单端反激开关电源
- 格式:pdf
- 大小:141.30 KB
- 文档页数:2
单端反激式变换器总结一、引言单端反激式变换器是一种常见的电源电路,广泛应用于家用电器、通信设备、计算机等领域。
本文将对单端反激式变换器进行详细的总结。
二、单端反激式变换器原理1. 变换器结构单端反激式变换器由输入滤波电容、开关管、变压器和输出滤波电容等组成。
2. 工作原理当开关管导通时,输入电压施加在变压器的一侧,输出电压为零;当开关管截止时,变压器另一侧的磁场崩塌,产生高电压并输出到负载上。
通过控制开关管的导通和截止时间,可以实现输出稳定的直流电压。
三、单端反激式变换器特点1. 简单可靠单端反激式变换器结构简单,易于实现,并且具有较高的可靠性。
2. 输出稳定性好通过控制开关管的导通和截止时间,可以实现输出稳定的直流电压。
3. 效率高由于没有二次侧谐振环节,在工作频率较低时具有较高的效率。
4. 适用范围广单端反激式变换器适用于各种负载类型,具有广泛的应用领域。
四、单端反激式变换器设计要点1. 选取合适的变压器变压器是单端反激式变换器中最重要的元件之一,需要根据输入电压、输出电压和负载等参数来选择合适的变压器。
2. 控制开关管的导通和截止时间通过控制开关管的导通和截止时间,可以实现输出稳定的直流电压。
需要根据具体情况来确定导通和截止时间。
3. 合理设计滤波电容滤波电容对输出稳定性有很大影响,需要根据负载情况来合理设计滤波电容。
五、单端反激式变换器应用案例1. 家用电器单端反激式变换器广泛应用于家用电器中,如空调、冰箱、洗衣机等。
2. 通信设备单端反激式变换器在通信设备中也有应用,如交换机、路由器等。
3. 计算机单端反激式变换器还被广泛应用于计算机领域,如电源模块、显示器等。
六、总结单端反激式变换器是一种简单可靠、输出稳定性好、效率高、适用范围广的电源电路。
在家用电器、通信设备、计算机等领域有着广泛的应用。
在设计单端反激式变换器时需要注意选择合适的变压器、控制开关管的导通和截止时间以及合理设计滤波电容等要点。
单端反激式变换器总结一、什么是单端反激式变换器单端反激式变换器是一种常见的功率电子转换器,用于将直流电源转换为交流电源。
它由一个开关管、一个变压器和一个输出滤波电容组成。
单端反激式变换器的特点是具有简单的电路结构、低成本、高效率等优势。
二、单端反激式变换器原理单端反激式变换器的工作原理如下:1.开关管导通:当开关管导通时,直流电源通过变压器的一段输入,储存在变压器中。
2.开关管关断:当开关管关断时,变压器中储存的电能通过互感作用传递给输出负载。
3.输出滤波:通过输出滤波电容对输出信号进行滤波,得到所需的交流电源。
三、单端反激式变换器的优势和应用单端反激式变换器具有以下优势:1.低成本:由于电路结构简单,所需元器件较少,降低了制造成本。
2.高效率:在正常工作情况下,能量的传输效率较高,能够有效地转换电源。
3.功率密度高:相比其他转换器,单端反激式变换器具有更高的功率密度。
单端反激式变换器在电子设备中有广泛的应用,如电源适配器、电子变压器等。
四、单端反激式变换器的设计要点设计一个稳定工作的单端反激式变换器需要考虑以下要点:1.开关管的选取:选择合适的开关管能够提高整个电路的效率和可靠性。
2.变压器的设计:合理选择变压器的参数,以满足输出电压和电流的需求。
3.输出滤波电容的选取:根据负载的需求选择合适的输出滤波电容。
4.控制电路的设计:设计一个合适的控制电路,以确保开关管的正常工作。
五、单端反激式变换器的工作稳定性问题单端反激式变换器在工作过程中可能面临以下问题:1.开关管损坏:如果开关管不能正常导通或关断,会导致整个电路停止工作。
2.变压器失谐:如果变压器参数设计不合理,可能会导致变压器失谐,进而影响电路的工作稳定性。
3.输出电压波动:由于负载变化或其他因素,可能会导致输出电压出现波动,影响设备的正常工作。
为了解决这些问题,需要结合实际情况进行合理的电路设计和参数选择。
六、常见的单端反激式变换器故障及排除方法在实际应用中,常见的故障包括开关管损坏、变压器短路等。
单端反激式开关电源变压器设计首先是参数的确定。
设计单端反激式开关电源变压器时,需要确定其输入和输出电压、输出功率、工作频率等参数。
根据实际应用需求和性能要求,确定合理的参数是设计的第一步。
接下来是线圈绕制。
根据确定的参数,计算出合适的线圈匝数和绕线方法。
线圈绕制时,需要注意绕线的密度均匀性和固定性,以避免绕线过松或过紧,影响线圈的性能和寿命。
然后是磁芯选择和计算。
磁芯的选择与设计密切相关,它直接影响到电源变压器的效率、功率损耗和体积等。
根据输入输出电压和功率的关系,可以选择适当的磁芯材料和规格。
同时,需要根据工作频率和磁芯的特性计算线圈的匝数和绕制方法。
绝缘和耐压设计也是单端反激式开关电源变压器设计的重要环节。
电源变压器在工作时会有高电压和高频的信号通过,因此需要进行良好的绝缘和耐压设计。
合理的绝缘材料和绝缘结构可以保证电源变压器的安全可靠性。
在设计过程中,还需要考虑电源变压器的散热和冷却。
电源变压器在工作时会产生一定的热量,需要通过散热和冷却措施来保持合适的温度。
合适的散热风扇和散热片等可以有效地降低电源变压器的温度,提高其效率和寿命。
最后,还需要进行电磁兼容性设计。
电源变压器在工作时会产生一些电磁干扰信号,需要采取适当的电磁屏蔽和滤波措施,以防止其对周围电子设备和系统产生干扰。
综上所述,设计单端反激式开关电源变压器是一个比较复杂的工程,需要综合考虑各个方面的问题,并进行合理的计算和设计。
只有在合理选择参数、绕制线圈、选择磁芯、考虑绝缘和耐压、散热和冷却、以及电磁兼容性等问题时进行综合考虑和设计,才能设计出高效、稳定、可靠的单端反激式开关电源变压器。
基于UC3842的开关电源设计摘要电源是实现电能变换和功率传递的主要设备。
在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电影产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。
这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。
开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。
UC3842是一种性能优良的电流控制型脉宽调制器。
假如由于某种原因使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空比D,使斩波后的平均值电压下降,从而达到稳压目的,反之亦然。
UC3842可以直接驱动MOS管、IGBT等,适合于制作20~80W小功率开关电源。
由于器件设计巧妙,由主电源电压直接启动,构成电路所需元件少,非常符合电路设计中“简洁至上”的原则。
设计思路,并附有详细的电路图。
关键词:开关电源,uc3842,脉宽调制,功率,IGBT前言 (1)第1章开关电源的简介 (2)1.1 开关电源概述 (2)1.1.1 开关电源的工作原理 (2)1.1.2 开关电源的组成 (3)1.1.3 开关电源的特点 (4)1.2 开关器件 (4)1.2.1开关器件的特征 (4)1.2.2器件TL431. (5)1.2.3电力二极管 (5)1.2.4光耦PC817 (6)1.2.5电力场效应晶体管MOSFET (7)第2章主要开关变换电路 (8)2.1 滤波电路 (8)2.2 反馈电路 (8)2.2.1电流反馈电路 (8)2.2.2电压反馈电路 (9)2.3电压保护电路 (9)第3章UC3842 .................................................. 错误!未定义书签。
3.1 UC3842简介 (10)3.1.1 UC3842的引脚及其功能 (11)3.1.2 UC3842的内部结构 (11)3.1.3 UC3842的使用特点 (13)3.2 UC3842的典型应用电路 (14)3.2.1反激式开关电源 (14)3.2.2 UC3842控制的同步整流电路 (15)3.2.3升压型开关电源 (17)第4章利用UC3842设计小功率电源 (18)4.1 电源设计指标 (18)4.1.1元件的选择 (19)4.1.2电路结构的选择 (20)4.2 启动电路 (21)4.3 PWM脉冲控制驱动电路 (22)4.4 直流输出与反馈电路 (23)4.5 总体电路图分析 (24)结论 (24)参考文献 ............................................................. 错误!未定义书签。
第2章 单端式开关电源实际电路
163║
图2-15 给功率开关变压器铁芯增加气隙的结构图(续)
6.功率开关变压器初级绕组匝数N p 的计算
功率开关变压器铁芯气隙的宽度L g 计算出来以后,
可以利用下式计算功率开关变压器初级绕组匝数N p :
4
max g p p 100.4πB L N I ⨯= (2-41)
将式(2-39)代入上式中,还可以得到功率开关变压器初级绕组匝数N p 的另外一个计算公式为
()4
p p p e max 10L I N A B ⨯= (2-42)
采用式(2-41)和式(2-42)都可以计算出功率开关变压器初级绕组的匝数N p ,结果是相同的。
因此,在设计实际应用电路时可根据已知条件进行灵活运用。
7.功率开关变压器次级绕组匝数N s 的计算
对于单端式反激型开关电源电路来说,一般功率开关变压器的次级绕组不只一组,有几路输出电压就有几组次级绕组,而每一组次级绕组的匝数N s 可由下式来计算:
()()
p o1d max s1i min max 1N U V D N U D +-= (2-43)
式中i min i 1.420U U =-,单位为V ;V d 为输出快速整流二极管的正向压降,单位为V ;U o1为第一路直流输出电压,单位为V 。
2.3.4 单端自激式反激型开关电源的启动电路
在开关电源电路的设计和调试中,单端自激式反激型开关电源中的启动电路常常被人们所忽视,这样就导致了设计出来的开关电源电路在实际调试或实际工作中常常出现不能起振或工作不可靠的问题。
因此,在这里我们将对单端自激式反激型开关电源中的启动电路进行较详细的分析。
目录摘要 (2)第一章开关电源概述 (1)1.1 开关电源的定义与分类 (1)1.2 开关电源的基本工作原理与应用 (1)1.2.1 开关电源的基本工作原理 (1)1.2.2 开关电源的应用 (2)1.3 开关电源待解决的问题及发展趋势 (5)1.3.1 开关电源待解决的问题 (5)1.3.2 开关电源的发展趋势 (5)第二章设计方案比较与选择 (7)2.1 本课题选题意义 (7)2.2 方案的设计要求 (7)2.3 选取的设计方案 (8)第三章反激式高频开关电源系统的设计 (9)3.1 高频开关电源系统参数及主电路原理图 (9)3.2 单端反激式高频变压器的设计 (10)3.2.1 高频变压器设计考虑的问题 (10)3.2.2 单端反激式变压器设计 (11)3.3 高频开关电源控制电路的设计 (15)3.3.1 PWM 集成控制器的工作原理与比较 (15)3.3.2 UC3842工作原理 (17)3.3.3 UC3842的使用特点 (18)3.4 反馈电路及保护电路的设计 (19)3.4.1 过压、欠压保护电路及反馈 (19)3.4.2 过流保护电路及反馈 (20)3.5变压器设计中注意事项 (21)第四章总结 (22)参考文献 (23)致谢.............................................................................................................. 错误!未定义书签。
摘要开关电源的高频化电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前地小型化,并使开关电源进入更广泛的领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
另外开关电源的发展与应用在节约资源及保护环境方面都具有深远的意义。
为此本论文以反激式高频开关电源为设计方向而展开,对高频变压器的认知及所注意的问题,其中包括磁芯损耗、绕组损耗、温升以及磁芯要求。
反激式开关电源工作模式及原理简介【大比特导读】反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。
“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。
本文主要讲述的是反激式开关电源的原理。
1.反激式开关电源原理--简介反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。
“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。
与之相对的是“正激”式开关电源,当输入为高电平时输出线路中串联的电感为充电状态,相反当输入为高电平时输出线路中的串联的电感为放电状态,以此驱动负载。
2.反激式开关电源原理--工作模式反激式开关电源的电路结构比较简单,在小功率电路中应用非常广泛,在15kw光伏逆变器中用到的两个电源都是这种结构。
反激式开关电源有三种工作模式:连续模式、非连续模式以及临界模式。
在非连续工作模式中,功率管零电流开通,开通损耗小,而副边二极管零电流关断,可以不考虑反向恢复问题,对EMC会有一些好处。
3.反激式开关电源原理接下来小编会以单端反激式开关电源为例介绍其原理。
单端反激开关电源采用的是稳定性很好的双环路反馈的控制系统,所以它可以通过开关电源的PWM迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和低级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。
这种反馈控制电路的最大特点是:在输进电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。
电源网独家攻略单端反激开关电源变压器设计单端反激开关电源变压器设计单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。
下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。
1、已知的参数这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压Vin、输出电压Vout、每路输出的功率Pout、效率η、开关频率fs(或周期T)、线路主开关管的耐压Vmos。
2、计算在反激变换器中,副边反射电压即反激电压Vf与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。
反激电压由下式确定:反激电压和输出电压的关系由原、副边的匝比确定。
所以确定了反激电压之后,就可以确定原、副边的匝比了。
另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式:设在最大占空比时,当开关管开通时,原边电流为Ip1,当开关管关断时,原边电流上升到Ip2。
若Ip1为0,则说明变换器工作于断续模式,否则工作于连续模式。
由能量守恒,我们有下式:一般连续模式设计,我们令这样就可以求出变换器的原边电流,由此可以得到原边电感量:对于连续模式,;对于断续模式,。
可由法求出所要铁芯:在上式中, Aw为磁芯窗口面积,单位为cm2Ae为磁芯截面积,单位为cm2Lp为原边电感量,单位为HIp2为原边峰值电流,单位为ABw为磁芯工作磁感应强度,单位为TK0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4Kj为电流密度系数,一般取395A/cm2根据求得的AwAe值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感。
有了磁芯就可以求出原边的匝数。
根据下式:再根据原、副边的匝比关系可以求出副边的匝数。
有时求的匝数不是整数,这时应该调整某些参数,使原、副边的匝数合适。
单端反激开关电源工作原理
单端反激开关电源工作原理如下:
1. 输入变压器:交流电源首先经过输入变压器,将输入的交流电源转换为所需要的较高或较低的交流电压。
2. 整流电路:经过输入变压器的交流电被整流电路转换为脉冲状的直流电。
3. 滤波电路:经过整流后得到的直流电,经过滤波电路使电压变得更加平滑稳定。
4. 开关电路:滤波后得到的直流电经过开关电路,由开关芯片控制开关管的导通和截止,产生一系列短暂的高频脉冲。
5. 变压器:开关电路产生的高频脉冲信号经过变压器,通过变压器的变比关系将电压转换为所需要的输出电压。
6. 输出滤波:经过变压器转换后得到输出电压,再经过输出滤波电路,进一步平滑和稳定输出电压。
7. 输出电路:最后将输出电压提供给负载进行使用,保证输出电流的稳定性和质量。
以上就是单端反激开关电源的工作原理,通过交流输入变压器、整流电路、滤波电路、开关电路、变压器、输出滤波、输出电路等组成,完成从输入交流电源到输出直流电压的转换。
一步一步精通单端反激式开关电源设计————————————————————————————————作者:————————————————————————————————日期:一步一步精通单端反激式开关电源设计目录■系统应用需求 (5)■步骤1_确定应用需求 (5)■步骤2_根据应用需求选择反馈电路和偏置电压VB (6)■步骤3_确定最小和最大直流输入电压VMIN和VMAX,并基于输入电压和PO选择输入存储电容CIN的容量 (8)3.1、选择输入存储电容CIN的容量 (8)3.2、确定最小和最大直流输入电压VMIN和VMAX (11)■步骤4_输入整流桥的选择 (11)■步骤5_确定发射的输出电压VOR以及钳位稳压管电压VCLO (13)■步骤6_对应相应的工作模式及电流波形设定电流波形参数KP:当KP≤1时,KP=KRP;当KP≥1时,KP=KDP (16)■步骤7_根据VMIN和VOR确定DMAX (18)■步骤8_计算初级峰值电流IP、输入平均电流IAVG和初级RMS电流IRMS (18)■步骤9_基于AC输入电压,VO、PO以及效率选定MOS管芯片 (20)■步骤10_设定外部限流点降低的ILIMIT降低因数KI (20)■步骤11_通过IP和ILIMIT的比较验证MOS芯片选择的正确性 (20)■步骤12_计算功率开关管热阻选择散热片验证MOS芯片选择的正确性 (20)■步骤13_计算初级电感量LP (21)■步骤14_选择磁芯和骨架,再从磁芯和骨架的数据手册中得到,,和BW的参考值 (22)■步骤15_设定初级绕组的层数L以及次级绕组圈数(可能需要经过迭代的过程) (29)■步骤16_计算次级绕组圈数以及偏置绕组圈数 (29)■步骤17_确定初级绕组线径参数OD、DIA、AWG (29)■步骤18_步骤23-检查。
如果有必要可以通过改变L、或磁芯/骨架的方法对其进行迭代,知道满足规定的范围 (30)■步骤24 –确认4200高斯。
目录一、单端反激式开关电源设计 (3)1.电路参数设计及元器件选取 (3)2.电路拓扑结构 (5)3.负载输出波形 (5)二、部分单端反激式开关电源EMI产生原因及现象 (5)1.MOS管动作时产生的EMI (6)2.二级管动作时产生的EMI (8)三、部分单端反激式开关电源EMI抑制措施分析 (9)1.减缓开关管动作(上升沿、下降沿) (9)2.减小干扰源的大小(对变压器的漏感Le的处理) (13)3.开关管加RCD缓冲吸收电路 (14)4.二级管加RC吸收电路 (18)5.整体效果比较 (21)6.抖频消除Mos管两端电压尖峰 (22)四、EMI电源滤波器的设计 (24)1.电源设备中EMI滤波器的作用 (24)2.EMI干扰类型 (26)3.EMI滤波器的基本结构 (26)4.EMI滤波器的设计原则 (27)5.EMI滤波器结构设计 (28)6.共模和差模扼流圈磁芯和电感参数设计 (28)7.X、Y电容的选取 (29)8.EMI滤波器的正确安装 (30)五、EMI电源滤波器插入损耗测试 (30)1.T型低通滤波器 (30)2.π型低通滤波器 (32)3.实际电容滤波器 (34)4.实际电感滤波器 (35)5.三端电容器 (36)6.大容量电容与小容量电容并联对EMI插入损耗波形分析 (39)六、设计过程中遇到的问题及解决方案 (40)七、设计过程的收获与心得体会 (40)八、参考资料 (41)一、单端反激式开关电源设计1.电路参数设计及元器件选取:36V(1)输入直流电压Vin:12V(2)输出直流电压Vo(3)输出电流I:1.2A(4)电容C:300uF(5)电阻R:10Ω(6)PMOS管:图1.PMOS管参数(7)开关管频率f:50khz(8)占空比D=0.4PMOS管驱动电压参数图2.PMOS管驱动电压参数(9)变压器参数设计(漏感系数K=0.98)由V o V in =N PN S·D1−D得N PN S=2由U P=NU SN=N P N SU P=L P d ip d tU S=M d ip d tM2=L p L s 得L P L S =N P2N S2=4图3.线性变压器参数设计(10)二极管:ues7042.电路拓扑结构图4.单端反激电路拓扑图3.负载输出波形图5.单端反激电路负载输出波形二、部分单端反激式开关电源EMI产生原因及现象功率器件高频开通和关断的操作导致电压和电流快速的变化是产生EMI的主要原因。
单端反激式开关电源高频变压器设计
设计单端反激式开关电源高频变压器需要考虑以下几个方面:
1.功率需求:根据要供电设备的功率需求确定变压器的功率等级。
功
率等级的选择可以根据所需的输出电压和电流来确定。
2.材料选择:变压器的高频特性对材料的选择提出了更高的要求。
一
般来说,变压器的磁芯可以选择铁氧体材料,而线圈通常采用绝缘导线或
绝缘线圈。
3.匝数计算:根据所需的变比和功率计算变压器的匝数。
变压器的变
比决定了输入电压与输出电压之间的关系。
4.磁芯设计:根据功率需求和工作频率选择合适的磁芯。
对于高性能
的单端反激式开关电源变压器,常用的磁芯材料是高磁导率的铁氧体。
磁
芯的选择应该考虑到磁芯的饱和磁通密度和磁滞损耗。
5.线圈设计:线圈的设计需要考虑到功率损耗和电流密度。
线圈的匝
数和截面积应该经过适当的计算,以确保所需的功率传输和高频特性。
6.耦合系数:在单端反激式开关电源高频变压器设计中,耦合系数是
一个非常重要的参数。
耦合系数的选择影响变压器传递功率的能力和工作
效率。
7.绝缘层设计:绝缘层是为了保护线圈和磁芯,防止绝缘电流的泄漏。
绝缘层的设计需要考虑到工作频率、工作温度和绝缘强度。
8.浪涌保护:在设计变压器时,还需要考虑到浪涌保护的问题。
使用
合适的浪涌抑制器可以有效地保护变压器免受浪涌电流的破坏。
以上是单端反激式开关电源高频变压器设计的一些关键方面。
在实际设计中,还需要进行详细的计算和仿真,以确保设计符合要求并能够实现高效率和高性能的电源变压器。
多路单端反激式开关电源设计多路单端反激式开关电源设计随着电子产品的快速发展,各种电子设备受到越来越多的应用,尤其是智能手机、平板电脑、笔记本电脑等常见的移动电子产品,如何让这些设备获得更高质量、更可靠和更持久的电力支持,已经成为人们关注的焦点。
而多路单端反激式开关电源,就是一种为解决这一问题而设计的电源。
多路单端反激式开关电源设计是一种能够满足多种电子设备不同要求的电源。
但是,这种电源的设计涉及到许多技巧,需要考虑电路的效率、功率密度、EMI麻烦、稳定性等多方面因素。
在设计过程中,需要严格遵守一定的设计规范和标准,以保证电源质量的整体可靠性。
在设计多路单端反激式开关电源时,首先需要清楚电源的工作环境和工作要求。
根据所需的输出电压和负载电流来选择合适的主开关(MOSFET)和变压器,以确保电源的稳定性和效率。
同时,电源控制芯片的选择也是十分重要的,各种芯片的特点各不相同,在设计中需要结合实际情况选择合适的芯片。
在设计时,还需要注意电源的保护机制,如过电压保护、过流保护、温度保护等,以避免意外损坏电源和连接的设备。
在多路单端反激式开关电源设计中,EMI问题也是一个需要注意的方面。
通常,EMI问题包括谐波噪音、辐射和传导干扰等。
为了减少EMI干扰,需要采用合适的滤波器和避免地线回路短路等问题。
另外,在电路板的设计中,也需要注意板布线和电流环的设计,以保证电流的流动趋势合理,减少电流环的打开和干扰。
总之,多路单端反激式开关电源设计是一项复杂的工作。
它需要严格的工艺流程、经验丰富的设计师和合适的工具支持。
在实际的应用中,电源质量的好坏直接关系到设备的稳定性和寿命。
因此,在设计多路单端反激式开关电源时,需要考虑全面、严谨、规范和科学的设计,以达到所需的电力质量支持。
本文由【】搜集整理。
免费提供海量教学资料、行业资料、范文模板、应用文书、考试学习和社会经济等word文档第二节TOPSwitch组成单端反激式开关电源的设计流程图TOPSwitch是内含高压功率MOSFET开关管的单片复合IC器件,它包含所有的模拟和数字控制电路,能完成隔离变压、调整稳压、自动保护等开关电源需要的全部功能。
由于IC 外部元器件很少,因此它能大为简化电源的设计。
又因它的开关频率高达100KHz,从而能V时明显缩小电源变压器的尺寸,并且允许使用更小的储能元件。
当电网电压为85-265ACV时,输出功率则达100W。
其输出功率功率可达50W,当电网电压为195-265AC设计一台单端反激式离线开关电源,涉及到电气工程的许多方面:模拟电路和数字电路的结构,双极管和MOS功率管器件的特征,磁性材料的考虑,热温升的散发,过流和过压的安全防护,控制回路的稳定性能等。
这就提出了一个巨大的挑战:它的设计涉及到需要综合协调的许多可变因素。
正是由于TOPSwitch的高度集成化,才使得这项设计任务被大大地简化。
因为它有效的缩减了设计变数项目,并且建立了IC内部回路的稳定性,所以发展成为一种简单的逐步设计方法,使之容易遵循参照,并指引读者从TOPSwitch的设计流程图中,快速的得到较满意的结果。
一台开关电源的设计,本质上是一件把许多变数调节到最佳值的反复过程。
它的设计方法大体上可有下述三部分:一是完整的设计流程图,而是简明扼要的设计步骤,三是深化的数据信息处理。
在构思阶段的流程图,是做成一个框图来提供全局的概貌,并指出完整的设计步骤。
该逐步设计程序是设计方法的一种简化模式,在执行程序阶段,他自始至终指导读者如何按给定的电源系统指标要求和规范,运用经验规则,查阅表格和简化的图示项目,来完成所需的TOPSwitch反激式电源的设计在优化最佳数据和信息的过程中,可利用关键的基本工作数据作为设计指南,例如一些方程式和导向图标等。
多路输出单端反激式开关电源设计
1.确定输出电压和电流要求:首先要确定每个输出端口所需的电压和
电流。
根据实际需求和应用场景确定输出要求。
2.选择开关电源IC:根据多路输出和高效能的要求,选择合适的开
关电源IC。
开关电源IC能够实现高效能和多路输出的设计。
根据输出要
求选择合适的IC。
3.设计适配器电路:根据所选的开关电源IC,设计适配器电路。
适
配器电路是将输入电压转换为适合开关电源IC的电压。
适配器电路通常
包括整流、滤波和调压等部分。
4.设计反激式变换器:反激式变换器是多路输出单端反激式开关电源
的核心部分。
反激式变换器能够将适配器电路输出的电压进行变换和调节,得到不同的输出电压和电流。
根据输出要求设计合适的反激式变换器。
5.设计输出电路:根据每个输出端口的电压和电流要求,设计合适的
输出电路。
输出电路通常包括滤波、调压和过载保护等部分。
6.进行仿真和优化:设计完成后,进行电路仿真和优化。
通过仿真可
以验证电路的正常运行和性能是否满足要求。
根据仿真结果进行优化和调整。
7.制作电路原型并测试:将设计的电路制作成原型,并进行测试。
测
试包括输入电压范围、输出电压和电流精度、效率和稳定性等方面的测试。
总结:。
单端反激式开关稳压电源与推挽、全桥、半桥双端变换的开关稳压电源的根本区别在于高频变压器的磁心仅工作在磁滞回线的一侧(第一象限)。
典型的单端反激变换式开关稳压电源的原理图如图所示。
所谓单端,即指转换电路的磁心仅工作在其磁滞回线的一侧。
所谓反激,系指当晶体管导通时,在初级电感线圈中储存能量,当晶体管截止时,初级线圈中储存的能量再通过次级线圈释放给负载。
当开关管VT1被控制脉冲激励而导通时,输入电压Ui便施加到高频变压器T1的原边绕组N1上。
由于变压器T1副边的整流二极管VD反接,因此副边绕组N2没有电流流过;当VT1截止时,绕组N2上的电压极性颠倒,VD被正偏,VTl导通期间储存在T1中的能量便通过VD负载释放。
由于这种电路在开关管导通期间储存能量,因此在开关管截止期间才向负载传递能量。
高频变压器在工作中除了起变压作用外,还相当于一个储能用的电感,因此也有人称之为“电感储能式变换器”或“电感变换器”。
单端反激式开关电源电路是成本最低的一种。
它可以达到输入与输出部分隔离,还可以同时输出几路不同的电压,有较好的电压调整率。
但其输出纹波电压较大,负载调整率较差,适用于相对固定的负载。
在单端反激式开关电源电路中,开关三极管承受的最大反峰值电压是线路工作电压峰值的2倍以上。
为了降低开关管的耐压,需要对集射电压进行限幅,因此常用的单端反激式开关电源有三种形式。
其实看正激还是反激很简单在电路上的区别主要有两点:1.看次级何时导通--次级一般接有二极管之类的单向导通器件, 在初级通时,次级可以导通,是正激的表现;在初级导通时,次级不导通,则时反激的表现2.看次级有没有为反激准备的回路--反激变换器在晶体管关闭时发生能量转换,由磁能变为电能,所以,一定要有电流流动的回路,没有回路则不可能是反激.反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。
反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。
单端反激式开关电源的工作原理与设计•电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。
开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。
•UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。
所谓电流型脉宽调制器是按反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。
•1 电路设计和原理1.1 UC3842工作原理•UC3842是单电源供电,带电流正向补偿,单路调制输出的集成芯片,其内部组成框图如图l所示。
其中脚1外接阻容元件,用来补偿误差放大器的频率特性。
脚2是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压进行比较,产生误差电压。
脚3是电流检测输入端,与电阻配合,构成过流保护电路。
脚4外接锯齿波振荡器外部定时电阻与定时电容,决定振荡频率,基准电压VREF为0.5V。
输出电压将决定变压器的变压比。
由图1可见,它主要包括高频振荡、误差比较、欠压锁定、电流取样比较、脉宽调制锁存等功能电路。
UC3842主要用于高频中小容量开关电源,用它构成的传统离线式反激变换器电路在驱动隔离输出的单端开关时,通常将误差比较器的反向输入端通过反馈绕组经电阻分压得到的信号与内部2.5V基准进行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压进行比较,从而控制PWM序列的占空比,达到电路稳定的目的。
网博电源网 乞力马扎罗的雪
单端反激开关电源变压器设计
单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工 作。
下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。
1、 已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定, 包括: 输入电压 Vin、 输出电压 Vout、 每路输出的功率 Pout、效率η、开关频率 fs(或周期 T)、线路主开关管的耐压 Vmos。
2、 计算 在反激变换器中,副边反射电压即反激电压 Vf 与输入电压之和不能高过主开关管的耐压, 同时还要留有一定的裕量(此处假设为 150V)。
反激电压由下式确定: Vf=VMos-VinDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。
所以确定了反激电压之后,就可以确定 原、副边的匝比了。
Np/Ns=Vf/Vout 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下, 变压器的磁平衡,可以有下式: VinDCMin•DMax=Vf•(1-DMax) 设在最大占空比时,当开关管开通时,原边电流为 Ip1,当开关管关断时,原边电流上升到 Ip2。
若 Ip1 为 0,则说明变换器工作于断续模式,否则工作于连续模式。
由能量守恒,我们 有下式: 1/2•(Ip1+Ip2)•DMax•VinDCMin=Pout/η 一般连续模式设计,我们令 Ip2=3Ip1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: Lp= DMax•VinDCMin/fs•ΔIp 对于连续模式,ΔIp=Ip2-Ip1=2Ip1;对于断续模式,ΔIp=Ip2 。
可由 AwAe 法求出所要铁芯: AwAe=(Lp•Ip22•104/Bw•K0•Kj)1.14 Aw 为磁芯窗口面积,单位为 cm2 Ae 为磁芯截面积,单位为 cm2 Lp 为原边电感量,单位为 H Ip2 为原边峰值电流,单位为 A Bw 为磁芯工作磁感应强度,单位为 T K0 为窗口有效使用系数,根据安规的要求和输出路数决定,一般为 0.2~0.4 Kj 为电流密度系数,一般取 395A/cm2 根据求得的 AwAe 值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯 在上式中,
网博电源网 乞力马扎罗的雪
网博电源网 乞力马扎罗的雪
的窗口有效使用系数较高,同时可以减小漏感。
有了磁芯就可以求出原边的匝数。
根据下式: Np=Lp•Ip2•104/Bw•Ae 再根据原、副边的匝比关系可以求出副边的匝数。
有时求的匝数不是整数,这时应该调整某 些参数,使原、副边的匝数合适。
为了避免磁芯饱和,我们应该在磁回路中加入一个适当的气隙,计算如下: lg=0.4π•Np2•Ae•10-8/Lp 在上式中, lg 为气隙长度,单位为 cm Np 为原边匝数, Ae 为磁芯的截面积,单位为 cm2 Lp 为原边电感量,单位为 H
至此, 单端反激开关电源变压器的主要参数设计完成。
我们应该在设计完成后核算窗口面积 是否够大、变压器的损耗和温升是否可以接受。
同时,在变压器的制作中还有一些工艺问题 需要注意。
网博电源网 乞力马扎罗的雪
。