八年级数学上册 实数(1)教案 北师大版
- 格式:doc
- 大小:70.00 KB
- 文档页数:4
八年级数学上册实数教案北师大版一、教学目标:1. 理解实数的定义,掌握实数的分类及性质。
2. 学会实数的运算方法,包括加、减、乘、除、乘方等。
3. 能够运用实数解决实际问题,提高学生的数学应用能力。
二、教学内容:1. 实数的定义与分类:有理数、无理数、实数。
2. 实数的性质:实数的加减法、乘除法、乘方运算。
3. 实数的应用:解决实际问题,如长度、面积、体积等计算。
三、教学重点与难点:1. 重点:实数的定义、性质及运算方法。
2. 难点:实数运算的灵活应用,解决实际问题。
四、教学方法:1. 采用讲授法,讲解实数的定义、性质及运算方法。
2. 运用案例分析法,分析实际问题,引导学生运用实数解决。
3. 开展小组讨论,让学生互动交流,巩固所学知识。
五、教学过程:1. 导入新课:回顾七年级学习的有理数,引出实数的定义。
2. 讲解实数的分类:有理数、无理数、实数。
3. 讲解实数的性质:实数的加减法、乘除法、乘方运算。
4. 运用案例分析,让学生体会实数在实际问题中的应用。
5. 课堂练习:布置有关实数运算的练习题,巩固所学知识。
6. 总结本节课内容,布置课后作业。
六、教学评价:1. 课堂问答:通过提问学生,了解学生对实数定义、性质及运算方法的掌握情况。
2. 课后作业:布置有关实数的练习题,评估学生对知识的应用能力。
3. 阶段测试:进行实数知识的测试,全面了解学生掌握情况。
七、教学拓展:1. 介绍实数在科学研究中的应用,如物理、化学、计算机科学等。
2. 探讨实数与生活中的实际问题,提高学生的数学素养。
八、教学资源:1. 教材:八年级数学上册,北师大版。
2. 教案:实数教案。
3. PPT:实数相关内容。
4. 练习题:实数运算练习题。
九、教学时间安排:1. 第一课时:实数的定义与分类。
2. 第二课时:实数的性质与运算。
3. 第三课时:实数的应用与拓展。
十、课后作业:1. 复习实数的定义、性质及运算方法。
2. 完成练习题,巩固所学知识。
八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。
2.无理数是_________的小数,如_________,_________,_________等都是无理数。
3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。
二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。
师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。
即有理数和无理数统称为实数。
生:也就是说实数可分为有理数和无理数。
师:对!你说的太对啦!实数从定义可分为有理数和无理数。
无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。
师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。
师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。
互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。
师:同学们回答的非常好,-2的倒数是什么?生:是-。
师:的倒数是什么?生:思考回答。
师:实数a的倒数是什么?生:是。
师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。
是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。
通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。
同时,实数的分类和性质也需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。
2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。
3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。
四. 教学重难点1.实数的概念和分类。
2.实数的性质。
五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。
通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。
六. 教学准备3.练习题。
七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。
呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。
2.引导学生通过观察和思考,总结实数的性质。
操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。
2.每组选一名代表进行汇报,其他组进行评价和补充。
巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。
2.教师选取部分学生的作业进行点评,指出错误并进行讲解。
拓展(10分钟)1.让学生思考:实数和数轴之间的关系。
2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。
小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。
2.学生分享学习收获和感受。
家庭作业(5分钟)1.完成课后练习题。
《实数》教案一、教学内容与解析我从网上查了一下人教版的初中数学教材目录,发现“实数”一节内容在人教版数学教材上放在八年级上册第十三章的第三节,其主要内容是无理数与实数的概念、实数的分类、实数与数轴的一一对应关系、实数的相关性质、实数的运算等。
根据初中阶段学生的认知发展规律,此节内容可先让学生学习无理数、实数的概念和实数的分类以及实数与数轴的一一对应关系,余下内容可留在第二课时学习。
学生在第十三章的一、二节里已经学习了数的开平方和开立方运算,所以在课堂上可以通过复习上节内容顺利引出无理数的概念,进而引出实数的概念,进行实数的分类与授课。
实数概念的形成是数学发展的过程中很关键的一个环节,让学生深刻体会实数的构成是中学数学教学过程中很重要的一步,因此在讲述实数这一概念时,需要层层递进,一些关于有理数、实数的重要性质(比如所有的有理数均可写出分数的形式、实数的稠密性等等)在后续课程中可依据学生的学习情况讲授,不必第一节课即全部讲出,不然不利于学生的学习和教学的开展。
知识结构:二、教学目标1.知识与能力:理解有理数、实数的概念,会对实数进行分类,知道实数与数轴上的点具有一一对应的关系;2.过程与方法:让学生了解数的范围从整数到有理数,再到实数的扩展过程;积极参与负无理数问题引导下的思考和操作活动,体验发现无理数的过程,知道无理数是客观存在的数;3.情感态度价值观:培养观察、操作、分析能力,体会分类思想。
三、教学重点与难点(1)重点:了解无理数与实数的意义,知道如何对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
(2)难点:数轴上的点与实数一一对应。
四、教学过程1:复习导入(导言):公元前400年左右的古希腊,有个叫毕达哥拉斯学派。
这个学派中有一个名叫希帕索斯现却给他带来了杀生之祸,为什么这些数给他带来了不幸,这些数究竟与我们以前学过的数有什么不一样呢?这就涉及到我们前几节课学习的这些数的性质,我们这节课就来看看这些数的性质,通过这节课或许你就会知道,为什么这些数会给希帕索斯带来不幸了。
第二章实数2.1.1 认识无理数(第1课时)一、教学目标:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;二、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】a ,请问:①a可能是整数吗?②a可能是分数吗?【议一议】:已知22【释一释】:释1.满足22a =的a 为什么不是整数? 释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段: 1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数 【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.2.1.2 认识无理数(第2课时)三 、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?1-,0,2,3,…) 有理数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”.第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况?探究结论:分数只能化成有限小数或无限循环小数.即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力.第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数. 例1填空:0.351,4.96∙∙-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( )有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数无理数集合…(3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形;(D ) 面积为1.44的正方形.例4一个直角三角形两条直角边的长分别是3和5,则斜边a 是有理数吗?解:由勾股定理得: 22235a =+,即2=34a .因为34不是完全平方数,所以a 不是有理数.强调:1. 无理数是无限不循环小数,有理数是有限小数或无限循环小数.2. 任何一个有理数都可以化成分数qp形式(q ≠0, p ,q 为整数且互质),而无理数则不能.练一练:1.课本P 23 随堂练习.2.已知:在数43-,5, 1.42∙∙-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…中, (1)写出所有有理数; (2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.目的:通过例题的讲解、练习,让学生充分理解无理数、有理数的概念、区别,感受数的分类.效果:通过学生练习,更加明确了有理数、无理数的概念,及它们之间的区别与联系,激发学生学习兴趣,巩固了对概念的理解.第五个环节:课堂小结内容:本节课你有哪些收获?51.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?目的:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成知识体系,培养学生良好的学习习惯,提高其归纳总结能力.效果:师生共同总结补充,形成完整的知识体系.第六个环节:布置作业习题2.2 1.2.3.2.2.1 平方根(第1课时)一、教学目标:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.二、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1.三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3、2.2.2 平方根(第2课时)一、教学目标①了解平方根、 开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.教学重点是①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点是①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.二、教学过程设计:本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节 第一环节 复习旧知 引入新知;第二环节 形成概念,辨析概念;第三环节 例题和巩固练习;第四环节 课堂小结;第五环节 思维拓展;第六环节 布置作业. 第一环节 复习旧知 引入新知内容:方法一 复习引入1.什么叫算术平方根?3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么254 的算术平方根就是_____52_________. 展厅的地面为正方形,其面积49平方米,则边长_ 7_米.2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算?平方与算术平方根之间的关系?已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____.方法二 复习引入问题 平方等于9,254,49的数还有吗?目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果.效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣.说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望.第二环节 : 新课学习内容 (一)探究新知填空32=(9 ) (-3)2=(9 ) ( )2=9 02=0(12)2=(14))214= (不存在)2=-4 (12-)2=((二)形成概念(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根.表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作 a ±.例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a .目的 形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系.效果 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.对这两个概念加以比较与区别有利于学生的理解与掌握.第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11解 (1)()2648=±,648∴±的平方根是,8=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25±=±即;(5)11的平方根是目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.效果 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.(二)思考提升1.()25-的平方根是 ,的算术平方根是_____,49的平方根是_____;2.2= ,= ,= ,=_______;3= ,20a≥=当 .(三)巩固练习1 .下列说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.下列说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ).(A) a +1(C) 2a +1(D)4.x为何值,有意义? 答 因为02x -≥,所以0x ≤ 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.效果 学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达. 第四环节 课堂小结内容 引导学生总结本课时的知识、方法.目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.效果 在老师的引导下学生自己总结本节课的知识、方法,如平方根的概念 若2x a =,则x 叫a的平方根,x =平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根.平方与开方之间的关系;求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数.第五环节 提高训练内容1.5的小数部分为a,5b ,求a b +的值.2.已知实数a ,b满足296b b =①若a ,b 为ABC ∆的两边,求第三边c 的取值范围;②若a ,b 为ABC ∆的两边,第三边c 等于5,求ABC ∆的面积.目的 安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.第六环节 作业布置 习题2.42.3.立方根一 、教学目标①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;二、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢? (球的体积公式为334R =v ,R 为球的半径) 提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(.。
第二章实数6.实数一、依据新课标制定教学重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
依据新课标制定教学难点:利用数轴上的点表示无理数。
二、教学任务分析1. 教学目标:(1).了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.(2).了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(3).在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
(4).在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
(5).了解数系扩展对人类认识发展的必要性;2. 知识目标:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。
3. 能力目标:通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。
三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。
通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)知识整理:有理数和无理数统称为实数。
【教学设计】《“实数(1)”教学设计》梅州市五华县华新中学黄茜花“实数⑴”教学设计梅州市五华县华新中学黄茜花一、学生起点分析:实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。
二、教学任务分析:本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节。
这节内容教材安排了3个课时,本节课为第一课时。
主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
三、教学目标:1、知识与技能:通过自主学习、小组合作探究,了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小。
了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
会对实数按照一定的标准进行分类,培养分类能力。
2、过程与方法:通过动手操作加深“实数与数轴上的点的一一对应关系”的理解,渗透“数形结合”的数学思想。
3、情感态度与价值观:感受人类(特别是我国古代)在数的发展研究中的伟大成就,从中得到启发和教育。
四、教学重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
五、教学难点:利用数轴上的点表示无理数。
六、课前准备:学生准备:预习新课,制作学具教师准备:多媒体课件七、教学过程设计:本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:⑴什么是有理数?有理数怎样分类? ⑵什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
认识无理数 课题 认识无理数
课型 教学目标 让学生动手剪拼,得出正方形,面积为2,怎么得出它的边长 让学生通过小组合作,得出无理数
重点 学生探索出既不是整数,又不是分数的数,不是有理数
难点 怎么得出边长是无理数
教学
用具
自制的正方形 教学
环节
说 明 二次备课 复习 ⑴一个整数的平方一定是整数吗? ⑵一个分数的平方一定是分数吗?
新课
导入
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方 , 问题:是整数(或分数)吗?
课 程 讲 授
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正
方形,你会吗?
【议一议】: 已知,请问:①可能是整数
吗?②可能是分数吗?
【释一释】:释1.满足的为什么不是整数? 释2.满足的为什么不是分数?
【忆一忆】:回顾“有理数"概念,既然不是整数也不是分数,那么一定
ﻬ
不是有理数,这表明:有理数不够用了,为“新数”(无理数)
的学习奠定了基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段
x x 22a =a a 22
a =a 22a =a a
a
1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会? 2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?。
第二章实数1.了解平方根、立方根、二次根式、最简二次根式、实数及其相关概念;会求平方根、立方根;能进行有关实数的简单四则运算和简单的二次根式化简,发展运算能力.2.结合具体情境理解估算的意义,能进行简单的估算,进一步发展数感和估算能力.经历数系扩充、探求实数性质及其运算规律、借助计算器探索数学规律等活动过程,发展抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.一、本章主要内容及要求1.体验从具体情境中抽象出数学符号的过程,理解实数.2.掌握必要的运算(包括估算)技能.3.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.4.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.5.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.6.能用有理数估计一个无理数的大致范围.7.了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值.8.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算.二、教材分析从有理数扩充到实数是初中阶段数系扩充的最后一个阶段,中学阶段的多数问题是在实数范围内进行的,同时实数也是后继内容(如一元二次方程、函数等)学习的基础.因此,本章学习内容具有基础性,应要求学生能熟练掌握有关实数的运算,适应后续学习的需要.学生以前经历过数系的第一次扩充,已经积累了一些数系扩充的学习经验,感受到数系扩充是源于实际生活的需要.本章再次引领学生经历数系扩充的过程,感受数系扩充的必要性.本章大致按照如下线索展开内容:无理数的引入——无理数的表示——实数的相关概念及其运算(包括简单的二次根式的化简),实数的应用贯穿于内容的始终.具体地,教材首先通过拼图活动和计算器探索活动,给出无理数的概念;然后通过具体问题的解决,引入平方根、立方根的概念和开方运算.由于在实际生活和生产中,人们常常通过估算来求无理数的近似值,为此教材安排了一节“估算”,介绍估算的方法,包括通过估算比较大小、检验计算结果的合理性等.接着,教材用类比的方法引入实数的相关概念、运算律和运算性质等,最后,介绍了二次根式的概念及其化简和运算.在呈现具体内容时,教材关注现实性,力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题.但考虑到本章内容的特点,以及随着学生年龄的增长,他们的思维水平也在不断提高,因此本章在关注现实性的同时,更加关注数学知识内部的挑战性,为此提供了许多有趣而富有数学含义的问题,如a可能是整数吗?a可能是分数吗?……让学生进行数学的思考,进一步提高学生的抽象思维水平.【重点】1.经历无理数发现的过程,了解无理数的概念和意义.2.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;能用平方运算与立方运算求某些数的平方根与立方根;会用计算器求平方根和立方根,并能探索一些有趣的数学规律.3.能用有理数估计一个无理数的大致范围,包括通过估算比较大小,检验计算结果的合理性等.4.了解实数的概念,会按要求对实数进行分类,了解实数的相反数和绝对值的意义,知道实数与数轴上的点具有一一对应的关系,了解有理数的运算法则与运算律对实数仍然适用.5.能对带根号的数进行化简,并能利用化简进行有关实数的简单四则运算.6.能运用实数的运算解决简单的实际问题.【难点】1.无理数概念的理解及应用.2.解决与实数有关的实际问题时的思维转化.3.运算性质的掌握与应用.1.注重概念的形成过程,让学生在概念的形成过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合,去掉非本质特征,保持本质属性而形成的.加强概念形成过程的教学,对提高学生的思维水平是很有必要的.如无理数的引入,要让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义,在教学时,教师要鼓励学生动手、动脑、动口,与同伴进行合作,并充分地开展交流.再如平方根的概念,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的运算结果唯一的经验不符.对此,在平方根的引入时,教师可多提一些具体的问题,如9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?……旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.接着让学生去讨论:一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,特别是负数的情况,然后再通过具体的求平方根的练习,巩固新学的概念.2.鼓励学生自主探索和合作交流.本章为学生提供了许多有趣而富有数学含义的问题,教学中应当让学生进行充分的探索和交流.如面积为2的正方形的边长a是什么数?教师应引导学生充分进行交流、讨论与探索,从中感受无理数引入的必要性,并体会无限不循环的过程;再如二次根式的相关运算性质,教学中应让学生经历从具体问题到一般规律的探索过程,鼓励学生借助计算器等工具进行探索、猜测、验证,并用自己的语言清楚地表达.3.注意运用类比的方法,使学生清楚新旧知识的区别和联系.七年级时,学生已经学习过有理数的有关概念和运算,本章将学习实数的有关概念及运算.在这些概念、运算律、运算法则的教学中,应加强类比教学,通过新旧知识的类比、对比,认识新旧知识的区别和联系,促进知识系统的构建与完善.如实数的相反数、绝对值等概念是完全类比有理数建立起来的,运算律和运算法则也是通过类比得出的.1认识无理数2课时2平方根2课时3立方根1课时4估算1课时5用计算器开方1课时6实数1课时7二次根式3课时回顾与思考1课时1认识无理数1.通过拼图活动,感受无理数关系到的实际背景和引入的必要性.2.借助计算器探索无理数,并从中体会无限逼近思想.3.会判断一个数是不是无理数.1.在探究的过程中使学生感受到数的扩张,积累解决数学问题的经验和方法.2.在探索的过程中体会无理数的产生过程,积累解决数学问题的方法和经验.1.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.2.通过“再创造”的过程,体会数学发现的方法和乐趣.【重点】理解无理数的概念.【难点】判断一个数是不是无理数.第课时感受无理数产生的实际背景和引入的必要性.经历动手拼图过程,发展动手能力和探索精神.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.【重点】感受无理数产生的背景.【难点】会判断一个数是不是无理数.【教师准备】两张边长为1的正方形纸片,多媒体课件.【学生准备】两张边长为1的正方形纸片,复习有理数的运算法则及勾股定理有关知识.导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?探究活动1.已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 - 1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1拼成后的正方形是什么样的呢?问题2拼成后的大正方形面积是多少?问题3若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够用了”.巧设问题背景,顺利引入本节课题.思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.[知识拓展]正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA的对角线长度就不是有理数,数轴上的点P表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.通过生活中的实例,证实了确实存在不是有理数的数.1.在直角三角形中两个直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.4答案:B2.下列面积的正方形,边长不是有理数的是()A.16B.25C.2D.4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为,长度不是有理数的线段为.答案:略第1课时1.拼接正方形.2.做一做.3.a,b存在,但不是有理数.一、教材作业【必做题】教材第21页随堂练习及教材第22页习题2.1第1题.【选做题】教材第22页习题2.1第2题.二、课后作业【基础巩固】1.在正方形网格中,每个小正方形的边长为1,则网格上的ΔABC 中,边长不是有理数的线段有 ,在图中再画一条边长不是有理数的线段.【能力提升】2.在任意两个有理数之间都有无数个有理数. 假设a ,b 是两个有理数,且a <b ,在a ,b 两数之间插入一个数为 . 【拓展探究】3.把下列小数化成分数. (1)0.6;(2)0.7·;(3)0.3·4·.4.你会在下面的正方形网格(每个小正方形面积为1)中画出面积为10的正方形吗?试一试.【答案与解析】1.AB ,BC ,AC 略(解析:AB 2=42+12=17,BC 2=22+32=13,AC 2=22+42=20.)2.a+b2(解析:答案不唯一,如插入a 和b 正中间的数.)3.解析:(1)0.6=35; (2)设0.7·=x ,则10x =7.7·,∴9x =7,从而x =79;(3)设0.3·4·=x ,则100x =34.3·4·,∴99x =34,从而x =3499. 解:(1)0.6=35. (2) 0.7·=79. (3) 0.3·4·=3499. 4.略大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本课时通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.在教学过程中,没有刻意安排一些环节,帮助理解能力差的学生加深对“新数”的理解.设计更多的实例让理解能力差的学生较好地理解“新数”.为进一步学习“新数”,即第二课时的教学埋下伏笔.随堂练习(教材第21页)解:因为等边三角形中BC边上的高平分BC,所以h2=22-12=3,所以h不可能是整数,也不可能是分数.习题2.1(教材第22页)1.解:答案不唯一.如图(1)所示,线段AB,AD,AE,DE,BD,BC的长度都是有理数;线段AC,CE,BE的长度都不是有理数.2.解:答案不唯一.如图(2)所示的是几个符合要求的直角三角形.一个正方形木块的面积为8平方厘米,那么它的边长满足什么条件?可能是整数吗?可能是分数吗?解:它的边长的平方为8,没有整数的平方为8,所以边长不可能为整数,也没有一个分数的平方为8,所以边长不可能为分数.第课时掌握无理数的概念;能用所学定义正确判断所给数的属性.借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.在掌握估算方法的过程中,发展学生的数感和估算能力.【重点】能用所学定义正确判断所给数的属性.【难点】无理数概念的建立.【教师准备】计算器、立方体、多媒体课件.【学生准备】计算器、复习有理数的分类.导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如-1,0,2,3,…)分数(如13,-25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a2=2,b2=5中的a,b不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图]通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.一、数的小数表示面积为2的正方形的边长a究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?边长a面积S1<a<2 1<S<41.4<a<1.5 1.96<S<2.251.41<a<1.42 1.9881<S<2.01641.414<a<1.415 1.999396<S<2.0022251.4142<a<1.4143 1.99996164<S<2.00024449【思考】a的范围在哪两个数之间?左面的边长中,前面的数值和后面的数值相比,哪个更接近正方形的实际边长?【归纳总结】a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.【做一做】(1)请大家用上面的方法估计面积为5的正方形的边长b的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b≈2.2,精确到0.01,b≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.25992105…,它也是一个无限不循环小数.[设计意图]让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,c=1.25992105…是无限不循环小数的过程,体会无限逼近的思想.二、有理数的小数表示,明确无理数的概念思路一请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么? 3,45,59,-845,211.【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况? 思路二回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数. 【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数) 【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.三、例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2). 解:有理数有:3.14,-43,0.5·7·;无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2). 【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q的形式(q ≠0,p ,q 为整数且互质),而无理数不能.[设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类. [知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法: 1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数 答案:C2.以下各正方形的边长是无理数的是 ( ) A .面积为25的正方形 B .面积为425的正方形 C .面积为8的正方形 D .面积为1.44的正方形 解析:52=25,(25)2=425,(1.2)2=1.44.故选C .3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数. 4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n ,-1.4242242224…(相邻两个4之间2的个数逐次加1). (1)写出所有有理数; (2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n .(2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第2课时1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.一、教材作业【必做题】教材第24页随堂练习.【选做题】教材第25页习题2.2第2,4题.二、课后作业【基础巩固】1.面积为3的正方形的边长为x,则x()A.1<x<2B.2<x<3C.3<x<4D.4<x<52.一个正三角形的边长是4,高为h,则h是()A.整数B.分数C.有限小数D.无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是,则斜边长是数. 【拓展探究】4.设半径为a的圆的面积为20 π.(1)a是有理数吗?说说你的理由;(2)估计a的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数. (2)a≈4.5.(3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米. (2)1.73米.本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.随堂练习(教材第24页)解:有理数有:0.4583,3.7·,-17,18.无理数有:-π. 习题2.2(教材第25页) 1.解:-559180,3.97·,-234.10101010…(相邻两个1之间有1个0)是有理数,0.12345678910111213…(小数部分由相继的正整数组成)是无理数. 2.提示:(1)x 不是有理数. (2)x ≈3.2. (3)x ≈3.16. 3.(1)✕ (2) (3)✕ (4)✕4.解:5π,π-1,3.4141141114…(相邻两个4之间1的个数逐次加1)等,答案不唯一.由于本节的重点之一是让学生经历借助计算器探索无理数是无限不循环小数的过程,因此,要重视教材创设(或相同类型)的问题,针对内容应该花较多的时间,教师应积极引导,让学生有充足的时间借助计算器进行思考和交流,循序渐进地缩小范围,体会无限逼近的思想.本节渗透了用有理数近似地表示无理数和用有理数逼近无理数的数学思想,通过探索,学生容易理解“无限”,但对“不循环”一般不会有清楚的认识,只有逐步渗透理解,教学中不必多说.“逼近”思想可以借用中央电视台的“幸运52”的猜商品的价格游戏进行解释.为进一步让学生理解无理数的概念,应强调“无限不循环小数”与“无限循环小数”的联系和区别,前者不能化为分数,后者可以化为分数,但如何化成分数,教师不必深入讲解.鼓励学生自学教材中的“读一读”,了解无理数产生的历史背景和人类的科学精神,特别是对学有余力的学生,在教师引导下,可阅读“边长为1的正方形的对角线的长是无理数”的严格证明.一根长为5米的电线杆竖立于地面,为保证它的安全,要用三根钢丝把它固定,要求每根钢丝一头拉着电线杆的最上端,一头系在离电线杆3米远的地面木桩上,则每根钢丝的长要满足什么条件?它是有理数吗?大概是多长?〔解析〕每根钢丝的长要满足它的平方等于52+32,它不是有理数,大概是5.8米.解:由勾股定理,得钢丝长的平方等于52+32=34,但是找不到一个整数的平方是34,也找不到一个分数的平方是34,所以,它不是有理数,5.82=33.64,接近于34,所以大概为5.8米.2平方根1.了解数的算术平方根、平方根的概念,会用根号表示一个数的算术平方根和平方根.2.了解开方与平方是互逆运算,会利用平方运算求某些非负数的算术平方根和平方根.通过教学过程的参与,培养学生学习的主动性,提高数学表达和运算能力.。
北师大版数学八年级上册6《实数》教学设计1一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习。
本节课的主要内容是实数的定义、性质以及实数与数轴的关系。
教材通过丰富的例题和练习题,帮助学生巩固实数的概念,提高学生解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。
但是,学生对实数的认识还停留在表面,对实数的内在联系和性质还不够清楚。
因此,在教学过程中,教师需要引导学生深入理解实数的含义,并通过实例让学生感受实数在生活中的应用。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够运用实数的概念解决实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数与数轴的关系。
五. 教学方法采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过自主学习、合作交流,深入理解实数的概念和性质。
六. 教学准备1.教材、教案、PPT。
2.练习题。
3.数轴教具。
七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?由此引出实数的概念。
2.呈现(10分钟)讲解实数的定义,引导学生通过实例理解实数的性质,如:实数具有加法、减法、乘法、除法等运算性质。
3.操练(10分钟)让学生在练习纸上完成教材中的相关练习题,教师巡回指导,帮助学生巩固实数的概念和性质。
4.巩固(5分钟)邀请学生上黑板演示实数的运算,并解释运算过程中实数的性质如何体现。
5.拓展(5分钟)讨论实数在生活中的应用,如:购物、测量等,让学生感受实数的重要性。
6.小结(5分钟)回顾本节课所学内容,强调实数的定义、性质以及实数与数轴的关系。
7.家庭作业(5分钟)布置教材后的练习题,要求学生独立完成,巩固实数的概念和性质。
8.板书(5分钟)板书实数的定义、性质以及实数与数轴的关系,方便学生复习。
八年级数学实数教案5篇一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一.教材分析1.教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容.在本节之前学生已学习了平方根.立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程.函数的基础.2.教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标).知识技能:(1)了解无理数和实数的概念以及实数的分类.(2)知道实数与数轴上的点具有一一对应关系.数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识.(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的.解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数.情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用.(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.3.教学重点.难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.难点:用数轴上的点来表示无理数.二.学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算.课本对学生掌握实数要求不高.只要求学生了解无理数和实数的意义.但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识.本节主要引导学生熟知实数的概念和意义,为后面学习打下基础.三.教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法.类比法和多媒体辅助教学.(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑.动手,使学生在开放.民主.和谐的教学氛围中获取知识,提高能力,促进思维的发展.(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的.(3)教具:三角板.圆规.多媒体.学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习.享受学习.因此,在本节课的教学中引导学生〝仔细看.动脑想.多交流.勤练习〞的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们〝会观察〞.〝会类比〞.〝会分析〞.〝会归纳〞的能力.四.教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:北师大版八年级数学上册第二章《2.6实数》说课稿一.创设问题情景,引出实数的概念内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.学生回答:无理数是无限不循环小数.带根号的数不一定是无理数.3.把下列各数分别填入相应的集合内.有理数集合.无理数集合,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.教师引导学生得出实数概述并板书:有理数和无理数统称实数(realnumber).教师点明:实数可分为有理数与无理数.最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明.二.议一议,1.在实数概念基础上对实数进行不同分类.无理数与有理数一样,也有正负之分,如是正的,是负的.教师提出以下问题,让学生思考:(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正数集合:负数集合:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数.0.负实数.2.了解实数范围内相反数.倒数.绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么.在实数范围内,相反数.倒数.绝对值的意义和有理数范围内的相反数.倒数.绝对值的意义完全一样.例如,和是互为相反数,和互为倒数.,,,.三.想一想让学生思考以下问题1.a是一个实数,它的相反数为,绝对值为;2.如果,那么它的倒数为.意图:从复习入手,类比有理数中的相关概念,建立实数的相反数.倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)增加练习:(多媒体展示)第一组1.的绝对值是2.a是一个实数,它的绝对值是第二组:1.的相反数是,绝对值是2.绝对值等于的数是,3.的绝对值是4.正实数的绝对值是,0的绝对值是,负实数的绝对值是例题:求下列各数的相反数.倒数.绝对值(1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正.明晰:实数和有理数一样,可以进行加.减.乘.除.乘方运算,而且有理数的运算法则与运算律对实数仍然适用.(媒体展示两个举例)四.议一议.探索用数轴上的点来表示无理数1.每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示.和这样的无理数的点吗?2.多媒体展示的做法和和的做法如图OA=OB,数轴上A点对应的数是多少?让学生充分思考交流后,引导学生达成以下共识:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.(1)A点对应的数等于,它介于1与2之间.(2)每一个有理数都可以用数轴上的点表示(3)每一个无理数都可以用数轴上的点来表示(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大.五.随堂练习(多媒体展示)第一组:判断题:①实数不是有理数就是无理数.②无理数都是无限不循环小数.③无理数都是无限小数④带根号的数都是无理数.⑤无理数一定都带根号.⑥两个无理数之积不一定是无理数.⑦两个无理数之和一定是无理数.⑧数轴上的任何一点都可以表示实数.第二组:1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数.2.求下列各数的相反数.倒数和绝对值:(1)(2)(3)3.在数轴上作出对应的点.意图:通过以上练习,检测学生对实数相关知识的掌握情况.六.小结1.实数的概念2.实数可以怎样分类3.实数a的相反数为,绝对值,若,它的倒数为.4.数轴上的点和实数一一对应.七.作业课本习题2.81.2.3题结束语:多媒体展示:人生的价值,并不是用时间,而是用深度去衡量的.——列夫托尔斯泰八.板书设计:实数1.实数的概念4.实数与数轴上的点的关系2.实数的分类5.例题3.实数a的相反数为,6.学生练习绝对值,若,它的倒数为八年级数学实数教案2学习目标1 了解无理数和实数的概念2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3了解实数范围内相反数和绝对值的意义学习重点正确理解实数的概念学习难点理解实数的概念问题用计算机把下列有理数写成小数的形式5?3,7,8,_90,9我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数.那么无限不循环小数叫什么呢?无理数:无限不循环小数叫做无理数.通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如 . .? . 等都是无理数,π=3.__926…也是无理数.实数:有理数和无理数统称为实数.有理数有限小数或无限小数依此分类实数无理数无限不循环小数像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479_5 正负之分,所以依此分类为正实数正有理数正无理数实数0负有理数负实数负无理数例一.把下列各数填入相应的集合内0.6.-43.0.33. 0._ .π.(1)有理数集合:{}(2)无理数集合:{}(3)整数集合 :{}(4)分数集合:{}(5)实数集合:{}我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?事实上,每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数.(1)数a的相反数是-a,(a表示任何实数)(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结1.这节课你学到的知识有2.这节课你的收获有3.这节课应注意的问题有练习题a1.若实数a满足a??1,则() A.a?0B.a?0C.a?0D.a?02.下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限小数D.无理数是开方开不尽的数3.和数轴上的点一一对应的是()A 整数B 有理数C 无理数D 实数35?_4.绝对值等于的数是,的相反数是,?8的相反数是;1?2的相反数是_________________,绝对值是.5.如果一个实数的绝对值是3?7,那么这个实数是6.比较大小:-7?4八年级数学实数教案3教学难点:绝对值.教学过程:一. 复习:1.实数分类:方法(1) ,方法(2)注:有限小数.无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1) 两有理数的和.差.积.商是有理数;(2) 有理数与无理数的积是无理数;(3) 有理数与无理数的和.差是无理数;(4) 小数都是有理数;(5) 零是整数,是有理数,是实数,是自然数; (6) 任何数的平方是正数; (7) 实数与数轴上的点一一对应; (8) 两无理数的和是无理数. 例2下列各数中:-1,0, , ,1.1_0_ , , ,- , ,2, . 有理数集合{ …}; 正数集合{ …};整数集合{ …};自然数集合{…};分数集合{ …}; 无理数集合{ …};绝对值最小的数的集合{ …};2.绝对值: = (1) 有条件化简例3.①当1 ②a,b,c为三角形三边,化简③如图,化简 + . (2) 无条件化简 ;例4.化简解:步骤①找零点;②分段;③讨论.例5.①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3例6.阅读下面材料并完成填空你能比较两个数__和__的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,....这些简单的情况入手,从中发现规律,经过规纳,猜想出结论.(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填〝 .=. 〞号〞)①_ _ ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76⑦78 87(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是: __ __练习:(1)若a -6,化简 ;(2)若a 0,化简(3)若 ;(4)若 = ;(5)解方程 ;(6)化简: .二. 小结:;三.作业:四.教后感:八年级数学实数教案41.体现了自主学习.合作交流的新课程理念.对于例题的处理,改变了传统的教学模式,采用了〝尝试—交流—讲评—讨论〞的方式,充分发挥学生的主体性.参与性.同样采用了〝尝试—发现—归纳〞的方式.使学生清楚新旧知识的区别和联系.当然类比的对象也可能出现差异,这在进一步的类比有理数与数轴的关系时就表现出来了,有理数与数轴上的点不是一一对应的,而实数与数轴上的点是一一对应的.2.重视数学思想方法与算法算理的渗透,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类.辨析.归纳.化归等),通过让学生不断回顾有理数的相反数.绝对值.混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力.3.在本节课的设计中,注重引导学生参与探究.归纳(用自己的语言叙述)实数范围内的相反数.绝对值含义,以及实数范围内的混合运算法则.4. 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议.从课堂上学生的反映情况也看到了不足:1.学生自主探索的时间较少.对于学生,会对实数进行分类,没有大面积利用小组合作提高学生的积极性,有些面面俱到包揽太多,过于低估学生的学习能力,应给学生留有一定的学习空间.2.有些细节的重点地方忽略了,比如学生在表示出根号5,根号_等点时引导学生总结无理数也可在数轴上表示,此处如果再设计一问:反过来说,有理数把数轴填满了吗?引导学生回到本节课题实数与数轴的点一一对应. 3.分层教学对于不同层次的学生应该有不同的要求,在教学中应该多加注意,采取不同的评价方式,并且要有相应的激励方法,学生才能有热情去学习.数学课堂不应仅仅是学习的地方,更应是学生〝生活〞的乐园.让生活走进初中数学课堂,适应学生的学习生活和个性发展的需要,让所有的学生都能在数学课堂中接触生活.感悟生活,学习生活中必需的数学,才能更好地实践课改精神,推进高效课堂的进行.八年级数学实数教案5教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一.创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数.小数.分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数.零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二.讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为_=1,_=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为,…两个相同因数的乘积都为分数,所以a不可能是分数.[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=_+_,即b2=5,则b是有理数吗?请举手回答.[生甲]因为_=4,32=9,4 5 9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆〝数〞,即〝宇宙间的一切现象都能归结为整数或整数之比〞,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三.课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米.宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=_+_,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四.课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五.课后作业:见作业本.§2.1 数怎么又不够用了(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考.合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一.创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二.讲授新课1.导入:[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1 a 2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1._=1._,1._=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4 a 1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位.千分位上的数字. p=[生]因为1.4_=1.9881,1.4_=2._64,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为1.4_2=1.99__,1.4_2=1.993744,1.4_2=1.996569,1.4_2=1.999396,1.4_2=2.0__5,所以a应比1.4_大而比1.4_小,即千分位上的数字为4.[生]因为1.4__=1.99996_4,1.4_32=2.00_4449,所以a应比1.4_2大且比1.4_3小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.边长a 面积S1 a2 p= 1 s 41.4 a 1.5 p= 1.96 s2.251.41 a 1.42 p= 1.9881 s2._641.4_ a 1.4_ p= 1.999396 s2.0__51.4_2 a 1.4_3 p= 1.99996_4 s2.00_4449[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.4_2_56…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236_7978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0, =0.8, = ,,[生]3, 是有限小数, 是无限循环小数.[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.。
个性化辅导教案个性辅导教案学生学校年级科目教师日期时段次数课题实数—平方根、立方根教学重点难点1、了解无理数;2、了解平方根、算术平方根,立方根的概念,会用根号表示数的平方根;3、了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根。
教学步骤及教学内容【例1】下列各式:722=x,93=x,12.5=x,273-=x,412=x,14.3-=πx,432=x,...181181118.2=x(两个8之间1的个数逐次多1),010010001.1=x,其中x是无理数的有个。
【例2】有五张不透明的卡片为2,722,π,141141114.1,14.3-π除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,求抽到写有无理数卡片的概率?如果从中随机抽取2张卡片,求抽到的卡面都不是是无理数的概率。
平方根和算术平方根的概念 平方根的定义如果2x a =,那么x 叫做a 的平方根。
求一个数a 的平方根的运算,叫做开平方。
a 叫做被开方数.平方与开平方互为逆运算。
0≥a 算术平方根的定义正数a 的两个平方根可以用“a ±”表示,其中a 表示a 的正平方根(又叫算术平方根),读作“根号a ”;a -表示a 的负平方根,读作“负根号a ”.拓展:当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. a a =2()a a =2知识记忆:11-25的平方数【例1】计算下列各数的平方根。
(1)144 (2)225121 (3)1613 (4)250-【例2】求下列各式的值。
(1)41294- (2)11781-- (3)226061-【例3】求下列各式中的x .(1)4)125(2-=-+x (2)22)5(1125-=-x (3)16)14(2=--x立方根的定义如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果3x a =,那么x 叫做a 的立方根.求一个数的立方根的运算,叫做开立方.要点诠释:一个数a 的立方根,用3a 表示,其中a 是被开方数,3是根指数. 开立方和立方互为逆运算. 立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.a a =33()a a =33【例1】求下列各数的立方根。
实数教学设计第(一)课时教学设计思想本节内容需三课时讲授;本课时是对这段时间以来学过的数作一归纳性的总结,这个总结过程可由学生自己通过对具体的数比较的基础上引入,分清带根号的数不一定是无理数,对提出实数的概念(有理数和无理数的总称)表示接受和理解。
通过议一议,掌握数的分类要遵循的规则,领会分类的思想;在此过程中,通过对上述数的特点的分析,指出实数的绝对值和相反数的意义与在有理数范围内的意义是一样的,设计有针对性的例题和习题巩固对这些概念的认识,会求一个数的绝对值、相反数及倒数。
同时让学生思考,数的绝对值与相反数往往与数轴有密切的联系,进而让学生议一议“有理数能填满整个数轴吗?”,引出实数与数轴的关系,“每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
”,掌握如何在数轴上画出如:,等数,真切感受实数在数轴上的存在和实际大小,掌握实数大小比较的方法。
教学目标(一)知识与技能1.能对实数按要求进行分类.2.知道在实数范围内、相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.明白实数和数轴上的点是一一对应的并能根据它们在数轴上的位置来比较大小.(二)过程与方法1.通过对实数进行分类,培养学生的分类意识.2.用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想.(三)情感、态度与价值观通过对实数进行分类的练习,让学生进一步领会分类的思想.鼓励学生要从不同角度入手,寻求解决问题的多种途径.训练学生的多角度思维,为他们以后更好地工作作准备.教学重点1.实数概念的建立.2.实数的分类.3.在实数范围内,求相反数、倒数、绝对值.教学难点1.实数概念的建立.2.实数的分类.教学方法指导法.教具准备投影片.教学安排3课时.教学过程Ⅰ.导入新课在前面我们学了有理数和无理数,有理数是有限小数或无限循环小数,无理数是无限不循环小数,如π.在学了平方根和立方根之后,我们知道、这样的数也不是有理数,因为没有哪一个整数或分数的平方为2,立方为3.而且用估算的方法还知道、是无限不循环小数,因此这些数也是无理数.那是不是说带有根号的数就是无理数呢?也不全是.如=2,2是有理数,一般来说开方开不尽的数就是无理数,如等.在小学学了非负数,上初一引入了负数,数的范围扩充到有理数范围,那么引入无理数之后数的范围扩充到什么范围呢?本节课就来研究此问题以及与之有关的问题.Ⅱ.讲授新课1.实数的概念把下列各数分别填入相应的集合内:…有理数和无理数统称为实数(real number),即实数可以分为有理数和无理数.2.实数的分类[师]在有理数的分类中可以按正数、负数、零进行分类,也可按整数和分数进行分类,那么在实数范围内是不是也能这样分类呢?下面我们把上面各数填入下面相应的集合内.填完之后大家发现了什么?[生]无理数也有正负之分,0既不能填入正数集合,也不能填入负数集合.[师]因此,从正、负方面来考虑,实数可以分为正实数、零、负实数.即实数另外从定义也可以进行分类.实数这就是实数的两种分法.3.在实数范围内的几个概念.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(1)相反数:a与-a互为相反数,0的相反数是0.(2)倒数:若a≠0,则a与互为倒数.(3)绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即|a|=想一想[师]请大家思考并回答:(1)的相反数是_________,绝对值是_________;(2)与是_________;(3)-π的相反数是_________,它们的和是_________;(4)a是一个实数,它的相反数为_________,绝对值为_________.(5)若a≠0,则它的倒数为_________.[生](1)-,;(2)互为倒数;(3)π,0;(4)-a,|a|;(5)4.实数与数轴上的点之间的关系.[师]请大家认真观察图,然后再回答.(1)如图,OA=OB,数轴上A点对应的数是什么?它介于哪两个整数之间?(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?[生]因为根据勾股定理得OB2=1+1=2,所以OB=,OA=OB,故OA=,A点对应的数是无理数,它介于整数1和2之间.[生]如果把所有有理数都标到数轴上,那么数轴填不满.因为有理数不包括A点.[师]每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的.在数轴上,右边的点表示的数比左边的点表示的数大.Ⅲ.课堂练习1.判断下列说法是否正确.(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数;(4)无理数都是实数;(5)实数都是无理数.解:(1)错.如1.333…是无限小数但是有理数;(2)是正确的;(3)错误的. 如-、都是带根号的数,但它们不是无理数;(4)正确;(5)错.如,0,-3等都是实数,但不是无理数.2.求下列各数的相反数、倒数和绝对值.(1);(2);(3).解:(1)的相反数为-,倒数为,绝对值为;(2)=-2的相反数为2,倒数为-,绝对值为2;(3)=7,7的相反数为-7,倒数为;绝对值为7.3.在数轴上作出对应的点.解:如图,点A所表示的点即为对应的点.比较下列各组数的大小:(1);(2)-π与-;(3)2与3;(4)5+2与6+2. 解:(1)∵(7)2=56.25,而56.25>50∴,即7>;(2)-=-3.1428…,-π=-3.1415…∴-π>-;(3)采用平方法∵(2)2=60,(3)2=54而60>54 ∴2>3;(4)∵6+2=5+(1+2)以下采用平方法比较2与1+2的大小.(2)2=24,(1+2)2=1+4+20=21+4,又24=21+3,而3<4∴5+2<6+2.说明:被开方数较大的算术平方根较大.Ⅳ.课时小结本节课学了如下内容:1.实数的概念.2.实数的两种分类.(1)按大小分为:正实数,0,负实数.(2)按定义分为:有理数和无理数.3.在实数范围内,相反数,倒数,绝对值的意义仍然和在有理数范围内的意义相同.4.实数和数轴上的点是一一对应的.5.根据实数在数轴上的位置比较实数的大小.Ⅴ.课后作业习题2.8Ⅵ.活动与探究1.写出适合下列条件的数.(1)大于-小于的所有整数;(2)小于的所有自然数;(3)大于-的所有负整数;(4)绝对值小于的所有整数.分析:首先找到满足条件的最大数和最小数,然后再将它们之间的所有满足条件的数都写出来.解:(1)∵-<-<∴大于-且小于的所有整数是:-3,-2,-1,0,1,2.(2)∵∴小于的所有自然数是:4,3,2,1,0.(3)∵-∴大于-的所有负整数是:-3,-2,-1.(4)∵绝对值小于的数x,满足-<x<,而-<-<∴绝对值小于的所有整数是:-2,-1,0,1,2.说明:两个负数比较大小,绝对值大的反而小.2.求满足下列各式的x的值.(1)|x|=(2)|x2-5|=4分析:根据绝对值的概念,正实数的绝对值是它本身,负实数的绝对值是它的相反数.所以(1)中的x既可以是正实数,也可以是负实数.(2)把(x2-5)视作一个整体,类似于(1).解:(1)∵|x|=∴x=±(2)∵|x2-5|=4∴x2-5=±4当x2-5=4时x2=9∴x=±3当x2-5=-4时x2=1∴x=±1∴满足等式的x的值为-3,-1,1,3说明:互为相反数的二数的绝对值相等,即|a|=|-a|.3.已知x是实数,化简|3x-1|-|2x+1|.分析:设法脱掉绝对值符号,但x的范围没有具体给定,所以应讨论,具体方法是:(1)找零点:令3x-1=,x=,令2x+1=0,x=-;(2)描零点:在数轴上找出零点;(3)分区间:两个零点把实数轴所表示的数分成三个区间:x≤-,-<x≤,x>;(4)作化简:在各个区间上分别去绝对值符号,进行化简.解:(1)当x≤-时,3x-1<0,2x+1≤0原式=(1-3x)+(2x+1)=2-x.(2)当-<x≤时,3x-1≤0,2x+1>0原式=(1-3x)-(2x+1)=-5x.(3)当x>时,3x-1>0,2x+1>0原式=(3x-1)-(2x+1)=x-2.说明:在实数范围内的运算中,去绝对值符号时根据字母的取值范围确定绝对值符号内数的正、负、零,进行变形.否则就要分类讨论,借助于数轴把实数分为若干个区间,在每个区间内根据数的范围分别去掉绝对号,再进行合并同类项即可,这样形象、直观、简明,且可保证不重不漏.板书设计§2.6.1实数(一)一、实数的定义二、实数的分类三、在实数范围内的几个概念.四、实数与数轴上的点之间的关系.五、课堂练习六、课时小结七、作业。
八年级数学上册实数教案北师大版一、教学目标:1. 让学生理解实数的概念,掌握实数的分类及特点。
2. 能够正确运用实数进行运算,解决实际问题。
3. 培养学生逻辑思维能力,提高学生解决数学问题的能力。
二、教学内容:1. 实数的概念及分类:有理数、无理数、实数。
2. 实数的运算:加法、减法、乘法、除法。
3. 实数在实际问题中的应用。
三、教学重点与难点:1. 实数的分类及特点。
2. 实数的运算规律。
3. 实数在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解实数的概念、分类及运算规律。
2. 利用案例分析法,分析实数在实际问题中的应用。
3. 运用讨论法,引导学生探讨实数问题,培养学生的逻辑思维能力。
五、教学过程:1. 导入:回顾七年级学习的有理数知识,引导学生过渡到实数的学习。
2. 讲解实数的概念,阐述实数的分类及特点。
3. 讲解实数的运算规律,示范运算方法。
4. 运用案例分析,让学生理解实数在实际问题中的应用。
5. 布置作业,巩固所学知识。
7. 课后反思,针对学生的学习情况,调整教学策略。
六、教学评价:1. 课后作业:布置有关实数的运算题目,检验学生对实数运算规律的掌握程度。
2. 课堂练习:设计一些实际问题,让学生运用实数进行解答,评估学生运用实数解决问题的能力。
3. 单元测试:进行一次实数知识点的测试,了解学生对实数概念、分类和运算的掌握情况。
七、教学策略:1. 采用循序渐进的教学方法,由浅入深地引导学生学习实数知识。
2. 利用多媒体教学手段,如图片、视频等,增强课堂趣味性,提高学生的学习兴趣。
3. 创设生活情境,让学生感受到实数在现实生活中的应用,提高学生的学习积极性。
八、教学资源:1. 教材:北师大版八年级数学上册。
2. 教辅资料:实数相关习题集、案例分析资料。
3. 教学工具:黑板、粉笔、多媒体设备等。
九、教学进度安排:1. 第一课时:讲解实数的概念及分类。
2. 第二课时:讲解实数的运算规律。
第二章实数1.了解平方根、立方根、二次根式、最简二次根式、实数及其相关概念;会求平方根、立方根;能进行有关实数的简单四则运算和简单的二次根式化简,发展运算能力.2.结合具体情境理解估算的意义,能进行简单的估算,进一步发展数感和估算能力.经历数系扩充、探求实数性质及其运算规律、借助计算器探索数学规律等活动过程,发展抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.一、本章主要内容及要求1.体验从具体情境中抽象出数学符号的过程,理解实数.2.掌握必要的运算(包括估算)技能.3.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.4.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.5.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.6.能用有理数估计一个无理数的大致范围.7.了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值.8.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算.二、教材分析从有理数扩充到实数是初中阶段数系扩充的最后一个阶段,中学阶段的多数问题是在实数范围内进行的,同时实数也是后继内容(如一元二次方程、函数等)学习的基础.因此,本章学习内容具有基础性,应要求学生能熟练掌握有关实数的运算,适应后续学习的需要.学生以前经历过数系的第一次扩充,已经积累了一些数系扩充的学习经验,感受到数系扩充是源于实际生活的需要.本章再次引领学生经历数系扩充的过程,感受数系扩充的必要性.本章大致按照如下线索展开内容:无理数的引入——无理数的表示——实数的相关概念及其运算(包括简单的二次根式的化简),实数的应用贯穿于内容的始终.具体地,教材首先通过拼图活动和计算器探索活动,给出无理数的概念;然后通过具体问题的解决,引入平方根、立方根的概念和开方运算.由于在实际生活和生产中,人们常常通过估算来求无理数的近似值,为此教材安排了一节“估算”,介绍估算的方法,包括通过估算比较大小、检验计算结果的合理性等.接着,教材用类比的方法引入实数的相关概念、运算律和运算性质等,最后,介绍了二次根式的概念及其化简和运算.在呈现具体内容时,教材关注现实性,力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题.但考虑到本章内容的特点,以及随着学生年龄的增长,他们的思维水平也在不断提高,因此本章在关注现实性的同时,更加关注数学知识内部的挑战性,为此提供了许多有趣而富有数学含义的问题,如a可能是整数吗?a可能是分数吗?……让学生进行数学的思考,进一步提高学生的抽象思维水平.【重点】1.经历无理数发现的过程,了解无理数的概念和意义.2.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;能用平方运算与立方运算求某些数的平方根与立方根;会用计算器求平方根和立方根,并能探索一些有趣的数学规律.3.能用有理数估计一个无理数的大致范围,包括通过估算比较大小,检验计算结果的合理性等.4.了解实数的概念,会按要求对实数进行分类,了解实数的相反数和绝对值的意义,知道实数与数轴上的点具有一一对应的关系,了解有理数的运算法则与运算律对实数仍然适用.5.能对带根号的数进行化简,并能利用化简进行有关实数的简单四则运算.6.能运用实数的运算解决简单的实际问题.【难点】1.无理数概念的理解及应用.2.解决与实数有关的实际问题时的思维转化.3.运算性质的掌握与应用.1.注重概念的形成过程,让学生在概念的形成过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合,去掉非本质特征,保持本质属性而形成的.加强概念形成过程的教学,对提高学生的思维水平是很有必要的.如无理数的引入,要让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义,在教学时,教师要鼓励学生动手、动脑、动口,与同伴进行合作,并充分地开展交流.再如平方根的概念,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的运算结果唯一的经验不符.对此,在平方根的引入时,教师可多提一些具体的问题,如9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?……旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.接着让学生去讨论:一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,特别是负数的情况,然后再通过具体的求平方根的练习,巩固新学的概念.2.鼓励学生自主探索和合作交流.本章为学生提供了许多有趣而富有数学含义的问题,教学中应当让学生进行充分的探索和交流.如面积为2的正方形的边长a是什么数?教师应引导学生充分进行交流、讨论与探索,从中感受无理数引入的必要性,并体会无限不循环的过程;再如二次根式的相关运算性质,教学中应让学生经历从具体问题到一般规律的探索过程,鼓励学生借助计算器等工具进行探索、猜测、验证,并用自己的语言清楚地表达.3.注意运用类比的方法,使学生清楚新旧知识的区别和联系.七年级时,学生已经学习过有理数的有关概念和运算,本章将学习实数的有关概念及运算.在这些概念、运算律、运算法则的教学中,应加强类比教学,通过新旧知识的类比、对比,认识新旧知识的区别和联系,促进知识系统的构建与完善.如实数的相反数、绝对值等概念是完全类比有理数建立起来的,运算律和运算法则也是通过类比得出的.1认识无理数2课时2平方根2课时3立方根1课时4估算1课时5用计算器开方1课时6实数1课时7二次根式3课时回顾与思考1课时1认识无理数1.通过拼图活动,感受无理数关系到的实际背景和引入的必要性.2.借助计算器探索无理数,并从中体会无限逼近思想.3.会判断一个数是不是无理数.1.在探究的过程中使学生感受到数的扩张,积累解决数学问题的经验和方法.2.在探索的过程中体会无理数的产生过程,积累解决数学问题的方法和经验.1.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.2.通过“再创造”的过程,体会数学发现的方法和乐趣.【重点】理解无理数的概念.【难点】判断一个数是不是无理数.第课时感受无理数产生的实际背景和引入的必要性.经历动手拼图过程,发展动手能力和探索精神.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.【重点】感受无理数产生的背景.【难点】会判断一个数是不是无理数.【教师准备】两张边长为1的正方形纸片,多媒体课件.【学生准备】两张边长为1的正方形纸片,复习有理数的运算法则及勾股定理有关知识.导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?探究活动1.已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 - 1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1拼成后的正方形是什么样的呢?问题2拼成后的大正方形面积是多少?问题3若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够用了”.巧设问题背景,顺利引入本节课题.思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.[知识拓展]正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA的对角线长度就不是有理数,数轴上的点P表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.通过生活中的实例,证实了确实存在不是有理数的数.1.在直角三角形中两个直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.4答案:B2.下列面积的正方形,边长不是有理数的是()A.16B.25C.2D.4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为,长度不是有理数的线段为.答案:略第1课时1.拼接正方形.2.做一做.3.a,b存在,但不是有理数.一、教材作业【必做题】教材第21页随堂练习及教材第22页习题2.1第1题.【选做题】教材第22页习题2.1第2题.二、课后作业【基础巩固】1.在正方形网格中,每个小正方形的边长为1,则网格上的ΔABC 中,边长不是有理数的线段有 ,在图中再画一条边长不是有理数的线段.【能力提升】2.在任意两个有理数之间都有无数个有理数. 假设a ,b 是两个有理数,且a <b ,在a ,b 两数之间插入一个数为 . 【拓展探究】3.把下列小数化成分数. (1)0.6;(2)0.7·;(3)0.3·4·.4.你会在下面的正方形网格(每个小正方形面积为1)中画出面积为10的正方形吗?试一试.【答案与解析】1.AB ,BC ,AC 略(解析:AB 2=42+12=17,BC 2=22+32=13,AC 2=22+42=20.)2.a+b2(解析:答案不唯一,如插入a 和b 正中间的数.)3.解析:(1)0.6=35; (2)设0.7·=x ,则10x =7.7·,∴9x =7,从而x =79;(3)设0.3·4·=x ,则100x =34.3·4·,∴99x =34,从而x =3499. 解:(1)0.6=35. (2) 0.7·=79. (3) 0.3·4·=3499. 4.略大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本课时通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.在教学过程中,没有刻意安排一些环节,帮助理解能力差的学生加深对“新数”的理解.设计更多的实例让理解能力差的学生较好地理解“新数”.为进一步学习“新数”,即第二课时的教学埋下伏笔.随堂练习(教材第21页)解:因为等边三角形中BC边上的高平分BC,所以h2=22-12=3,所以h不可能是整数,也不可能是分数.习题2.1(教材第22页)1.解:答案不唯一.如图(1)所示,线段AB,AD,AE,DE,BD,BC的长度都是有理数;线段AC,CE,BE的长度都不是有理数.2.解:答案不唯一.如图(2)所示的是几个符合要求的直角三角形.一个正方形木块的面积为8平方厘米,那么它的边长满足什么条件?可能是整数吗?可能是分数吗?解:它的边长的平方为8,没有整数的平方为8,所以边长不可能为整数,也没有一个分数的平方为8,所以边长不可能为分数.第课时掌握无理数的概念;能用所学定义正确判断所给数的属性.借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.在掌握估算方法的过程中,发展学生的数感和估算能力.【重点】能用所学定义正确判断所给数的属性.【难点】无理数概念的建立.【教师准备】计算器、立方体、多媒体课件.【学生准备】计算器、复习有理数的分类.导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如-1,0,2,3,…)分数(如13,-25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a2=2,b2=5中的a,b不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图]通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.一、数的小数表示面积为2的正方形的边长a究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?边长a面积S1<a<2 1<S<41.4<a<1.5 1.96<S<2.251.41<a<1.42 1.9881<S<2.01641.414<a<1.415 1.999396<S<2.0022251.4142<a<1.4143 1.99996164<S<2.00024449【思考】a的范围在哪两个数之间?左面的边长中,前面的数值和后面的数值相比,哪个更接近正方形的实际边长?【归纳总结】a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.【做一做】(1)请大家用上面的方法估计面积为5的正方形的边长b的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b≈2.2,精确到0.01,b≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.25992105…,它也是一个无限不循环小数.[设计意图]让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,c=1.25992105…是无限不循环小数的过程,体会无限逼近的思想.二、有理数的小数表示,明确无理数的概念思路一请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么? 3,45,59,-845,211.【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况? 思路二回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数. 【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数) 【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.三、例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2). 解:有理数有:3.14,-43,0.5·7·;无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2). 【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q的形式(q ≠0,p ,q 为整数且互质),而无理数不能.[设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类. [知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法: 1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数 答案:C2.以下各正方形的边长是无理数的是 ( ) A .面积为25的正方形 B .面积为425的正方形 C .面积为8的正方形 D .面积为1.44的正方形 解析:52=25,(25)2=425,(1.2)2=1.44.故选C .3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数. 4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n ,-1.4242242224…(相邻两个4之间2的个数逐次加1). (1)写出所有有理数; (2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n .(2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第2课时1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.一、教材作业【必做题】教材第24页随堂练习.【选做题】教材第25页习题2.2第2,4题.二、课后作业【基础巩固】1.面积为3的正方形的边长为x,则x()A.1<x<2B.2<x<3C.3<x<4D.4<x<52.一个正三角形的边长是4,高为h,则h是()A.整数B.分数C.有限小数D.无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是,则斜边长是数. 【拓展探究】4.设半径为a的圆的面积为20 π.(1)a是有理数吗?说说你的理由;(2)估计a的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数. (2)a≈4.5.(3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米. (2)1.73米.本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.随堂练习(教材第24页)解:有理数有:0.4583,3.7·,-17,18.无理数有:-π. 习题2.2(教材第25页) 1.解:-559180,3.97·,-234.10101010…(相邻两个1之间有1个0)是有理数,0.12345678910111213…(小数部分由相继的正整数组成)是无理数. 2.提示:(1)x 不是有理数. (2)x ≈3.2. (3)x ≈3.16. 3.(1)✕ (2) (3)✕ (4)✕4.解:5π,π-1,3.4141141114…(相邻两个4之间1的个数逐次加1)等,答案不唯一.由于本节的重点之一是让学生经历借助计算器探索无理数是无限不循环小数的过程,因此,要重视教材创设(或相同类型)的问题,针对内容应该花较多的时间,教师应积极引导,让学生有充足的时间借助计算器进行思考和交流,循序渐进地缩小范围,体会无限逼近的思想.本节渗透了用有理数近似地表示无理数和用有理数逼近无理数的数学思想,通过探索,学生容易理解“无限”,但对“不循环”一般不会有清楚的认识,只有逐步渗透理解,教学中不必多说.“逼近”思想可以借用中央电视台的“幸运52”的猜商品的价格游戏进行解释.为进一步让学生理解无理数的概念,应强调“无限不循环小数”与“无限循环小数”的联系和区别,前者不能化为分数,后者可以化为分数,但如何化成分数,教师不必深入讲解.鼓励学生自学教材中的“读一读”,了解无理数产生的历史背景和人类的科学精神,特别是对学有余力的学生,在教师引导下,可阅读“边长为1的正方形的对角线的长是无理数”的严格证明.一根长为5米的电线杆竖立于地面,为保证它的安全,要用三根钢丝把它固定,要求每根钢丝一头拉着电线杆的最上端,一头系在离电线杆3米远的地面木桩上,则每根钢丝的长要满足什么条件?它是有理数吗?大概是多长?〔解析〕每根钢丝的长要满足它的平方等于52+32,它不是有理数,大概是5.8米.解:由勾股定理,得钢丝长的平方等于52+32=34,但是找不到一个整数的平方是34,也找不到一个分数的平方是34,所以,它不是有理数,5.82=33.64,接近于34,所以大概为5.8米.2平方根1.了解数的算术平方根、平方根的概念,会用根号表示一个数的算术平方根和平方根.2.了解开方与平方是互逆运算,会利用平方运算求某些非负数的算术平方根和平方根.通过教学过程的参与,培养学生学习的主动性,提高数学表达和运算能力.。
第二章实数1 认识无理数1.通过拼图活动,让学生感受无理数关系到的实际背景和引入的必要性.2.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近思想.3.会判断一个数是不是无理数.重点理解无理数的概念.难点判断一个数是不是无理数.一、情境导入师:把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?课件出示教材第21页图2-1.图2-1图2-1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1:拼成后的大正方形面积是多少?问题2:若新的大正方形边长为a,a2=2,则a可能是整数吗?a可能是分数吗?总结:没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a不可能是有理数.二、探究新知1.有理数表示不了的数.课件出示教材第21页“做一做”.提示学生根据三角形的三边关系判断b的取值范围.解:(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.2.无理数.师:面积为2的正方形的边长a究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a 的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?师:a 更接近正方形的实际边长?总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,所以a 一定不是有理数.师:如果写成小数形式,它是有限小数吗?事实上,a =1.414 213 56…它是一个无限不循环小数.课件出示教材第23页“做一做”.事实上,b =2.236 067 978…它是一个无限不循环小数.提示:精确到0.1,b ≈2.2,精确到0.01,b ≈2.24.同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c =1.259 921 05…它也是一个无限不循环小数.课件出示教材第23页“议一议”.事实上,有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.无限不循环小数称为无理数.3.常见的无理数.课件出示教材第23页“想一想”.除了像上面所述的数 a, b, c 是无理数外, 我们十分熟悉的圆周率π=3.141 592 65…也是一个无限不循环小数,因此它也是一个无理数.再如0.585 885 888 588 885…(相邻两个 5 之间 8 的个数逐次加 1)也是无理数.三、举例分析课件出示教材第23页例题.解:有理数有:3.14,-43,0.57··; 无理数有:0.101 000 100 000 1…(相邻两个1之间0的个数逐次加2).强调:(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化成分数的形式,而无理数不能.四、练习巩固1.教材第21页“随堂练习”.2.教材第24页“随堂练习”.五、小结1.通过生活中的实例,证实了确实存在不是有理数的数.2.有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.3.无限不循环小数叫做无理数.六、课外作业1.教材第22页习题2.1第1,2题.2.教材第25页习题2.2第1,2,3题.大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本节课通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.第2课时多项式与多项式相乘1.理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.(重点)2.掌握多项式与多项式的乘法法则的应用.(难点)一、情境导入某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.学生积极思考,教师引导学生分析,学生发现:这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)平方米.另外:如图,这块地由四小块组成,它们的面积分别为ma平方米,mb平方米、na平方米,nb平方米,故这块地的面积为(ma+mb+na+nb)平方米.由此可得:(m+n)(a+b)=ma+mb+na+nb.今天我们就学习多项式乘以多项式.二、合作探究探究点一:多项式乘以多项式【类型一】直接利用多项式乘多项式进行计算计算:(1)(3x+2)(x+2);(2)(4y-1)(5-y).解析:利用多项式乘多项式法则计算,即可得到结果.解:(1)原式=3x2+6x+2x+4=3x2+8x+4;(2)原式=20y-4y2-5+y=-4y2+21y-5.方法总结:多项式乘以多项式,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.【类型二】混合运算计算:(3a+1)(2a-3)-(6a-5)(a-4).解析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解:(3a+1)(2a-3)-(6a-5)(a-4)=6a2-9a+2a-3-6a2+24a+5a-20=22a-23.方法总结:在计算时要注意混合运算的顺序和法则以及运算结果的符号.探究点二:多项式乘多项式的化简求值及应用【类型一】 化简求值先化简,再求值:(a -2b )(a 2+2ab +4b 2)-a (a -5b )(a +3b ),其中a =-1,b=1.解析:先将式子利用整式乘法展开,合并同类项化简,再代入计算.解:(a -2b )(a 2+2ab +4b 2)-a (a -5b )(a +3b )=a 3-8b 3-(a 2-5ab )(a +3b )=a 3-8b3-a 3-3a 2b +5a 2b +15ab 2=-8b 3+2a 2b +15ab 2.当a =-1,b =1时,原式=-8+2-15=-21.方法总结:化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.【类型二】 多项式乘以多项式与方程的综合解方程:(x -3)(x -2)=(x +9)(x +1)+4.解析:方程两边利用多项式乘以多项式法则计算,移项合并同类项,将x 系数化为1,即可求出解.解:去括号后得:x 2-5x +6=x 2+10x +9+4,移项合并同类项得:-15x =7,解得x=-715. 方法总结:解答本题就是利用多项式的乘法,将原方程转化为已学过的方程解答.【类型三】 多项式乘以多项式的实际应用千年古镇杨家滩的某小区的内坝是一块长为(3a +b )米,宽为(2a +b )米的长方形地块,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.解析:根据长方形的面积公式,可得内坝、景点的面积,根据面积的和差,可得答案.解:由题意,得(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab ,当a =3,b =2时,5a 2+3ab =5×32+3×3×2=63,故绿化的面积是63m 2.方法总结:用代数式表示图形的长和宽,再利用面积(或体积)公式求面积(或体积)是解决问题的关键.【类型四】 多项式乘以单项式后,不含某一项,求字母系数的值已知ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a 、b 的值.解析:首先利用多项式乘法法则计算出(ax 2+bx +1)(3x -2),再根据积不含x 2的项,也不含x 的项,可得含x 2的项和含x 的项的系数等于零,即可求出a 与b 的值.解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2,∵积不含x 2的项,也不含x 的项,∴-2a +3b =0,-2b +3=0,解得b =32,a =94.∴系数a 、b 的值分别是94,32.方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计多项式与多项式相乘多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础.统计调查数据处理的过程数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
教学目标:
1、了解实数的意义,能对实数按要求进行分类。
2、了解实数范围内,相反数、倒数、绝对值的意义。
3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
重点、难点:
重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
教学过程:
一、创设问题情景,引出实数的概念
1、什么叫无理数,什么叫有理数,举例说明。
2、把下列各数分别填入相应的集合内。
,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)
教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number)。
教师点明:实数可分为有理数与无理数。
二、议一议
1、在实数概念基础上对实数进行不同分类。
无理数与有理数一样,也有正负之分,如是正的,是负的。
教师提出以下问题,让学生思考:
(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?
正有理数:
负有理数:
有理数:
无理数:
(2)0属于正数吗?0属于负数吗?
(3)实数除了可以分为有理数与无理数外,实数还可怎样分?
让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。
2、了解实数范围内相反数、倒数、绝对值的意义:
在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么。
在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
例如,和是互为相反数,和互为倒数。
,,,。
三、想一想
让学生思考以下问题
1、a是一个实数,它的相反数为,绝对值为;
2、如果,那么它的倒数为。
让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)
四、议一议。
探索用数轴上的点来表示无理数
1、复习勾股定理。
如图在Rt△ABC中AB= a,BC = b,AC = c,其中a、b、c满足什么条件。
当a=1,b=1时,c的值是多少?
2、P55页图2—4,让学生探讨以下问题:
(A)如图OA=OB,数轴上A点对应的数是多少?
(B)如果将所有有理数都标到数轴上,那么数轴上被填满了吗?
让学生充分思考交流后,引导学生达成以下共识:
(1)A点对应的数等于,它介于1与2之间。
(2)如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数。
(3)每一个褛都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
(4)一样地,在数轴上,右边的点比左边的点表示的数大。
五、随堂练习
1、判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数。
2、求下列各数的相反数、倒数和绝对值:
(1)3.8 (2)(3)(4)(5)
3、在数轴上作出对应的点。
六、小结
1、实数的概念
2、实数可以怎样分类
3、实数a的相反数为,绝对值,若,它的倒数为。
4、数轴上的点和实数一一对应。
七、作业
课本P46习题2—8
板书设计:略
教学反思:本节内容并不复杂,大部分同学都能很好的掌握。
很大部分是借助新知识回顾旧内容。