到x 轴上时,2=t ,当12t <≤时,如图2,22''215,A B A B ==+=∴,55'-=t F A ∴255'-=t G A , ....8分OxyA FA 'B 'C 'D '图1GOx yA FA 'C 'D 'HG∵25't H B =,∴''1'')''2A B H G S A G B H A B =+⨯梯形(5)25255(21⨯+-=t t4525-=t ; ......9分③当点D 运动到x 轴上时,3=t ,当23t <≤时,如图3, ∵255'-=t G A ,∴25532555'tt GD -=--=,...10分∵11212A O F S =⨯⨯=△,1O A =,A O F G D H '△∽△2G D H A O F S G D S O A ''⎛⎫∴= ⎪⎝⎭△△, 23552G D Ht S '⎛⎫-∴= ⎪ ⎪⎝⎭△, ......11分 ∴22'''3555)2G A B C H tS -=-五边形()(=425215452-+-t t . .........12分OxA F A 'B 'C 'D '图3HGy。