第二讲四年级奥数幻方
- 格式:doc
- 大小:110.00 KB
- 文档页数:3
第一讲 幻方【知识要点】在3×3(三行三列)的正方形方格中,既不重复又不遗漏地填上1~9这九个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44×(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44×方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在n×n(n 行n 列)的方格里,既不重复又不遗漏地填上n×n 个连续自然数,(注意这些连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的n 个自然数和均相等,我们把这个相等的和叫做幻和,n 叫做阶,这样排成的数的图形叫做n 阶幻方。
中心方格中这个数叫做这个幻方的中间数。
任意阶数幻方的各行或各列或两条条对角线上所有数的和成为幻和! 幻方的幻和等于 n (n 2 +1) ÷2 。
幻和=总和÷阶数幻积=中间数的3次方。
二、幻方的特征:1、对称性2、轮换性三、幻方的种类:按照纵横各有数字的个数,可以分为:三阶幻方、四阶幻方、五阶幻方、六阶幻方… … 按照纵横数字数量奇偶的不同,可以分为: 1、奇数阶幻方 2、偶数阶幻方(1)单偶数阶幻方,阶数是2的倍数,形如:2n+2 (2)双偶数阶幻方,阶数是4的倍数,形如:2n+4四、幻方的构造方法1、杨辉口诀法(仅仅适用于三阶幻方)早在公元1275年,宋朝的杨辉就对幻方进行了系统的研究。
他称这种图为“纵横图”,他提出了一个构造三阶幻方的秘诀:九子斜排,上下对易,左右相更,四维挺出戴九履一,左三右七,二四为肩,六八为足2、罗伯法适用于奇数阶幻方,适合于连续自然数或者等差数列的奇数阶幻方。
口诀:1居下行正中央,依次斜填切莫忘;下出框时往上写,左出框时往右放;排重便往上格填,左下排重一个样。
3、巴舍法(平移补空法)(适合奇数阶幻方)要点,构造五阶具体操作:(1)画图:构造楼梯(2)按顺序填数(数字按顺序斜排)(3)平移补空:把幻方外的数字平移进幻方——上到下,下到上,左到右,右到左,注意:几阶幻方就平移几个格。
幻方的解法与技巧幻方是一种有趣又神秘的数学谜题,它能够以独特的方式排列数字,使得每一行、每一列和对角线上的数字之和都相等。
本文将介绍一些常见的幻方解法和技巧,帮助读者更好地理解和解决幻方问题。
一、幻方的基本概念幻方是由一组数字排列而成的正方形矩阵,其中每个数字只出现一次。
幻方的阶数指的是矩阵的边长,例如3阶幻方表示由3x3的数字矩阵组成。
幻方中的每一行、每一列和对角线上的数字之和称为幻方的常数,通常用S表示。
二、奇数阶幻方的解法奇数阶幻方的解法相对较简单,常用的方法有“Siamese method”和“LUX method”。
1. “Siamese method”(暹罗法)这种方法是由17世纪的暹罗王室数学家发明的,它的基本思想是从幻方的中间行、第一列开始,按照特定规则依次填充数字。
具体步骤如下:(1)将数字1填入幻方的中间行、第一列的位置;(2)依次填充数字2、3、4...直到填满整个幻方矩阵;(3)当填充到边界时,将下一个数字填入上一次填充的位置的右上方。
2. “LUX method”(LUX法)这种方法是由中国数学家陆玉鹤发明的,它的基本思想是将幻方矩阵分割成四个大小相等的子矩阵,然后按照特定规则填充数字。
具体步骤如下:(1)将数字1填入幻方的第一行、中间列的位置;(2)依次填充数字2、3、4...直到填满整个幻方矩阵;(3)当填充到边界时,将下一个数字填入上一次填充的位置的右上方。
三、偶数阶幻方的解法偶数阶幻方的解法相对复杂,常用的方法有“偶数阶幻方解法1”和“偶数阶幻方解法2”。
1. 偶数阶幻方解法1这种方法的基本思想是将幻方矩阵分割成四个大小相等的子矩阵,然后按照特定规则填充数字。
具体步骤如下:(1)将数字1填入幻方的第一行、第一列的位置;(2)依次填充数字2、3、4...直到填满四个子矩阵;(3)当填充到边界时,将下一个数字填入上一次填充的位置的右上方。
2. 偶数阶幻方解法2这种方法的基本思想是将幻方矩阵分割成四个大小相等的子矩阵,然后按照特定规则填充数字。
数阵问题知识要点:一般地来讲在解决数阵图的问题上,我们应先观察好数阵图,找出“公用数”的位置,求出“公用数”是解决数阵问题的关键。
在数阵图中横行有,竖行也有的数,我们把它叫做“公用数”。
如果题中给你的数的个数是奇数个,而“公用数”仅一个,而这个“公用数”又是中心数,这样的数阵图称为辐射型数阵图。
在解决这类数阵图时,就是先找出公用数,每边均剩下两个数,实际上就是在奇数个数中找到和相等的几对数,找的办法有三种,即:去头、去尾、去中间,而数阵图中的“公用数”就是这列数中的头、尾、中间任意一个数。
还有一种数阵图,题中给你的已知数的个数为偶数个,“公用数”不再是一个,而是多个。
这样的数阵图称为封闭型数阵图,在解决此类数阵图时,应分三步走:l、先求出题中给出已知数的总和,2、再求出数阵图中的和,3、用图中和减去已知数的和即为“公用数”的总和。
例题分析:一.辐射型数阵:例1.将2~8这7个数分别填在下图中的圆圈内,使每条线段上三个圆圈内数的和相等.例2.把1~9这9个数字,分别填入下图的各圆圈内,使每条线上5个数的和相等.例3.将1~9这九个数字填在”七一”内,使每一横行,每一竖列的数字的和都是13.二.封闭型数阵:例4.将1~6六个数填入图中的圆圈中,要求四条直线上的数字之和都等于10,那么a是多少?例5. 如果将—11这11个自然数填入左下图的圆圈中,使每个菱形上的四个数之和都等于24,那么A等于多少?例6.把10~80八个整十数填入下图的○中,使每个圆上五个数的和为210。
例7.把10~15这6个数字分别填放图中的各个圆圈内,使每边上的三个圆圈内数之和相等。
例8. 图中五个正方形和12个圆圈,将1—12填入圆圈中,使每个正方形四角上圆圈中的数字之和都等于K,那么K等于几?例9. 图中的大三角形被分割成九个小三角形将1—9填入小三角形中,使每条边上的五个小三角形的数字之和都相等,那么这个和的最小值是多少?最大值是多少?例10.图中有10个小三角形和4个大三角形,将1~10填入每个小三角形,使每个大三角形内的数字之和都等于25。
1. 會用羅伯法填奇數階幻方2. 瞭解偶數階幻方相關知識點3. 深入學習三階幻方一、幻方起源也叫縱橫圖,也就是把數字縱橫排列成正方形,因此縱橫圖又叫幻方.幻方起源於我國,古人還為它編撰了一些神話.傳說在大禹治水的年代,陝西的洛水經常大肆氾濫,無論怎樣祭祀河神都無濟於事,每年人們擺好祭品之後,河中都會爬出一只大烏龜,烏龜殼有九大塊,橫著數是3行,豎著數是3列,每塊烏龜殼上都有幾個點點,正好湊成1至9的數字,可是誰也弄不清這些小點點是什麼意思.一次,大烏龜又從河裏爬上來,一個看熱鬧的小孩驚叫起來:“瞧多有趣啊,這些點點不論橫著加、豎著加還是斜著加,結果都等於十五!”於是人們趕緊把十五份祭品獻給河神,說來也怪,河水果然從此不再氾濫了.這個神奇的圖案叫做“幻方”,由於它有3行3列,所以叫做“三階幻方”,這個相等的和叫做“幻和”.“洛書”就是幻和為15的三階幻方.如下圖:987654321我國北周時期的數學家甄鸞在《算數記遺》裏有一段注解:“九宮者,二四為肩,六八為足,左三右七,戴九履一,五居中央.”這段文字說明了九個數字的排列情況,可見幻方在我國歷史悠久.三階幻方又叫做九宮圖,九宮圖的幻方民間歌謠是這樣的:“四海三山八仙洞,九龍五子一枝連;二七六郎賞月半,周圍十五月團圓.”幻方的種類還很多,這節課我們將學習認識瞭解它們.二、幻方定義幻方是指橫行、豎列、對角線上數的和都相等的數的方陣,具有這一性質的33⨯的數陣稱作三階幻方,44⨯的數陣稱作四階幻方,55⨯的稱作五階幻方……如圖為三階幻方、四階幻方的標準式樣,知識點撥教學目標5-1-4-2.幻方(二)987654321 13414151612978105113216三、解決這幻方常用的方法⑴適用於所有奇數階幻方的填法有羅伯法.口訣是:一居上行正中央,後數依次右上連.上出框時往下填,右出框時往左填.排重便在下格填,右上排重一個樣.⑵適用於三階幻方的三大法則有:①求幻和: 所有數的和÷行數(或列數)②求中心數:我們把幻方中對角線交點的數叫“中心數”,中心數=幻和÷3. ③角上的數=與它不同行、不同列、不同對角線的兩數和÷2. 四、數獨數獨簡介:(日語:數獨 すうどく)是一種源自18世紀末的瑞士,後在美國發展、並在日本得以發揚光大的數學智力拼圖遊戲。
幻方原理及方法
1. 你知道幻方原理多奇妙吗?就像变魔术一样!就拿三阶幻方来说,每行、每列以及对角线上的数字之和都相等。
比如说常见的九宫格,1、2、3、4、5、6、7、8、9 填入九宫格中,经过巧妙排列,就能实现神奇的相等和哦,是不是很有趣?
2. 要想了解幻方方法,那可得好好琢磨一番呢!好比搭积木,要一块一块恰到好处地放。
比如试着将奇数阶幻方用“罗伯法”来填,一步步地,按照规则,嘿,一个完美的幻方就出现啦!难道你不想试试吗?
3. 幻方原理其实并不难理解呀!就如同解开一个复杂的谜题。
想想看,把一些数字摆来摆去,就能找到那神奇的规律。
比如四阶幻方,通过特定的算法和步骤,哇,最终的成果会让你惊叹不已呢,难道不是吗?
4. 幻方方法可是有很多窍门的哟!好像寻找宝藏的钥匙。
比如说五阶幻方,运用特定的策略,一点点地推进,嘿嘿,就能得到让人惊喜的结果啦!这多让人兴奋呀!
5. 幻方原理真的超级神奇的呢!可以类比成音乐的旋律,有节奏有规律。
比如六阶幻方,尝试着去感受那数字的排列,就如同聆听美妙的音乐,太赞了吧!
6. 想要掌握幻方方法,就得像探险家一样勇敢尝试哦!好比在未知的领域探索。
像七阶幻方,大胆地去实践,不断调整,哇塞,那成功后的满足感简直爆棚啦!总之,幻方就是这么神奇又有趣!。
幻方是一种广为流传的数学游戏,据说早在大禹治水时就发现过。
幻方的特点是:由自然数构成n×n正方形阵列,称为n阶幻方,每一行、每一列、两对角线上的数之和相等。
法国人罗伯总结出了构造奇数阶连续自然数幻方的简单易行的方法“罗伯法” (也叫“萝卜”法)。
三阶幻方解法“萝卜”法一居上行正中央依次填在右上角上出框时下边填右出框时左边放斜出框时下边放(出角重复一个样)排重便在下格填9阶(了解)47 58 69 80 1 12 23 34 4557 68 79 9 11 22 33 44 4667 78 8 10 21 32 43 54 5677 7 18 20 31 42 53 55 666 17 19 30 41 52 63 65 7616 27 29 40 51 62 64 75 526 28 39 50 61 72 74 4 1536 38 49 60 71 73 3 14 2537 48 59 70 81 2 13 24 35幻方的其它概念: 中心数和黄金三角的规律只适用于3阶幻方1.中心数: 中心数为对称两边数的和除以2 (比如(8+2)/2=5)8 1 63 5 74 9 22.黄金三角: 黄金三角顶点的数为两腰之和除以2(比如(7+9)/2=8)练习1.在如图所示的方格内填上合适的数,使每行、每列及对角线上的三数之和等于33.14 9 107 11 1512 13 82.中间值是“12”,请在其他8格填上适当的数据,使9个方格内的数据是9个连续的自然数的幻方15 8 1310 12 1411 16 9标准的幻方是每行每列以及对角线上的和为15, 现在要求为33, 如果在标准幻方的基础上每个数都扩大6,就可以满足要求: 15+6x3=33简单:只要在标准的幻方的基础上+7 就OK3.每一行、列、对角线上的数的和要为30,请补充填写空白处的数151354.求?,要求3列3行还有斜线和一致!?8921在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.解析30被分为3行,那么10为中间的数,所以两个方格的正中间均为10,那么第一个正方形一条对角线上的数为8,10,12,接着一行可填15,10,5;需注意15和8相邻,那么剩下的只要相加为30即可.同理,第二个正方形一条对角线上的数为14,10,6,接着一行可填15,10,5;需注意15和6相邻,那么剩下的只要相加为30即可.解答解:如图:。
幻方是一种广为流传的数学游戏,据说早在大禹治水时就发现过。
幻方的特点是:由自然数构成n×n正方形阵列,称为n阶幻方,每一行、每一列、两对角线上的数之和相等。
法国人罗伯总结出了构造奇数阶连续自然数幻方的简单易行的方法“罗伯法” (也叫“萝卜”法)。
三阶幻方解法
“萝卜”法
一居上行正中央
依次填在右上角
上出框时下边填
右出框时左边放
斜出框时下边放(出角重复一个样)
排重便在下格填
9阶(了解)
幻方的其它概念: 中心数和黄金三角的规律只适用于3阶幻方
1.中心数: 中心数为对称两边数的和除以2 (比如(8+2)/2=5)
2.黄金三角: 黄金三角顶点的数为两腰之和除以2(比如(7+9)/2=8)
练习
在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.
解析30被分为3行,那么10为中间的数,所以两个方格的正中间均为10,那么第一个正方形一条对角线上的数为8,10,12,接着一行可填15,10,5;需注意15和8相邻,那么剩下的只要相加为30即可.
同理,第二个正方形一条对角线上的数为14,10,6,接着一行可填15,10,5;需注意15和6相邻,那么剩下的只要相加为30即可.
解答解:如图:。
1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独 すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏.如今数独的雏型首先于1970年代由美国的一家数学逻辑游戏杂志发表,当时名为Number Place.现今流行的数独于1984年由日本游戏杂志《パズル通信ニコリ》发表并得了现时的名称.数独本是“独立的数字”的省略,因为每一个方格都填上一个个位数. 数独可以简单的数为:让行与列及单元格的数字成规律性变换的一类数字谜问题知识点拨教学目标5-1-4-2.幻方(二)解题技巧:数独游戏中最常规的办法就是利用每一个空格所在的三个单元中已经出现的数字(大小数独一个空格只位于两个单元之内,但是同时多了一个大小关系作为限制条件)来缩小可选数字的范围. 总结4个小技巧:1、 巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关系的限制.2、 相对不确定法:有的时候我们不能确定2个方格中的数字,却可以确定同一单元其他方格中肯定不会出现什么数字,这个就是我们说的相对不确定法.举例说明,A1可以填入1或者2,A2也可以填入1或者2,那么我们可以确定,1和2必定出现在A1和A2两者之中,A 行其他位置不可能出现1或者2.3、 相对排除法:某一单元中出现好几个空格无法确定,但是我们可以通过比较这几个空格的可选数字进行对比分析来确定它们中的某一个或者几个空格.举例说明,A 行中已经确定5个数字,还有4个数字(我们假设是1、2、3、4)没有填入,通过这4个空格所在的其他单元我们知道A1可以填入1、2、3、4,A2可以填入1、3,A3可以填入1、2、3,A4可以填入1、3,这个时候我们可以分析,数字4只能填入A1中,所以A1可以确定填入4,我们就可以不用考虑A1,这样就可以发现2只能填入A3中,所以A3也能确定,A2和A4可以通过其他办法进行确定.4、 假设法:如果找不到能够确定的空格,我们不妨进行假设,当然,假设也是原则的,我们不能进行无意义的假设,假设的原则是:如果通过假设一个空格的数字,可以确定和这个空格处在同一个单元内的其它某一个或者某几个空格的数字,那么我们就以选择这样的空格来假设为佳.举例说明,B3可以填入1或者2,A3可以填入2或者3,B4可以填入1或者2,这个时候我们就应该假设B3填入2,这样就可以确定A3填入3,B4填入1,然后以这个为基础进行推理,如果推出违反规则的情况出现,那么这个假设就是错误的,我们回到假设点重新开始.数独【例 1】 在下图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4.1234212342abd e c3412134123412342【例 2】 在图的5×5的方格表中填入A B C D 、、、四个字母,要求:每行每列中四个字母都恰出现一次:如果菜行的左边标有字母,则它表示这行中第一个出现的字母;如果某行的右边标有字母,则它表示这行中最后一个出现的字母;类似地,如果某列的上边(或者下边)标有字母,则它表示该列的第一个(或者最后一个)出现的字母.那么,,,A B C D 在第二行从左到右出现的次序是 .DAAAD CBA【巩固】 在左下图的5×5方格表的空白处填入1~5中的数,使得每行、每列、每条对角线上的数各不相同.例题精讲5432151244【例 3】 请你在六阶拉丁幻方中的空白方格内填入相应数字,使得每一行、每一列及两条对角线上恰好出现1、2、3、4、5、6.【巩固】 如下图,6个3×2的小方格表拼成了6×6的大方格表.请在空白处填入1~6中的数,使得每行、每列中的数各不相同,并且原来6个3×2的小方格表中的数也各不相同.615122464165【例 4】 请在如右图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.3285631548621346415【例 5】 如图,请将1个1,2个2,3个3,…,7个7,8个8填入6×6的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边);现在已经给出了其中8个方格中的数,并且知道A ,B ,C ,D ,E ,F 各不相同;那么,六位数ABCDEF 是 .【例 6】 将1到9填入下图的空白方块中,每个方块只能填一个数字,任何一行,一列或一个区块都是一个单元.每个单元都必须包含全部但不重复的数字.795485365324176264118639386492559794IH G F E D C B A 795485365324176264118639386492559794863215794999999998888888877777777666666666555555554444444433333333222222221111111198754321【巩固】 如右下图,9个33⨯的小方格表合并成一个99⨯的大方格表,每个格子中填入1-9中的一个数,每个数在每一行、每一列中都只出现一次,并且在原来的每个3⨯3的小方格表中也只出现一次,10个“☆”处所填数的总和是 .17★★★★★★★★★★47955946839381146267142356358457【巩固】 “九宫图”是一个9×9的方阵,它是由九个3×3的“九宫格”(图中黑实线围住的方阵)组成.7154296832159845983171527116842请你在上图中将数字1、2、3、4、5、6、7、8、9分别填入空格内,使得每行、每列及9个“九宫图”中数字1~9均恰好出现一次.当填写完后,位于第4行第4列的数字式______. (A )2 (B )4 (C )6 (D )8【巩固】 如图是一个未完成的“数独”,给出数字A 、B 、C 、D 所在方格内应填的数字.A =、B = 、 C = 、D = .注:所谓“数独”即在99⨯ 的方格中填入1~9中的数字,使得每个粗线33⨯的方格中数字及99⨯的方格中每行每列数字均不重复.【巩固】 下图是一个9×9的方格图,由粗线隔为9个横竖各有3个格子的“小九宫”格,其中,有一些小方格填有1至9的数字.小青在第4列的空格中各填入了一个1至9中的自然数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小青将第4列的数字从上向下写成一个9位数,请写出这个9位数,并且简单说明理由.【例 7】 将1到4填入右图的空白方块中,每个方块只能填一个数字,任何一行,一列都必须包含全部但不重复的数字,并且,在有“>”或者“<”的对应两个空格必须满足对应的大小关系.<∧∨∨∨∨1D432C B A【巩固】 请在右图4×4表格的每格中填入l ,2,3,4中的一个,使得每行,每列,每条对角线的四个数各不相同,且满足图中三个不等的关系.【巩固】 将1到4填入右图的空白方块中,每个方块只能填一个数字,任何一行,一列都必须包含全部但不重复的数字,并且,在有“>”或者“<”的对应两个空格必须满足对应的大小关系.【巩固】 将1、2、3、4分别填入4×4的方格网(如下图所示)的16个小方格中,使得每一行每一列中的4个数1、2、3、4恰好各出现一次,并且满足与不等号相邻的两个数中小数是大数的约数,那么,从左上到右下的对角线上4个数的和是____________.(左下图是一个3×3的例子)321212331A. 10B. 11C. 12D. 16【例 8】 将1到5填入右图的空白方块中,每个方块只能填一个数字,任何一行,一列都必须包含全部但不重复的数字,并且,在有“>”或者“<”的对应两个空格必须满足对应的大小关系.225><>∨∧∧∨∧54321ED CBA【巩固】 将1到5填入右图的空白方块中,每个方块只能填一个数字,任何一行,一列都必须包含全部但不重复的数字,并且,在有“>”或者“<”的对应两个空格必须满足对应的大小关系.33>∧∧<A B C D E12345∧∨><>【巩固】 请你在下面55 表格的每格中填入1,2,3,4,5中的一个,使得每行、每列、每条对角线所填的5个数各不相同,且A 格中的数比B 格中的数大,B 格中的数比C 格中的数大,C 格中的数比D 格中的数大,E 格中的数比F 格中的数大,G 格中的数比H 格中的数大.那么,第二行的5个数从左到右依次是 .HG F E DCB A【例 9】 将1、2、3、4、5、6都分别填入6×6的方格网(如下图所示)的36个小方格中,使得每一行每一列中的6个数1、2、3、4、5、6各出现依次,并且满足与不等式相邻的两个数中小数是大数的约数,那么,第二行从左到右的第6个数是___________.(左下图是一个3×3的例子.)321212331(A )5 (B )4 (C )3 (D )2【例 10】 如图.4 4方格被分成了五块;请你在每格中填入l 、2、3、4中的一个,使得每行、每列的四个数各不相同,且每块上所填数的和都相等.则A 、B 、C 、D 四处所填数字之和是 .DCBA【例 11】 如图,5×5方格被分成了五块;请你在每格中填入1、2、3、4、5中的一个,使得每行、每列、每条对角线的五个数各不相同,.现有两个格子已分别填入1和2,请在其它格子中填上适当的数.那么,ABCDE 是 .ED C B A 21【例 12】 请将1个1,2个2,3个3,…,8个8,9个9填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边).现在已经给出了其中8个方格中的数,并且知道A ,B ,C ,D ,E ,F ,G 各不相同;那么,五位数CDEFG 是 .【例 13】 请将1个1,2个2,3个3,…,8个8,9个9填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边);现在已经给出了其中8个方格中的数,并且知道A ,B ,C ,D ,E ,F ,G 各不相同;那么,七位数ABCDEFG 是 .【例 14】 将数字1~6中填入右面的6×6方格,使每个数字在每一行、每一列和每一个标有粗线的23⨯的“宫”中只能出现一次. 如果虚线框出的区域左上角标注的数值为该区域内所有数字之和,并且该区域内所有数字互不相同,那么,六位数ABCDEF 是_____________.【例 15】 如图1的每个方格中分别填入1、2、3、4、5、6、7中的一个数,使得每行、每列的七个数各不相等;并且圆圈中的数等于与它相邻的四个数的乘积.那么,★处所填的数是 .图18420361201056019212016824525【例 16】 如图,请沿虚线将77⨯的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.那么第四列的7个小方格分别属于________个不同的长方形.。
小学四年级奥数下册简单的幻方及其他数阵图教案简单的幻方及其他数阵图教案有关幻方问题的研究在我国已流传了两千多年,它是具有独特形式的填数字问题.宋朝的杨辉将幻方命名为“纵横图.”并探索出一些解答幻方问题的方法.随着历史的进展,许多人对幻方做了进一步的研究,创造了许多绚丽多彩的幻方. 据传说在夏禹时代,洛水中出现过一只神龟,背上有图有文,后人称它为“洛书”.洛书所表示的幻方是在3×3的方格子里(即三行三列),按一定的要求填上1~9这九个数,使每行、每列、及二条对角线上各自三数之和均相等,这样的3×3的数阵阵列称为三阶幻方. 一般地说,在n×n(n行n列)的方格里,既不重复又不遗漏地填上n2个连续的自然数(一般从1开始,也可不从1开始)每个数占一格,并使排在任一行、任一列和两条对角线上的n个自然数的和都相等,这样的数表叫做n阶幻方.这个和叫做幻和,n叫做阶. 杨辉在《续古摘奇算法》中,总结洛书幻方构造方法时写到:“九子排列,上、下对易,左右相更,四维挺出.”现用下图对这四句话进行解释.九子排列上、下对易左右相更四维挺出怎样构造幻方呢?一般方法是先求幻和,再求中间位置的数,最后根据奇、偶情况试填其他方格内的数.分析为了便于叙述,先用字母表示图中要填写的数字.如上右图所示.解答这个题目,可以分三步解决:①先求出每行、每列三个数的和是多少?②再求中间位置的数是多少?此题是求E=?③最后试填其他方格里的数.∵A+B+C+D+E+F+G+H+I=1+2+3+4+5+6+7+8+9=45.∴A+B+C=D+E+F=G+H+I=15.∴B+E+H=A+E+I=C+E+G=15.∴A+B+C+D+E+F+G+H+I+3E=(A+E+I)(B+E+H)+(C+E+G)+(D+E+F)=15X4.45+3E=603E=15E=5.这样,正中央格中的数一定是5.由于在同一条直线的三个数之和是15,因此若某格中的数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同.因此,四个角上的数A、C、G、I必为偶数.(否则,若A为奇数,则I为奇数.此时若B为奇数,则其余所有格亦为奇数;若B为偶数,则其余所有格亦为偶数.无论哪种情形,都与1至9中有5个奇数,4个偶数这一事实矛盾.)因此,B、D、F、H为奇数.我们不妨认为A=2(否则,可把3×3方格绕中心块旋转即能做到这一点).此时I=8.此时有两种选择:C=4或G=4.因而,G=6或C=6.其他格的数随之而定.因此,如果把经过中心块旋转而能完全重合的两种填数法视作一种的话,一共只有两种不同的填数法:A=2,C=4或A=Z,G=4(2,4被确定位置后,其他数的位置随之而定).解:按照上面的分析,我们可以得到两个解(还有另外6个可以由这两个解经过绕中心块旋转而得到,请大家自己完成).下面我们就来介绍一些简单的幻方.例1 将1~9这九个数,填入下左图中的方格中,使每行、每列、两条对角线上三个数字的和都相等.网络搜集整理,仅供参考。
传说在五千年前,大禹治水的时代,人们在黄河中发现一只大龟,龟背上有一些奇怪的图案,经过破译,人们将龟背上的神奇的图案译成了如下图这样的数阵图,也称做幻方。
幻方和数阵是我国文化遗产之一,早在公元前4世纪就有“河图”、“洛书”的传说与记载。
到了宋朝,杨辉对幻方已有较详细的记述,并探索出一些编制方法。
明朝程大位、清朝张潮等人,创制了绚丽多彩的幻方与数阵图式,其中九宫图是最简单的三阶幻方。
将三阶幻方推广,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,通常被称为“数阵图”。
幻方是特殊的数阵图。
大约在15世纪初,幻方传到国外,引起了欧洲很多数学家的兴趣,发现许多新成果。
人们发现幻方不仅仅是一种数字游戏,而且与实验方案的设计及一些高深数学分支有关,幻方已成为数阵图中最重要的课题,是数学研究中的一个重要分支。
数阵图大致分三种:封闭型数阵图、开放型数阵图和复合型数阵图。
幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。
这个相等的和叫“幻和”。
要求在n 行n 列的方格里,既不重复又不遗漏地填上n ×n 个连续的自然数。
这些自然数所组成的一列数有极强的规律性,按顺序排列后,每一项都比它前面的一项大1,即它们构成了差相等的数列,是等差数列。
因此在解答这类问题时,常用的知识有: 1.等差数列的求和公式总和=(首项+末项)×项数÷2 2.数字的奇偶性 奇数±奇数=偶数 偶数±偶数=偶数知识梳理奇数±偶数=奇数可简记为:同性为偶,异性为奇(注:同性是同奇或同偶,异性是指一奇一偶)。
数阵图【例1】★如图所示,在三个圆圈中各填入一个自然数,使每条线段两端的两个数之和均为奇数。
请问这样的填法存在吗?如不存在,请说明理由;如存在,请写出一种填法。
【解析】不存在,设所填的数分别是a ,b ,c ,如图所示。
假设 a+b=奇数. a+c=奇数, b+c=奇数, 左边=2(a+b+c),是偶数,右边=三个奇数相加,是奇数, 偶效≠奇数。
小学奥数之罗伯特法填幻方1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑴适用于三阶幻方的三大法则有:⑴求幻和: 所有数的和÷行数(或列数)⑴求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3.987654321987654321134141516129781051132165-1-4-1.幻方(一)教学目标知识点拨⑴角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。
幻方与数阵图扩展[内容概述]本讲有两部分主要内容:1、 幻方的概念和性质,简单幻方的编制;2、把一些数字按照一定要求排列成相应的图形,叫做数阵图。
大致分为三类:封闭型数阵图、辐射型数阵图和复合型数阵图。
幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。
幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。
幻方又称为魔方,方阵等,它最早起源于我国。
宋代数学家杨辉称之为纵横图。
关于幻方的起源,我国有“河图”和“洛书”之说。
相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,反作为礼物献给他,这就是“河图”了,是最早的幻方。
伏羲氏凭借着“河图”而演绎出了八卦。
后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。
“洛书”所画的图中共有黑、白圆圈45个。
把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。
幻方问题主要方法: 一、 累加法:利用累加的方法可以求出“幻和”和关键位置上的数字。
通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。
二、 求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。
三、 比较法:利用比较的方法可以直接填出某些位置的数字。
注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。
四、 掌握好3阶幻方中的规律。
本讲还有一部分内容是数阵图拓展,也就是在三年级数阵图初步的基础上继续学习数阵图问题的解题方法。
数阵图问题方法多样且特殊,我们将在例题中详细讲解。
其实这些方法和幻方是一致的,大家可以在下面的学习中体会到这一点。
小学四年级数学提高教程——幻方与数阵图【知识点解析】一、幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。
幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。
幻方又称为魔方,方阵等,它最早起源于我国。
宋代数学家杨辉称之为纵横图。
关于幻方的起源,我国有“河图”和“洛书”之说。
相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,作为礼物献给他,这就是“河图”了,是最早的幻方。
伏羲氏凭借着“河图”而演绎出了八卦。
后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。
“洛书”所画的图中共有黑、白圆圈45个。
把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。
二、幻方问题主要方法1、累加法利用累加的方法可以求出“幻和”和关键位置上的数字。
通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。
2、求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。
3、比较法利用比较的方法可以直接填出某些位置的数字。
注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。
4、掌握好3阶幻方中的规律。
【例题】1、如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?第1题「分析」首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。
它是多少呢?哦,如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9 这九个数字都只各用了一次,所以3倍的的“幻和”就等于1+2+3+4+5+6+7+8+9=45(请复习学过的等差数列知识)。
专题16幻方1.在如图的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。
A 是 、B 是 。
C 是 。
2.在如方格中,每行每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 。
13B 4A13.在如图方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次 ,B 应该是 。
4.在图中的方格中,每行、每列都有1一4这四个数,并且每个数在每行、每列都只出现一次 B 是 。
5.在如图所示的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。
23B4A2A应该是 ,B应该是 。
6.小游戏:如图,九宫格中左上角为“开”,其余8格分别写着下一步的移动方法,就按照这格上的指示要求移动(如“左2”,即左移2格;“下1”,即下移1格);如果要把每一格都跳一遍(不重复),则第一次要放在第 列第 行的那一格。
7.如图的方格中,每行、每列都有1~4这四个数,且每个数在每行、每列都只出现一次.A是 ,B 是 .A.1B.2C.38.如图,在5×5的正方形方格中,排列着数字1、2、3、4、5,在每列中也恰好出现一次。
则写着X的空格中的数应当是 。
9.如表方格中每行、每列都有1~4这4个数,并且每个数在每行、每列都只出现一次。
想一想,A应该是 B应该是 。
322A13B10.在如图的方格里,每行、每列都有1~4这四个数,并且每个数在每行、每列都只能出现一次 。
11.在如图的方格中,每行、每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 ,C 是 .12.在如图的方格中,每行每列都有1~4这四个数,并且每个数在每行每列都只出现一次 ,B 是 .13.如图是一种精简版的“数独”游戏,每行每列都只有1~4这四个自然数,并且每个数在每行、每列都只出现一次 。
14.在右面的方格中,每行、每列都有1~4这4个数,并且每个数在每行、每列都出现一次。
B应该是 ,A应该是 。
幻方是一种广为流传的数学游戏,据说早在大禹治水时就发现过。
幻方的特点是:由自然数构成n×n正方形阵列,称为n阶幻方,每一行、每一列、两对角线上的数之和相等。
法国人罗伯总结出了构造奇数阶连续自然数幻方的简单易行的方法“罗伯法” (也叫“萝卜”法)。
三阶幻方解法
“萝卜”法
一居上行正中央
依次填在右上角
上出框时下边填
右出框时左边放
斜出框时下边放(出角重复一个样)
排重便在下格填
9阶(了解)
幻方的其它概念: 中心数和黄金三角的规律只适用于3阶幻方
1.中心数: 中心数为对称两边数的和除以2 (比如(8+2)/2=5)
2.黄金三角: 黄金三角顶点的数为两腰之和除以2(比如(7+9)/2=8)
练习
在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.
解析30被分为3行,那么10为中间的数,所以两个方格的正中间均为10,那么第一个正方形一条对角线上的数为8,10,12,接着一行可填15,10,5;需注意15和8相邻,那么剩下的只要相加为30即可.
同理,第二个正方形一条对角线上的数为14,10,6,接着一行可填15,10,5;需注意15和6相邻,那么剩下的只要相加为30即可.
解答解:如图:。