∩ = 4,6 ,那么 ∩ ____________________.
{3,5}
解析 ∵A∩B={2},∴2∈A,2∈B.
∵ ∩ = 1 ,
∴1∉A,1∉B.
∵ ∩ = 4,6 ,
∴{4,6}⊈A,{4,6}⊆B.
依题意填充Venn图如图1-3-9所示,
得 ={x|x<-m}.
因为B={x|-2<x<4}, ∩ = ∅,
结合数轴(如图1-3-13)得-m≤-2,即m≥2,所以m的取值范围是{m|m≥2}.
(方法2:集合间的关系)由 ∩ = ∅,可知B⊆A.
又B={x|-2<x<4},
A={x|x+m≥0}={x|x≥-m},
1交集的概念
(1)自然语言:一般地,由所有属于集合A且属于集合B的元素组成的集合,称为
集合A与B的交集,记作A∩B(读作“A交B“).
(2)符号语言:A∩B={x|x∈A,且x∈B}.
(3)图形语言:不同关系的两个集合的交集可用 Venn 图表示如图1-3-4.
① A与B有部分公共元素
② A与B没有公共元素,A∩B=∅
通常记作U,
2补集的概念
(1)自然语言:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集
合A相对于全集U的补集,简称为集合A的补集,记作 .
(2)符号语言: ={x|x∈U,且x∉A}.
(3)图形语言:可用Venn图表示如图1-3-6.
A
CUA
图1-3-6
概念 1.符号 有三层含义:
(2)设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则( )∪( )=( B )
A.{ 2,3}