华东师范版八年级下数学第十九章教案(全)
- 格式:doc
- 大小:2.09 MB
- 文档页数:43
第19章《全等三角形》全章教案(华东师大版初二下)尺规作图(3)doc初中数学 (1)知识技能目标1.能够利用差不多作图作出符合要求作的几何图形;2.熟练作图的规范语言.过程性目标1.构思作图思路,分解所要求作的几何图形,探究作图步骤;2.通过作图题的练习,培养学生的推理能力,规范几何语言的表达,养成良好的书写格式.情感态度目标认识到尺规作图在生产、生活中的意义,对之产生爱好.重点和难点重点:熟练地把握五种差不多作图步骤;难点:灵活运用五种差不多作图作出符合要求的几何图形.教学过程一、创设情境(1)五种差不多作图是什么?(2)学生在练习本上画出这五种差不多作图〔不写作法,保留痕迹〕.有了差不多作图那个基础,我们能够求作一些较为复杂的几何作图题.二、探究归纳两边及其夹角,求作三角形.:∠α,线段a、b.求作:△ABC,使∠A=∠α,AB=a,AC=b.作法:1.作∠MAN=∠α;2.在射线AM、AN上分不作线段AB=a,AC=b;3.连结BC.△ABC为所求作的三角形.注一样几何作图题,应有下面几个步骤:、求作、作法.比较复杂的作图题,在作图之前可依照需要作一些分析.在几何作图题中,要反复应用上节学过的差不多作图,作法中不需要重述差不多作图过程.如题1中需要先作一个角等于角,〝作法〞中只需写〝作∠MAN=∠α〞即可.三、实践应用例1画一个等腰三角形,使它的底边为a,底边上的高h.:线段a,h.求作:△ABC,使A B=AC,且BC=a,高AD=h.作法:1.作线段BC=a;2.作线段BC的垂直平分线MN,MN与BC交于点D;3.在MN上截取DA,使DA=h;4.连结AB,AC.△ABC为所求的等腰三角形.例2求作等腰直角三角形,使它的斜边等于线段.:线段a.求作:等腰直角△ABC,使∠A=90°,BC=a.作法:1.作线段BC=a;2.作线段BC的垂直平分线MN,MN与BC交于点D;3.在MN上截取DA,使DA=h;4.连结AB,AC.△ABC为所求的等腰三角形.四、交流反思一样几何作图的步骤:、求作、作法、结论、证明.在一样情形下,只需把握前四个步骤.一些几何作图差不多上有差不多作图组成的.因此,在几何作图时,能够先画草图分析,将复杂的几何作图分解为假设干个差不多作图.五、检测反馈1.画一个等腰三角形,使其腰长等于a,底边长等于b.2.画一个直角三角形,使其直角边分不等于的两条线段.3.画一个四边形,使其两组对边分不相等.。
新版华东师大版八年级数学下册《19.3正方形》教学设计.一. 教材分析华东师大版八年级数学下册《19.3正方形》是学生在学习了矩形、菱形的基础上,进一步对正方形的性质和判定进行深入探讨的一章。
本章内容主要包括正方形的定义、性质、判定以及正方形在实际生活中的应用。
通过本章的学习,使学生能够熟练掌握正方形的性质和判定方法,提高学生的空间想象能力和实际应用能力。
二. 学情分析八年级的学生已经掌握了矩形、菱形的基本性质和判定方法,对平行四边形的性质也有了一定的了解。
但学生在学习过程中,对正方形的性质和判定方法容易与矩形、菱形混淆,同时在实际应用中,如何运用正方形的性质解决问题,对学生来说还有一定的难度。
三. 教学目标1.知识与技能:使学生掌握正方形的定义、性质、判定,能够运用正方形的性质解决实际问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和实际应用能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生团结协作、积极探究的精神。
四. 教学重难点1.正方形的性质和判定方法。
2.如何运用正方形的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识正方形,激发学生的学习兴趣。
2.探究教学法:引导学生通过观察、操作、讨论等方法,自主发现正方形的性质和判定方法。
3.案例教学法:通过典型例题,讲解正方形在实际中的应用,提高学生的实际应用能力。
六. 教学准备1.教学课件:制作正方形的相关课件,包括图片、动画、例题等。
2.教学素材:准备一些正方形的实际应用案例,如正方形地砖、正方形桌面等。
3.学具:为学生准备一些正方形模型,以便于学生观察和操作。
七. 教学过程1.导入(5分钟)利用课件展示一些正方形的实际应用场景,如正方形地砖、正方形桌面等,引导学生对正方形产生兴趣,进而引出本节课的主题——正方形。
2.呈现(10分钟)介绍正方形的定义,呈现正方形的性质和判定方法,让学生初步了解正方形的相关知识。
华师大版八下数学19矩形、菱形与正方形课题菱形的判定(2)教学设计一. 教材分析华东师范大学版八年级下册数学第19课“矩形、菱形与正方形”课题二“菱形的判定”是本节课的主要内容。
这部分教材是在学生已经掌握了矩形、菱形的性质和判定方法的基础上进行教学的,通过这部分内容的学习,使学生能够掌握菱形的判定方法,并能够运用菱形的性质解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了矩形、菱形的性质和判定方法,具备了一定的几何知识基础。
但是,对于一些复杂的几何问题,学生可能还不能熟练解决。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.知识与技能:使学生掌握菱形的判定方法,能够运用菱形的性质解决一些实际问题。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:使学生掌握菱形的判定方法。
2.难点:对于一些复杂的几何问题,如何运用菱形的性质进行解决。
五. 教学方法采用问题驱动法、合作学习法、探究学习法等教学方法,引导学生通过观察、操作、猜想、验证等活动,掌握菱形的判定方法,并能够运用菱形的性质解决一些实际问题。
六. 教学准备1.教师准备:教材、PPT、黑板、粉笔等教学工具。
2.学生准备:课本、笔记本、文具等学习工具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾矩形、菱形的性质和判定方法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示菱形的判定方法,引导学生观察、思考,并总结出菱形的判定条件。
3.操练(15分钟)教师提出一些有关菱形判定的问题,让学生分组讨论、操作,通过实践活动加深对菱形判定方法的理解。
4.巩固(10分钟)教师挑选几道练习题,让学生在课堂上完成,检查学生对菱形判定方法的掌握程度。
第19章《全等三角形》全章教案(华东师大版初二下)尺规作图第1课时doc初中数学〔一〕本课目标学会线段、角的尺规画法及其和、差画法,认识角的画法的理论依据.〔二〕教学流程1.复习导入往常,我们是如何样画一条线段等于线段、画一个角等于角的?2.课前热身〔1〕在稿纸上任意画一条线段a和一个∠1,•然后用刻度尺和量角器画一条线段AB=a,∠AOB=∠1.〔2〕你的这种画法必须要先明白什么?3.合作探究〔1〕整体感知通过复习和课前热身,整体感知:尺规画法的概念,然后进一步学习线段和角的尺规画法.〔2〕四边互动互动1师:如下图,一条线段a,•假设我们手中只有圆规和一把没有刻度的直尺,你能画一条线段AB=a吗?如何样画呢?a生:〔学生讨论、交流〕能;先画一条射线AM,然后用圆规量取线段a的长,再在射线AM上截取线段AB=a/师:对!这种画法不必明白线段a的长,像如此只用圆规和没有刻度的直尺的画图,叫做尺规作图.明确尺规作图的概念;用尺规作一条线段等于线段.互动2师:〔出示投影中的咨询题〕如下图,线段a、b,用尺规作一条线段AB=a+b.试试看.ab生:生作图〔师巡视,并找出错例当堂订正〕.师:你能将你的作图过程用语言表达一下吗?生:〔学生回答后〕师出示投影,展现正确的作图过程和作法的书写.师:假设将题改为:作线段AB=a-b呢〔a>b〕?明确线段的和、差画法.互动3师:请完成第99页的〝试一试〞.师:你能讲明其中的道理吗?生:由全等三角形的识不方法〔SSS〕可知:△COD≌△C′O′D′,再由全等三角形的对应角相等可得:∠AOB=∠A′O′B′.师:对;用尺规作一个角等于角,实际上是由〔SSS 〕作一个三角形全等于的三角形,再由全等三角形的对应角相等而得出两个角相等的.那么它的作图过程中的第二步:〝以O 为圆心,以适当的长为半径画弧,交OA 于C ,交OB 于D 〞能否改成:〝任画一直线分不交OA 于C ,OB 于D 〞呢?生:能.明确 用尺规作一个角等于角.互动4师:〔出示投影咨询题〕如下图,∠AOB 、∠1〔∠AOB>∠1〕,•请以∠AOB 的边OB 为一边,作∠BOC=∠1?在你们的稿纸上任意画出这两个角,作图试试看并将结果互相交流.1AB 0师:你画出了几种情形?生:两种〔可能有些同学感到困惑,师展现投影答案,让学生明确为何有两种情形〕. 师:在你所画的图形中,∠AOC 的大小如何?生:∠AOC=∠AOB+∠1或∠AOC=∠AOB-∠1.师:专门好!这确实是角的和或差的画法.第一,两个角的一边要重合,画角的和时,一个角落在另一个角的外部,而画角的差时,一个角要落在另一个角的内部.明确 在巩固角的尺规画法的基础上,进一步把握角的和、差画法.4.达标反馈〔1〕线段AB 、CD ,如下图.求作一条线段,使它的长度等于AB+2CD .〔2〕∠AOB 、∠1〔∠AOB>∠1〕,如下图. 1A B①以OA 为一边求作∠BOC=∠1;②假设∠AOB=80°,∠1=30°,求∠AOC 的度数.〔3〕假设线段AB=7cm ,点C 在直线AB 上,且AC=5cm ,求线段BC 的长.【答案】 〔1〕略 〔2〕①略 ②50° 〔3〕2cm 或12cm5.学习小结〔1〕内容总结①尺规作图的概念;②用尺规作一条线段等于线段及线段的和、差画法;③作一个角等于角及角的和、差画法.〔2〕方法归纳:线段与角的和、差画法,•实际上是生活中一些实例的反映〔师能够演示两根木棒的加、减〕.〔三〕拓展延伸1.链接生活你是如何样与你的爸爸比身高的?你爸爸比你的身高高多少呢?2.巩固练习①线段AB、CD如下图,画一条线段,使其等于AB-2CD.C②∠A、∠B如下图,画一个角,使其等于∠A-∠2B.A B③线段AB、CD如下图,画一个等腰三角形,使其腰长等于AB,底边长等于BC.D【答案】略〔四〕板书设计。
八年级数学导学案班级小组姓名【学前反馈】1.矩形的性质定理1:。
2.矩形的性质定理2:。
3.矩形的判定定理1:4.矩形的判定定理2:【学习目标】1、掌握菱形性质特征,能利用性质解决有关问题;2、进一步牢固掌握菱形性质;3、知道解决菱形问题的基本思想是化为三角形的问题来解决,渗透转化思想;【自学指导】1、请同学们阅读课本110-113页,同桌交流,完成例1、例2、例3;2、理解并掌握菱形的定义、菱形的性质定理1、定理2;【自学检测】1.由一组邻边的叫菱形;2、菱形的性质定理1菱形的性质定理23、菱形的周长为16cm,一条对角线长为4cm,则另一条对角线长为____4.菱形的对角线具有的性质是()A、互相平分但不垂直B、互相平分且相等C、互相平分且垂直D、互相垂直平分且相等5.如图,菱形ABCD中,A C+BD=49,AC:BD=3:4,求菱形ABCD的周长及面积【合作探究】如图,在菱形ABCD中,∠BAD=2∠ABC,(1)求菱形各角的度数(2)图中有几个等边三角形?分别是什么?(3) 当菱形ABCD的边长为2cm,对角线AC与BD交于点O,求对角线AC、BD的长【知识梳理】菱形的性质定理1:菱形的性质定理2:【当堂检测】1.如下图菱形ABCD,对角线AC=24,BD=10,则菱形周长为__2.如图,在菱形ABCD中,对角线相交于点O,AC=16cm ,BD=18cm,则菱形的面积是____(1题图)(2题图)3.如图,在菱形ABCD中,E、F分别是BC、CD边上的点,AE=EF,∠B=∠EAF=60∠BAE =18°,求∠CEF的度数【课后反思】。
华东师大版数学八年级下册第十九章《矩形的性质》教学设计【教学目标】知识与技能:探索并证明矩形的性质定理:矩形的四个角都是直角,矩形的对角线相等。
数学思考:在研究矩形性质的过程中进一步发展空间观念,发展合情推理能力和演绎推理能力。
问题解决:初步体会在具体情境中从数学角度发现问题、提出问题。
情感态度:感受成功的快乐,体验独自克服困难、解决数学问题的过程。
【学情分析】矩形的性质是在学生学习平行四边形的定义和性质基础上进一步研究的几何图形。
学生在此前学习也积累了一些的学习方法。
但在自主探究中缺乏一定的经验。
【教学重点】探索矩形的性质定理及应用。
【教学难点】合理利用性质定理解决实际问题。
【教学方法】采用启发式教学,引导学生动手操作、观察、猜想、验证结论。
【学习方法】动手实践、合作交流。
【课前准备】平行四边形教具、课件、学案、微课视频【教学过程】一、复习回顾1、什么是平行四边形?平行四边形有哪些性质?(引导学生从边、角、对角线、对称性四个方面进行归纳性质。
)【设计意图】通过复习回顾,及时了解学生对平行四边形的相关知识的掌握程度。
同时引导学生从边、角、对角线、对称性四个方面进行归纳,为矩形的性质探究作好铺垫,也为学生在研究同类几何问题积累一定的数学经验。
二、性质探究活动1、试一试:用四根木条做一个平行四边形的活动木框,将其直立在地面上并轻轻推动,你会发现什么?学生活动:动手操作,观察、思考教师活动:引导学生观察平行四边形变化过程,体验平行四边形由一般到特殊的过程。
教师重点关注:1、在这一活动中,哪些量变了?哪些没有变?2、它还是平行四边形吗?3、当改变平行四边形的内角时,使其一个内角恰好为直角,此时是什么图形?给出矩形的定义:有一个角是直角的平行四边形是矩形。
4、列举生活中矩形的实例。
【设计意图】在这一过程中体会矩形是平行四边形变化的产物,为学生理解矩形是特殊的平行四边形降低难度。
活动2、思考:在刚才的操作活动中,作为一种特殊的平行四边形,矩形除具有平行四边形的一般性质外,它还具有哪些特殊的性质呢?它与四边形、平行四边形又是什么关系呢?(引导学生从边、角、对角线、对称性四个方面进行归纳性质。
第19章矩形、菱形与正方形
教材简析
本章的内容包括:矩形的性质与判定;菱形的性质与判定;正方形的性质与判定.
本章是在学习了平行四边形的基础上研究特殊的平行四边形.通过平行四边形角、边的特殊化,研究菱形、矩形和正方形等特殊的平行四边形,认识这些概念之间的联系与区别,明确它们的内涵与外延;探索并证明平行四边形、矩形、菱形、正方形的有关性质定理和判定定理,进一步明确命题及其逆命题的关系,不断发展学生的合情推理和演绎推理能力.菱形、矩形、正方形都是特殊的平行四边形,它们的性质定理和判定定理的研究方法,与平行四边形性质定理和判定定理的研究方法一脉相承.
特殊平行四边形一章在中考中出题的频率较高,主要考查菱形、矩形、正方形的定义、性质和判定,以及利用性质和判定进行相关计算和证明,各种题型均有涉及.近几年,中考中又出现了以特殊平行四边形为背景的开放题、应用题、阅读理解题、学科间综合题、动点问题、折叠问题等热点题型.
教学指导
【本章重点】
矩形、菱形与正方形的性质与判断.
【本章难点】
特殊平行四边形的性质与判定定理的综合运用.
【本章思想方法】
1.体会和掌握类比的学习方法:类比平行四边形来学习矩形、菱形与正方形,注意平行四边形、矩形、菱形与正方形之间的关系.
2.掌握方程的思想方法:在一些矩形、菱形与正方形的问题中如果遇到直角三角形并要计算边长,则往往要用到勾股定理,根据勾股定理即可列方程解决问题.3.体会数形结合的思想方法:处理矩形、菱形与正方形的问题时,往往需要利用矩形、菱形与正方形的性质将边、角及对角线转化为“数”,然后利用代数的方法解决问题.课时计划
19.1矩形2课时
19.2菱形2课时
19.3正方形1课时。
华东师大版数学八年级下册教学设计《第19章矩形、菱形与正方形19.3正方形》一. 教材分析华东师大版数学八年级下册第19章矩形、菱形与正方形,本章主要介绍了矩形、菱形与正方形的性质。
19.3节正方形是本章的重点内容,通过本节的学习,使学生掌握正方形的性质,并能运用正方形的性质解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了矩形和菱形的性质,对于正方形这一概念可能较为陌生,但学生已经具备了一定的几何图形的基础知识,通过引导和讲解,学生能够理解并掌握正方形的性质。
三. 教学目标1.让学生理解正方形的性质,并能够运用正方形的性质解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.提高学生的数学应用能力和解决问题的能力。
四. 教学重难点1.正方形的性质的掌握。
2.运用正方形的性质解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过自主探究、合作交流,掌握正方形的性质,并能够运用正方形的性质解决实际问题。
六. 教学准备1.正方形的模型或者图片。
2.教学PPT或者黑板。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示正方形的模型或者图片,引导学生观察正方形的特点,引发学生对正方形性质的探究兴趣。
2.呈现(15分钟)讲解正方形的性质,包括正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等等。
通过PPT或者黑板,展示正方形的性质,让学生直观地理解正方形的性质。
3.操练(15分钟)通过一些练习题,让学生运用正方形的性质解决问题。
例如,给出一个四边形,让学生判断是否为正方形。
4.巩固(10分钟)让学生分组合作,通过实际操作,进一步巩固正方形的性质。
例如,每组发一张正方形的纸片,让学生通过折纸的方式,验证正方形的性质。
5.拓展(5分钟)引导学生思考,除了正方形,还有哪些四边形具有特殊的性质。
例如,矩形和菱形。
让学生理解正方形是矩形和菱形的一种特殊情况。
6.小结(5分钟)让学生总结本节课所学的内容,正方形的性质以及如何运用正方形的性质解决问题。
华师大版八下数学19.1矩形(2)教学设计一. 教材分析华东师范大学出版社八年级下册数学第19.1节矩形是学生在学习了平面几何基础知识后,进一步深入学习矩形的性质和应用。
本节内容主要包括矩形的定义、矩形的性质、矩形的判定等。
通过本节的学习,学生能够掌握矩形的基本性质,并能运用矩形的性质解决一些实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本知识,如点、线、面的基本概念,以及三角形的性质等。
但学生对于矩形的性质和判定可能较为陌生,因此需要教师在教学过程中引导学生通过观察、操作、思考、讨论等方式,逐步理解和掌握矩形的性质。
三. 教学目标1.理解矩形的定义,掌握矩形的基本性质。
2.学会运用矩形的性质解决实际问题。
3.培养学生的观察能力、操作能力、思考能力和合作能力。
四. 教学重难点1.矩形的性质及其运用。
2.矩形的判定方法。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识矩形,激发学生的学习兴趣。
2.直观教学法:利用图形软件,动态展示矩形的性质,帮助学生直观理解。
3.合作学习法:学生进行小组讨论,培养学生合作解决问题的能力。
4.练习法:通过适量练习,巩固学生对矩形性质的掌握。
六. 教学准备1.教学课件:制作课件,包括矩形的定义、性质、判定等内容。
2.图形软件:准备几何画图软件,用于展示矩形的性质。
3.练习题:准备一些有关矩形的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过展示生活中的一些矩形物体,如电视、书本、窗户等,引导学生认识矩形,并提问:“你们对这些矩形物体有什么了解?”。
让学生分享自己的观察和感受,从而引出矩形的概念。
2.呈现(10分钟)教师利用几何画图软件,动态展示矩形的性质,如矩形的对边平行且相等,矩形的对角相等等。
在展示过程中,引导学生观察、思考,并提问:“你们发现了矩形的哪些性质?”。
让学生分享自己的发现,教师进行总结并板书。
第19章《全等三角形》复习教案一、命题与定理1、定义:一般地,能明确指出概念含义或特征的句子,称为定义。
例如:(1)有一个角是直角的三角形,叫做直角三角形.(2)有六条边的多边形,叫做六边形.2、判断一件事情的语句叫做命题.正确的命题称为真命题,错误的命题称为假命题。
如:(1)如果两个角是对顶角,那么这两个角相等;(真命题)(2)三角形的内角和是180°;(真命题)(3)同位角相等;(假命题)(4)平行四边形的对角线相等;(假命题)(5)菱形的对角线相互垂直(真命题)3、把一个命题改写成“如果……那么……”的形式.其中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.4、从公理或其他真命题出发,用逻辑推理的方法判断是正确的命题,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.二、全等三角形1、全等三角形的概念及其性质1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2).全等三角形性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等例1.已知如图(1),≌,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______.例2.如图(2),若≌.指出这两个全等三角形的对应边;若≌,指出这两个三角形的对应角。
(图1)(图2)(图3)例3.如图(3), ≌,BC的延长线交DA于F,交DE于G, ,,求、的度数.2.全等三角形的判定方法1)、两边和夹角对应相等的两个三角形全等( SAS )例1.已知:如图,在中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG。
求证:AG=AD.例2.如图,AD与BC相交于O,OC=OD,OA=OB,求证:例3.如图,在中,AB=AC,,点D为BC上任一点,DF AB于F,DE AC于E,M是BC中点,试判断是什么形状的三角形,并证明你的结论.例4.如图,在梯形ABCD中,AD//BC,AB=CD,延长CB至E,使EB=AD,连接AE。
第十九章矩形、菱形与正方形19。
1 矩形(1)教学目标:1、知识与技能:掌握矩形的定义,知道矩形与平行四边形的关系;掌握矩形的判定定理。
2、过程与方法:通过观察、启发、总结、类比探讨等方法让学生理解并掌握矩形的判定定理。
3、情感、态度与价值观:培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力。
教学重、难点:1、重点:矩形的性质及其推论.2、难点:矩形的本质属性及性质定理的综合应用.教学过程:一、复习提问:什么叫平行四边形?它和四边形有什么区别?二、引入新课:我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形.三、讲解新课制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).矩形的性质:既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.矩形性质1:矩形的四个角都是直角.矩形性质2:矩形对角线相等.设问:如何用理论推理的方法来证明矩形的对角线相等呢?(让学生思考并提问回答,再让学生板书)讲矩形判定定理1,对角线相等的平行四边形是矩形.已知:在平行四边形ABCD中,AC=DB,求证:平行四边形ABCD是矩形。
证明:∵四边形ABCD是平行四边形,∴AB=DC又∵AC=DB,BC=CB,∴△ABC≌△DCB∴∠ABC=∠DCB B C又∵AB∥DC,∴∠ABC+∠DCB=180°∴∠ABC=90°∴四边形ABCD是矩形.例题讲解:(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)矩形判定定理1。
第19章《全等三角形》全章教案(华东师大版初二下)尺规作图(2)doc 初中数学 (1)知识技能目标1.进一步把握并熟练尺规作图的方法及一样步骤;2.介绍另两种差不多作图,明确尺规作图的意义;3.熟练把握差不多作图语言.过程性目标1.通过作图题,培养学生的作图能力、语言表达能力、逻辑思维和推理能力;2.以全等中的定理来向学生讲明作法的意义.情感态度目标1.通过尺规作图的学习,能够解决实际生活中的一些具体咨询题;2.通过作图练习,培养学生良好的书写适应,提高作图技巧.重点和难点重点:把握过一点作直线的垂线,作线段的垂直平分线,把握画一个角的角平分线; 难点:明白得作图的理论依据以及利用差不多作图画一些其他图形. 教学过程一、创设情境1.复习提咨询:(1)什么是尺规作图?差不多作图?(2)我们差不多学习了哪两种差不多作图?(3)在练习本上画出这两个差不多作图,并准确写出作法.圆规和直尺除了能够画出上述两个图形外,还能够画出哪些图形呢,这节课我们在介绍两个差不多作图.二、探究归纳差不多作图3 画垂线(一)画线段的垂直平分线.分析 线段的垂直平分线上的点到线段两端点的距离相等;反过来,到线段两端点距离相等的点在线段的垂直平分线上.因此假如能找到两个到线段两端点的距离相等的点,那么过这两点就能够画出线段的垂直平分线.:线段AB .求作:线段AB 的垂直平分线.作法:1.分不以点A 和点B 为圆心,大于21AB 的长为半径画弧,两弧相交与点M 和N .2.画直线MN .因此直线MN 确实是线段AB 的垂直平分线.注 1.假设半径等于或小于21AB ,两弧就没有交点. 2.直线MN 与线段AB 的交点,确实是AB 的中点,因此我们也能够用这种方法作线段的中点.(二)通过直线上的一点作这条直线的垂线.分析 借助画线段垂直平分线的方法.:直线L 和上一点C .求作:l 的垂线,使它通过点C .作法:1.以C 为圆心,任一线段长为半径画弧,交l 于A 、B 两点.2.分不以点A 和点B 为圆心, 大于21AB 的长为半径画弧, 两弧相交与点M . 因此直线CM 确实是所求的垂线.(三)通过直线外一点作这条直线的垂线:直线l 和直线外一点C .求作:直线l 的垂线,使它通过点C .作法:1.任意取一点K ,使它和点C 在l 的两旁.2.以C 为圆心,CK 长为半径画弧,交l 于点A 和B .3.分不以A 和B 为圆心,大于21AB 的长为半径画弧,两弧交于点M .4.作直线CM .因此直线CM 确实是所求的垂线.差不多作图4 画角平分线:∠AOB .求作:射线OC ,使∠AOC =∠BOC .作法:1.在OA 和OB 上,分不截取OD 、OE ,使OD =OE .2.分不以D 、E 为圆心,大于21DE 的长为半径画弧,在∠AOB 内,两弧交于点C . 3.作射线OC .因此OC 确实是所求的射线.三、实践应用例1 如图,过点P画∠O两边的垂线.分析角的两边可看作两条直线,点在直线外,故可归结为通过直线外一点作这条直线的垂线.解例2 把如下图的角四等分〔不写画法,保留作图痕迹〕.解四、交流反思1.通过对差不多作图的学习,把握作图的一样步骤,熟练表达一些作图的规范语句,要紧有:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连接××;(3)在××上截取××=××;(4)以点×为圆心,××为半径画弧〔或圆〕;(5)以点×为圆心,××为半径画弧,交××于点×;(6)分不以点×、点×为圆心,以××、××为半径画弧,两弧相交于点×、×五、检测反馈1.如图,画△ABC 边BC 上的高.2.如图,∠A ,试画∠B =21∠A 〔不写画法,保留作图痕迹〕.3.画出图中三角形三个内角的角平分线〔不写画法,保留作图痕迹〕.。
19.1 命题与定理第一课时命题教学目标1、知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。
会区分命题的条件和结论。
知道判断一个命题是假命题的方法。
2、过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。
重点与难点 1、重点:找出命题的条件(题设)和结论。
2、难点:命题概念的理解。
教学过程一、复习引入教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。
根据我们已学过的图形特性,试判断下列句子是否正确。
1、如果两个角是对顶角,那么这两个角相等;2、两直线平行,同位角相等;3、同旁内角相等,两直线平行;4、平行四边形的对角线相等;5、直角都相等。
二、探究新知(一)命题、真命题与假命题学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4水错误的。
像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题。
教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的。
题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式。
用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论。
例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论。
有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了。
例如,命题5可写成“如果两个角是直角,那么这两个角相等。
”(二)实例讲解1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论。
学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”。
这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”。
2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题。
(1)对顶角相等;(2)如果a> b,b> c, 那么a=c;(3)菱形的四条边都相等;(4)全等三角形的面积相等。
学生小组交流后回答,学生回答后,教师给出答案。
(1)条件:如果两个角是对顶角;结论:那么这两个角相等,这是真命题。
(2)条件:如果a> b,b> c;结论:那么a=c;这是假命题。
(3)条件:如果一个四边形是菱形;结论:那么这个四边形的四条边相等。
这是真命题。
(4)条件:如果两个三角形全等;结论:那么它们的面积相等,这是真命题。
(三)假命题的证明教师讲解:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为“举反例”。
例如,要证明命题“一个锐角与一个钝角的和等于一个平角”是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是180度即可。
三、随堂练习课本P65练习第1、2题。
四、总结1、什么叫命题?什么叫真命题?什么叫假命题?2、命题都可以写成“如果.....,那么.......”的形式。
3、要判断一个命题是假命题,只要举出一个反例就行了。
五、布置作业课本习题19.1第1题、第2题。
2.公理、定理教学目标1、知识与技能:了解命题、公理、定理的含义;理解证明的必要性。
2、过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。
重点与难点1、重点:知道什么是公理,什么是定理。
2、难点:理解证明的必要性。
教学过程一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了。
这节课,我们将探究怎样证明一个命题是真命题。
二、探究新知(一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。
我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;全等三角形的对应边、对应角相等。
在本书中我们将这些真命题均作为公理。
(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的。
从而说明证明的重要性。
1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1。
我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25。
2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a> b时,a2> b2。
这个命题是真命题吗?[答案:不正确,因为3> -5,但3 2<(-5)2]教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质。
但由前面两题我们又知道,这些方法得到的结论有时不具有一般性。
也就是说,由这些方法得到的命题可能是真命题,也可能是假命题。
教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理。
(三)例题与证明例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余。
教师板书证明过程。
教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理。
定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据。
三、随堂练习课本P66练习第1、2题。
四、课时总结1、在长期实践中总结出来为真命题的命题叫做公理。
2、用逻辑推理的方法证明它们是正确的命题叫做定理。
五、布置作业课本习题19.1第3题。
19.2.1全等三角形的识别(1)【教学目标】:1、经历探索三角形全等条件的过程,体会如何探索研究问题。
培养学生合作的精神,让学生体验分类的思想;2、使学生懂得如何提出问题,分类讨论,并为以后研究提出问题。
【重点难点】:1、难点:培养学生探索问题能力;2、重点:掌握探索问题的方法。
【教学过程】: 一、复习1、请一位同学叙述上一节所学的知识。
2、如图,△ABC ≌△AEC ,30B ∠=︒,85A C B ∠=︒,求出△AEC 各内角的度数。
3、你是如何来识别两个三角形全等的?从学生的回答中,提出:我们能不能找到一些较为简便的方法用来识别三角形的全等呢?有没有类似于相似三角形的识别方法呢? 回想一下,相似三角形有哪些识别方法?本节开始,我们就一起来研究,探讨§19.2全等三角形的识别。
二、新授要画一个三角形与老师在黑板上画的三角形ABC 全等,需要几个与边或角的大小有关的条件呢?一个条件、两个条件、三个条件……1、做一做(1)只给一个条件:一条边6BC cm =,大家画出三角形,小组交流画的三角形全等吗?一个角30B ∠=︒,大家画出三角形,小组交流画的三角形全等吗?(2)给出两个条件画三角形时,有几种可能的情况?这两个三角形一定会全等吗?分别按照下面条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等。
①三角形的一个内角为60°,一条边为3 cm ; ② 三角形的两个内角分别为30°和70°; ③ 三角形的两条边分别为3 cm 和5 cm你们在画图和同学比较过程中,你能得出什么结论?学生各抒己见后,教师归纳:你们一定会发现,如果只知道两个三角形有一个或两个对应相等的部分(边或角),那么这两个三角形不一定全等(甚至形状都不相同)。
2、议一议DCBA如果给出三个条件画三角形,你能说出有哪几种可能的情况? (有四种可能:三条边、三个角、两边一角和两角一边)对于按以上每一种可能画得三角形是否全等,以后我们一起分别逐个探讨研究,现在我们先一起来完成以下几个练习。
三、巩固练习1、如图,点O 是平行四边形ABCD 的对角线的交点,△AOB 绕O 旋转180º,可以与△___________重合,这说明△AOB ≌△___________.这两个三角形的对应边是AO 与__________,OB 与__________,BA 与__________;对应角是∠AOB 与________,∠OBA 与_________,∠BAO 与___________。
2、如图,△ABC 是等腰三角形,AD 是底边上的高,△ABD 和△ACD 全等吗?试根据等腰三角形的有关知识说明理由四、小结让学生谈收获、体会、疑惑后,教师总结:本节通过画图实践可得,对于两个三角形的三条对应边、三个对应角中,只有满足其中一个条件或两个条件相等,两个三角形不一定全等。
至于满足其中的三个条件相等的情况如何呢? 五、作业1、如图,△AOD ≌△BOC ,写出其中相等的角。
2、如图,△ABC ≌△'''A B C ,25C ∠=︒,6BC cm =,4A C cm =3、如图,△ABC ≌△DEF ,且A 和D ,B 和E 是对应顶点,则相等的边有 ,相等的角有 。
4、已知△ADC ≌△CBA ,且12∠=∠,写出相等的边、角。
5、如图,△ACD ≌△ECB ,A 、C 、B 在一条直线上,且A 和E 是一对对应顶点,如果130B C E ∠=︒,那么将△ACD 围绕C 点顺时针旋转多少度与△ECB 重合。
(第1题)(第2题)(第1题)ODCBAF(第3题)DCBA21(第4题)CBA E (第5题)DC BA19.2.2全等三角形的识别(2)【教学目标】:1、使学生掌握SAS 的内容,会运用SAS 来识别两个三角形全等;2、通过识别全等三角形的识别的学习,使学生初步认识事物之间的因果关系与相互制约关系,学习分析事物本质的方法;3、经历如何总结出全等三角形识别方法,体会如何探讨、实践、总结,培养学生的合作能力。
【重点难点】:1、难点:三角形全等的识别:SAS ;2、重点:对全等三角形的识别的理解和运用。
【教学过程】: 一、复习1、什么叫全等图形?什么叫做全等三角形?(能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形)。