二维机翼振动非定常流场的数值模拟
- 格式:pdf
- 大小:406.12 KB
- 文档页数:4
非线性振动的数值模拟与分析近年来,随着科技的发展和社会的进步,非线性振动引起越来越多的重视。
非线性振动的研究不仅是科学研究的重要领域,也是工程应用的重要基础。
在这方面,数值模拟与分析技术在非线性振动研究中占据了重要地位。
非线性振动是指振动系统中的某些物理量呈现出非线性关系的振动现象。
与线性振动相比,非线性振动的动态学行为更为复杂,具有丰富的物理特性,例如倍频现象、畸变振动和混沌现象等。
传统的线性振动理论已经不能很好地描述这些现象,因此非线性振动的研究需要使用更为深入的非线性动力学理论。
数值模拟与分析技术是研究非线性振动的重要手段之一。
通过数值模拟与分析,可以模拟出复杂的非线性振动系统,描述其中的振动特征、相位差、光谱图等重要参数,并进一步分析其可能的动态行为。
目前,常用的数值模拟方法主要有两种:一种是通过有限元方法,建立相应的数值模型;另一种是采用解析方法,进行数值计算与分析。
不论是哪种方法,其本质都是基于数值解析与计算机算法,通过计算机技术实现对非线性振动的复杂模拟和分析。
然而,数值模拟与分析技术也存在着一些局限性。
对于某些复杂的非线性振动系统,由于其复杂性和多样性,数值模拟方法的精度和可靠性受到很大的影响。
此时,需要引入一些新的数学工具和算法,才能更好地解决这些问题。
例如,近年来,级数方法和哈尔莫尼振动法等新兴算法在非线性振动研究中得到广泛的应用。
这些新算法不仅可以提高计算精度,同时能够在解决非定常问题的同时,更好地描述非线性振动系统的动态响应。
在实际工程应用中,非线性振动的模拟和分析也有很多重要的应用场景。
例如,在飞机的结构设计中,需要进行非线性振动分析,以确定飞机结构的疲劳寿命和安全性;在电力系统中,需要进行非线性振动分析,以对系统进行稳定性分析和控制。
总之,非线性振动的研究是当前科学研究和工程应用中的一个重要领域。
通过数值模拟与分析技术,我们可以更好地模拟和分析非线性振动系统,从而理解它们的特征和动态响应,为相关应用领域提供更好的支持和服务。
飞机设计优化中流场数值模拟方法的研究及应用创新引言:飞机设计优化是现代航空工程中的重要研究领域之一。
在飞机设计阶段,通过模拟流场数值,可以提供对飞机的空气动力学性能进行准确评估的有效工具。
本文将对流场数值模拟方法在飞机设计优化中的研究与应用进行深入探讨,旨在探索创新的方法以提高飞机设计效率和性能。
一、流场数值模拟方法的概述流场数值模拟是一种基于计算流体力学(CFD)的技术,通过离散方程组的求解,得到模拟自由空气中的速度、压力、温度等物理量的数值解。
流场数值模拟方法的基本原理是通过数值计算来模拟真实流体运动的物理现象。
二、流场数值模拟方法在飞机设计优化中的应用现状1. 飞行器气动性能预测流场数值模拟方法可用于预测飞行器在不同飞行状态下的气动性能。
通过改变飞行器的几何形状和工况参数,可以预测其升力、阻力、升阻比等性能指标,为飞机设计提供重要的依据。
2. 空气动力学优化设计在飞机设计的过程中,通过优化飞机的气动外形,可以减少阻力、提高升力、改善飞行稳定性和操纵性。
流场数值模拟方法可以高精度地评估不同设计方案的气动性能,为优化设计提供指导。
3. 结构强度分析除了考虑飞机的气动性能,流场数值模拟方法还可以用于分析飞机在飞行和地面操作时所受到的各种载荷,如空气动力载荷、惯性载荷、操纵系统载荷等。
这对于飞机的结构强度和寿命评估非常重要。
三、流场数值模拟方法的研究进展1. 网格生成技术的改进网格生成是流场数值模拟的基础,良好的网格质量对数值模拟结果的准确性和稳定性至关重要。
近年来,研究人员通过改进传统网格生成算法和开发自适应网格生成技术,提高了数值模拟的效率和准确性。
2. 数值模拟算法的发展为了提高数值模拟的计算效率和准确性,研究人员不断改进传统的数值模拟算法,并提出了一些创新的算法。
例如,基于稳定性的数值模拟方法、并行计算技术等,可以有效地缩短数值模拟的计算时间,同时减小数值模拟误差。
3. 模型与物理效应的改进为了更准确地模拟飞机的流场现象,研究人员通过改进数学模型和物理模型,考虑了更多的气动效应,如湍流、化学反应、燃烧等。
Savonius型风力机非定常流动的CFD和PIV研究摘要:本文旨在介绍Savonius(萨沃纽斯)型垂直轴风力发电机流场的研究。
这种风力机结构紧凑,可当做多级能源使用。
它的转子高度大约相等于转子直径,因此,风力发电机组的流动模拟需要三维模型。
由于其操作原则和叶片气流角的连续变化,可以观察到强烈不稳定影响造成的分离和涡脱落的现象。
在这种情况下,用K-ω和DES湍流模型可以得到良好的实验效果。
在本次工作中,我们采用CFD研究Savonius型风力机在不同流场条件下的行为,并确定其性能和尾迹的演变。
流场分析能帮助我们判别风力机设计的好坏。
为了验证模拟的准确性,在风洞中进行PIV试验研究,它可以确定真实的流场结构并验证数值模拟的精度。
1.介绍风力机通常被分为两种类型:水平轴和垂直轴。
这样分类与转轴相对风的位置有关。
因此,Savonius型风力机和Darrieus,Gyromill,H-rotor等等风力机一样归类为垂直轴风机。
Savonius型风力机以拥有此专利的芬兰工程师Savonius命名。
转子的基本版本是个S形横截面,这个S形横截面由两个半圆形与它们之间的一小部分重叠的叶片组成。
Savonius型转子被列为拖动式垂直轴风力机,其操作原理主要是基于凸叶片和凹叶片之间的阻力差。
然而,转子的不同角位置以及升力也能产生扭矩。
文献3是Savonius型风力机优点的综述,这种风力机设计简单稳健,可支持高风速,在低风速下也具有良好的启动特性和操作性。
它不需要定向装置,能在任何风向下工作。
这种风力机比转速低,不幸的是它的功率系数比较低。
关于Savonius型转子的试验和数值研究已经很多很多。
文献1,4,5,6,7是关于风洞中的试验。
在文献8,9,10,11中,为了获得转子内部以及周围的速度场,很多作者使用粒子成像技术或者粒子跟踪测速法。
除了试验,文献1,12,13,14还展示了许多数值研究。
Savonius型转子的气动性能和机械强度使得这种风力机能作为一个小型自主电源的一部分。
翼型非定常来流下复合运动动态失速仿真谢凯;Laith K.Abbas;陈东阳;杨富锋;芮筱亭【摘要】针对直升机前飞时的动态失速问题,本文采用转捩修正的SST k-ω湍流模型和嵌套网格技术对雷诺数Re为3.92× 106时的直升机二维翼型SC1095进行数值仿真.以非定常来流条件下的纯俯仰运动为基础,对比分析了在耦合挥舞、摆振运动时,相位差、振幅对动态失速的影响;比较挥舞、摆振二者运动对于动态失速角的作用大小.结果表明:固定振幅条件下,挥舞和摆振运动相位差的增加会使动态失速角提前,升力系数峰值提高;固定相位角条件下,挥舞和摆振运动振幅的增加会使动态失速角延迟,升力系数峰值减小.挥舞运动对于非定常来流下俯仰运动翼型动态失速角的影响要大于摆振运动.本文计算方法和研究结果为翼型多自由度耦合运动下的动态失速行为预测提供参考.【期刊名称】《哈尔滨工程大学学报》【年(卷),期】2019(040)005【总页数】7页(P865-871)【关键词】直升机旋翼翼型;动态失速;计算流体力学;嵌套网格;俯仰运动;挥舞运动;摆振运动【作者】谢凯;Laith K.Abbas;陈东阳;杨富锋;芮筱亭【作者单位】南京理工大学发射动力学研究所,江苏南京210094;南京理工大学发射动力学研究所,江苏南京210094;南京理工大学发射动力学研究所,江苏南京210094;南京理工大学发射动力学研究所,江苏南京210094;南京理工大学发射动力学研究所,江苏南京210094【正文语种】中文【中图分类】V211.3动态失速是指翼型或机翼的非定常运动造成失速角明显超过其静态失速角的失速迟滞现象[1]。
虽然动态失速能够增大升力峰值,但同时也造成了阻力、俯仰力矩的突增和气动中心失稳[2],严重限制了直升机安全飞行包线,对直升机飞行安全造成严重危害。
而对于前飞时的直升机,其旋翼所处的气动环境更加复杂,一方面桨叶会随方位角做周期性变距、挥舞、摆振的复合运动;另一方面由于旋转速度与前飞速度的叠加,桨叶周向来流速度会随方位角呈现出明显的非定常性[3],这给直升机动态失速的预测增加了困难。