独立样本T检验操作
- 格式:pptx
- 大小:2.31 MB
- 文档页数:17
SPSS统计分析教程-独立样本T检验.docSPSS统计分析教程:独立样本T检验一、简介独立样本T检验(Independent Sample T-test)是统计分析中常见的一种方法,主要用于比较两组数据的均值是否存在显著差异。
这种检验的前提假设是,两组数据来自正态分布的独立样本。
独立样本T检验在SPSS中的实现相对简单,下面将详细介绍其操作步骤和解读结果。
二、数据准备在进行独立样本T检验之前,需要准备好数据。
数据通常存储在Excel或SPSS数据文件中。
为了方便起见,我们将使用SPSS数据文件进行说明。
三、操作步骤1.打开SPSS软件,点击“分析”(Analyze)菜单,然后选择“比较均值”(Compare Means)中的“独立样本T检验”(Independent Sample T-test)。
2.在弹出的对话框中,将左侧的“组别”(Grouped By)字段设置为一组变量,如“性别”(Gender),将右侧的“组1”(Group 1)和“组2”(Group 2)字段设置为另一组变量,如“年龄”(Age)。
3.点击“确定”(OK)按钮开始进行独立样本T检验。
四、结果解读1.假设检验(Hypothesis Test):在结果中,可以看到假设检验的结果。
如果p值小于显著性水平(通常为0.05),则拒绝原假设(即两组数据的均值无显著差异),认为两组数据的均值存在显著差异。
反之,如果p值大于显著性水平,则接受原假设,认为两组数据的均值无显著差异。
2.均值(Mean):在结果中,可以看到每组数据的均值。
如果两组数据的均值存在显著差异,则可以通过均值的大小来判断哪组数据更好或更优。
3.标准差(Standard Deviation):在结果中,还可以看到每组数据的标准差。
标准差反映了数据分布的离散程度,标准差越大,说明数据分布越不集中。
4.t统计量(t-statistic):t统计量是用来衡量两组数据之间差异大小的一个指标。
独立样本t检验原理
独立样本t检验是用于比较两个独立样本平均值差异是否显著
的统计方法。
根据中心极限定理,当样本容量大于30时,样
本平均值的抽样分布近似为正态分布。
独立样本t检验的原理
是基于此,计算两个样本平均值的差别和标准误差,进而得到
t值,并与t分布的临界值比较,判断两个样本平均值是否有
显著差异。
具体步骤如下:
1. 提出假设:设两个样本均值分别为μ1和μ2,零假设为H0:μ1=μ2,备择假设为Ha:μ1≠μ2。
2. 计算样本平均值差异:分别计算两个样本的平均值和标准差,计算两个样本平均值的差异。
3. 计算标准误差:通过两个样本的方差和样本大小计算标准误差。
4. 计算t值:用两个样本平均值的差异除以标准误差,得到t 值。
5. 比较t值:根据自由度和显著性水平查表得到t分布的临界值,将计算出的t值与临界值进行比较,如果t值小于临界值,则不能拒绝零假设,否则拒绝零假设,接受备择假设,认为两个样本的平均值存在显著差异。
两独立样本T检验-SPSS操作详解
为了解某一新药降血压的效果,将28名高血压患者随机分为实验组和对照组,实验组采用新药,对照组采用常规药,测得治疗前后的血压变化,问新药是否优于常规药?
1 打开SPSS软件,定义变量。
变量1设置:name-group , decimals-0 , label-分组, value-(1=新药,2=常规药) 变量2设置:name-value , decimals-0 , label-血压下降值
2 输入数据---血压差=用药前血压-用药后血压
3 单击菜单栏analyze/compare means/independent-samples t test
4 将血压下降值调入test variables下矩形框
5 将分组(group)调入grouping variable 下矩形框
6单击define groups…定义分组group1为1 定义group2为2 单击continue
7 options选项默认
8 bootstrap选项默认
9 单击OK 输出结果
10 结果界面
11 结果解释
表1表示两独立样本t检验基本统计量-group statistics
表2表示两独立样本t检验结果,方差方程的levene检验(Levene’s Test for Equality of Variances 方差齐性检验)F=3.115,P=0.93,认为两样本来自的总体方差齐。
T检验中t=3.18,P=0.005。
按α=0.05水准拒绝H0
,差异有统计学意义。
可认为新药组的降压效果优于常规药。
2017/06/06于深圳
随时交流:ammomeng@。
异质性检验操作方法异质性检验是一种用于比较两个或多个样本之间是否存在显著差异的统计方法。
常用于科学研究和数据分析中,以确定研究对象之间是否存在统计学意义上的差异。
异质性检验有多种方法,包括t检验、方差分析、卡方检验等。
以下将详细介绍一些常用的异质性检验方法的操作方法。
1. t检验:t检验是一种用于比较两个样本均值是否存在显著差异的统计方法。
它分为独立样本t检验和配对样本t检验两种形式。
(1)独立样本t检验:操作步骤如下:a. 确定研究的零假设和备择假设,即两个样本的均值是否相等。
b. 收集两个样本的数据,并计算样本均值和标准差。
c. 利用t分布表或统计软件计算得到t值。
d. 根据研究的显著水平(通常为0.05),确定临界值。
e. 比较计算得到的t值和临界值,判断两个样本的均值是否有显著差异。
(2)配对样本t检验:操作步骤如下:a. 确定研究的零假设和备择假设,即配对样本的均值是否相等。
b. 收集配对样本的数据,并计算差值。
c. 计算差值的平均值和标准差,并得到t值。
d. 根据研究的显著水平(通常为0.05),确定临界值。
e. 比较计算得到的t值和临界值,判断配对样本的均值是否有显著差异。
2. 方差分析:方差分析用于比较三个或更多个样本均值是否存在显著差异,适用于有一个自变量和一个因变量的情况。
操作步骤如下:a. 确定研究的零假设和备择假设,即各样本均值是否相等。
b. 收集各组样本的数据,并计算各组样本的均值和方差。
c. 计算组间变异和组内变异的比值(F值)。
d. 根据研究的显著水平(通常为0.05),确定临界值。
e. 比较计算得到的F值和临界值,判断各组样本的均值是否有显著差异。
3. 卡方检验:卡方检验用于比较两个或多个分类变量之间是否存在显著关联或差异。
操作步骤如下:a. 确定研究的零假设和备择假设,即各组之间是否独立。
b. 收集各组的实际统计数据,并计算预期频数。
c. 计算卡方值。
d. 根据研究的显著水平(通常为0.05),确定临界值。
T检验单样本与独立样本T检验是一种常用的统计方法,用于比较两组数据之间的差异是否显著。
在实际应用中,T检验可以分为单样本T检验和独立样本T检验两种情况。
本文将分别介绍单样本T检验和独立样本T检验的原理、应用场景以及计算方法。
## 单样本T检验单样本T检验用于检验一个样本的均值是否与已知的总体均值存在显著差异。
在进行单样本T检验时,需要满足以下假设:- 零假设(H0):样本均值与总体均值无显著差异。
- 备择假设(H1):样本均值与总体均值存在显著差异。
进行单样本T检验的步骤如下:1. 提出假设:设定零假设和备择假设。
2. 收集数据:获取样本数据。
3. 计算T值:根据样本数据计算T值。
4. 确定显著性水平:设定显著性水平(通常为0.05)。
5. 判断结果:比较计算得到的T值与临界T值,判断是否拒绝零假设。
## 独立样本T检验独立样本T检验用于比较两组独立样本的均值是否存在显著差异。
在进行独立样本T检验时,同样需要满足零假设和备择假设。
独立样本T检验的步骤如下:1. 提出假设:设定零假设和备择假设。
2. 收集数据:获取两组独立样本数据。
3. 计算T值:根据两组样本数据计算T值。
4. 确定显著性水平:设定显著性水平(通常为0.05)。
5. 判断结果:比较计算得到的T值与临界T值,判断是否拒绝零假设。
在实际应用中,单样本T检验常用于分析一个样本的均值是否与总体均值存在显著差异,例如某一产品的平均质量是否符合标准要求;而独立样本T检验常用于比较两组独立样本的均值,例如男性和女性在某项指标上的平均差异是否显著。
总之,T检验是一种重要的统计方法,可以帮助研究者判断样本数据之间的差异是否具有统计学意义。
通过合理应用T检验,可以更准确地进行数据分析和决策制定。
希望本文对T检验的单样本和独立样本应用有所帮助。
使用“住房状况调查”数据,对不同性别、户口状况的居民现住面积进行独立样本T检验并解释其结果。
答:对不同性别的居民现住面积进行独立样本T检验:①SPSS操作:第一步:点击“分析”、依次选择“比较平均值”、“独立样本T检验”;第二步:将“现住面积”选入“检验变量”,“性别”选入“分组变量”,在点击“定义组”,在“组1”中键入1,在“组2”中键入2,点击“继续”、“确定”。
②结果输出:③结果解读:先用F检验对不同性别的居民现住面积的方差是否向相等加以验证,然后利用t检验对不同性别的居民现住面积的均值是否存在差异进行检验。
从独立样本检验输出图中可以看到:F统计量为1.598,p值为0.206,在显著性水平0.05下,p值大于0.05,不拒绝原假设,即认为不同性别的居民现住面积的方差相等,没有差别。
由于不同性别的居民现住面积的方差没有差别,t检验将看假定等方差一栏。
t统计量为2.982,p值为0.003,在显著性水平0.05下,p值小于0.05,拒绝原假设,即认为不同性别的居民现住面积的均值有显著性差异。
对不同户口状况的居民现住面积进行独立样本T检验:④SPSS操作:第一步:点击“分析”、依次选择“比较平均值”、“独立样本T检验”;第二步:将“现住面积”选入“检验变量”,“户口状况”选入“分组变量”,在点击“定义组”,在“组1”中键入1,在“组2”中键入2,点击“继续”、“确定”。
⑤结果输出:⑥结果解读:先用F检验对不同户口状况的居民现住面积的方差是否向相等加以验证,然后利用t检验对不同户口状况的居民现住面积的均值是否存在差异进行检验。
从独立样本检验输出图中可以看到:F统计量为5.966,p值为0.015,在显著性水平0.05下,p值小于0.05,拒绝原假设,即认为不同户口状况的居民现住面积的方差存在显著差异。
由于不同户口状况的居民现住面积的方差存在显著差异,t检验将看不假定等方差一栏。
t统计量为3.314,p值为0.001,在显著性水平0.05下,p值小于0.05,拒绝原假设,即认为不同户口状况的居民现住面积的均值有显著性差异。
spss中有关独立样本T检验的详细介绍包含操作过程和结果分析分析>比较平均值3.独立样本T检验独立样本T检验类似于单样本T检验,不过独立样本T检验的内容比单样本T检验要复杂的多,特别是对其结果的分析,而独立样本T检验被使用的情况也比单样本T检验更广泛(因此也可以看到网络上关于独立样本T检验的文章远比关于单样本T检验的文章多)对比:二者都是将数据的平均值进行比较,不同之处在于单样本T检验是将一个样本与某一特定值进行对比,而独立样本T检验是对多个样本之间的平均值进行对比。
独立样本是指进行对比的多个样本之间是相互独立、互不干扰的,通过独立样本T检验我们可以判断多个样本之间的平均值是否可以认为是相等的。
没有什么比举个例子更容易理解独立样本T检验的用途了:假如我们有两个样本,分别是来自农村和城市两个不同地方的人们的身高数据,我们的目的是探讨农村和城市的差异会不会给当地的人们带来身高上的影。
这时我们算出城市的人群的平均身高为168.38cm,而农村的人们的平均身高为164.58cm,二者差了3.8cm,那我们是否就可以认为这3.8cm就可以很好的说明农村和城市的人们身高有差异呢?那如果是差了3cm呢?如果是差了1cm呢?这种时候就不可以单靠感觉来评判了,而是应该使用独立样本T检验来帮助我们判断得出结论检验变量——需要进行平均值比较的数据分组变量——用于区分不同样本的变量选项——选择置信区间百分比以及缺失值的处理方法对于分组变量我们操作时需要注意一下,在我们选入了分组变量后,我们必须要对其进行定义组操作,因为SPSS无法自行判断如何通过分组变量对数据进行分组点击定义组我们有两种分类的方法,分别是使用指定的值与分割点,指定值就是将所有分类变量等于该输入的数值的样本划分为一组,分割点就是以该输入的数值为分割点划分出大于和小于该值的两组进行比较,这些都是很简单的,不多废话了~~接下来就是重头戏了——对结果的分析简洁解释:得到结果后,首先将独立样本检验表格中莱文方差等同性检验的显著性数值与0.05进行比较大于0.05,两组假定等方差,看第一行数据的显著性(双尾)数值,如果大于0.05,两组差异不显著;如果小于0.05,两组差异显著;小于0.05,两组不假定等方差,看第二行数据的显著性(双尾)数值,如果大于0.05,两组差异不显著;如果小于0.05,两组差异显著。
SPSS-比较均值-独立样本T检验案例解析2011-08-26 14:55在使用SPSS进行单样本T检验时,很多人都会问,如果数据不符合正太分布,那还能够进行T检验吗?而大样本,我们一般会认为它是符合正太分布的,在鈡型图看来,正太分布,基本左右是对称的,一般具备两个参数,数学期望和标准方差,即:N(p, Q)如果你的样本数非常少,一般需要进行正太分布检验,检验的方法网上很多,我就不说了下面以“雄性老鼠和雌性老鼠分别注射了某种毒素,经过观察分析,进行随机取样,查看最终老鼠是否活着。
问题:很多人认为,雄性老鼠和雌性老鼠分别注射毒液后,雌性老鼠存活下来的数量会比雄性老鼠多?我们将通过进行统计分析来认证这个假设是否成立。
下面进行参数设置:a 代表:雄性老鼠b代表:雌性老鼠tim 代表:生存时间,即指经过多长时间后,去查看结果0 代表:结果死亡1 代表:结果活着随机抽取的样本,如下所示:打开SPSS- 分析---检验均值---独立样本T检验,如下图所示:将你要分析的变量,移入右边的框内,再将你要进行分组的变量移入“分组变量”框内,“组别group()里面的两个参数,不能够随意设置,必须要跟样本里面的数字一致点击确定后,分析结果,如下所示:从组统计量可以看出,雄性老鼠的存活下来的均值为0.73,但是雌性老鼠存活下来的均值为1.00,很明显,雌性老是存活下来的个数明显比雄性老鼠多,但是一般我们不看这个结果,为什么?因为样本不够大,如果将样本升至10000个?也许这个均值将会发生变化,不具备统计学意义,我们一般只看独立样本检验的结果。
独立样本检验,提供了两种方法:levene检验和均值T检验两种方法Levene检验主要用来检验原假设条件是否成立,(即:假设方差相等和方差不相等两种情况)如果SIG>0.05,证明假设成立,不能够拒绝原假设,如果SIG<0.05,证明假设不成立,拒绝原假设。
进行levene检验结果判断是第一步,从上图,可以看出 sig<0.05 方差相等的假设不成立,所以看第二行,方差不相等的情况sig=0.082>0.05 即说明 P 值大于显著性水平,不应该拒绝原假设:即指:雌性老鼠和雄性老鼠在注射毒液后,存活下来的个数没有显著的差异本次分析的结果,不支持,很多人认为的:雄性老鼠和雌性老鼠分别注射毒液后,雌性老鼠存活下来的数量会比雄性老鼠多的结论。
独立样本t检验的流程独立样本t检验是一种常用的统计方法,用于比较两个独立样本的平均值是否存在显著差异。
下面我将为大家介绍一下独立样本t检验的流程。
我们需要明确研究的目的和假设。
假设我们想要比较两个不同药物对某种疾病的治疗效果是否有差异。
我们的零假设是两个药物的治疗效果相同,备择假设是两个药物的治疗效果不同。
接下来,我们需要收集两组独立样本的数据。
一组接受药物A的病人,另一组接受药物B的病人。
我们记录每组的样本量、均值和标准差。
然后,我们计算两组样本的标准误差。
标准误差是衡量样本均值估计值的可靠性的指标。
它的计算公式为标准差除以样本量的平方根。
接着,我们计算t值。
t值是比较两组样本均值差异的度量。
它的计算公式为两组样本均值的差异除以标准误差。
然后,我们需要确定显著性水平。
显著性水平是我们设定的判断两组样本均值差异是否显著的阈值。
一般来说,常用的显著性水平为0.05。
我们根据t值和显著性水平来进行假设检验。
我们将计算得到的t 值与t分布的临界值进行比较。
如果计算得到的t值大于临界值或小于临界值的负值,即t值落入了拒绝域,我们就可以拒绝零假设,认为两组样本均值存在显著差异。
在进行独立样本t检验时,我们还需要关注一些前提条件。
首先,两组样本应来自正态分布总体。
其次,两组样本的方差应相等。
如果方差不相等,我们可以使用修正后的独立样本t检验。
独立样本t检验是一种用于比较两组独立样本平均值差异的统计方法。
通过明确研究目的和假设、收集数据、计算标准误差和t值、确定显著性水平以及进行假设检验,我们可以判断两组样本均值是否存在显著差异。
这一方法在医学、社会科学等领域得到了广泛应用,帮助我们进行科学研究和决策分析。
独立样本t检验制表引言独立样本t检验是一种用于比较两组样本均值是否存在显著差异的统计方法。
在进行独立样本t检验时,我们需要制表来展示计算结果和相关统计量。
本文将详细介绍独立样本t检验的制表方法,并以实例演示相应的步骤和结果。
独立样本t检验概述在统计学中,独立样本t检验用于比较两组独立样本的均值是否存在显著差异。
常见的应用场景包括比较不同治疗组的疗效、不同实验组的效果等。
独立样本t检验的原假设是两组样本均值相等,备择假设是两组样本均值不相等。
独立样本t检验步骤进行独立样本t检验时,通常需要以下步骤:步骤一:确定假设在进行独立样本t检验前,我们需要明确研究问题,并根据研究问题设定相应的原假设和备择假设。
例如,原假设可以是两组样本均值相等,备择假设可以是两组样本均值不相等。
步骤二:收集数据在进行独立样本t检验前,我们需要收集两组独立样本的数据。
数据可以是定量数据,也可以是定性数据。
步骤三:计算样本均值和标准差在进行独立样本t检验前,我们需要计算两组样本的均值和标准差。
均值表示样本的集中趋势,标准差表示样本的离散程度。
步骤四:计算t值和自由度在进行独立样本t检验时,我们需要计算t值和自由度。
t值是用来衡量两组样本均值差异的统计量,自由度是用来确定t值在t分布中的位置。
步骤五:确定显著性水平和临界值在进行独立样本t检验时,我们需要确定显著性水平和临界值。
显著性水平用来判断研究结果的统计显著性,临界值用来与计算得到的t值进行比较。
步骤六:比较t值和临界值在进行独立样本t检验时,我们将计算得到的t值与临界值进行比较。
若t值大于临界值,则拒绝原假设,认为两组样本均值存在显著差异;若t值小于临界值,则接受原假设,认为两组样本均值没有显著差异。
独立样本t检验制表独立样本t检验制表是一种将独立样本t检验计算结果以表格的形式展示出来的方法。
一个典型的独立样本t检验制表应包含以下内容:表头表头应包含研究问题的的描述、原假设和备择假设。
在t检验中的实用技巧在数据分析中,t检验是一种常用的统计方法,用于比较两组数据的平均值是否有显著差异。
掌握t检验的实用技巧对于正确解读数据和得出可靠结论非常重要。
本文将介绍在t检验中实用的三个技巧。
技巧1:如何快速选择合适的统计方法在进行t检验之前,首先要确定所拥有的数据类型和要解决的问题。
t检验适用于比较两组独立样本的平均值,或比较一个样本的平均值与一个已知的参考值。
在选择t检验之前,要确定数据是否满足独立性和正态分布的要求。
如果数据不满足这些要求,可以考虑使用其他统计方法,如Mann-Whitney U检验或Wilcoxon符号秩检验。
此外,还要考虑样本大小。
t检验对样本大小有一定的要求,通常需要满足自由度大于等于10的条件。
如果样本过小,可以考虑使用非参数检验,如Fisher's exact检验或McNemar检验。
技巧2:如何分析双变量数据在双变量数据中,通常有两个独立的样本,需要比较它们的平均值是否有显著差异。
此时,可以使用独立样本t检验。
具体步骤如下:1、提出假设:假设两个样本的平均值没有显著差异(H0)。
2、计算统计量:从每个样本中随机选取一个数值,计算它们的差值的平均数。
这个平均数的标准误差称为标准误。
3、确定P值:根据t分布表,查找与自由度和样本大小相近的t值,计算出对应的P值。
4、解读结果:如果P值小于预定的显著性水平(如0.05),则拒绝原假设,认为两个样本的平均值有显著差异;否则,接受原假设,认为两个样本的平均值没有显著差异。
示例:为了比较两组学生的平均成绩是否有显著差异,可以按照以下步骤进行独立样本t检验:1、提出假设:两组学生的平均成绩没有显著差异(H0)。
2、数据收集:收集两组学生的成绩数据,分别为30人和35人。
3、计算统计量:计算两组学生成绩的平均值和标准差,并计算出标准误。
4、确定P值:根据t分布表,查找自由度为64(30+35-2)和相近的t值,计算出对应的P值。
T检验分为三种方法
T检验是一种常见的统计推断方法,它用于比较两个样本之间的差异。
T检验分为三种方法:独立样本T检验、配对样本T检验和单样本T检验。
下面将对这三种方法进行介绍。
1.独立样本T检验:
独立样本T检验用于比较两个不相关的样本之间的均值差异。
要进行
独立样本T检验,首先需要收集两个独立的样本数据,然后根据这些数据
计算出两个样本的均值和方差。
T检验的原假设是这两个样本的均值相等,备择假设是这两个样本的均值不相等。
根据计算的T值和自由度,可以计
算出P值,从而判断原假设是否成立。
2.配对样本T检验:
配对样本T检验用于比较同一个样本在不同条件下的均值差异。
配对
样本T检验适用于两种情况:一是两个样本是相关的,例如同一个受试者
在不同时间点的数据;二是两个样本是配对的,例如同一组受试者在不同
条件下的数据。
在配对样本T检验中,计算的T值和自由度与独立样本T
检验类似,根据P值判断原假设是否成立。
3.单样本T检验:
单样本T检验用于判断一个样本的均值是否与一个已知的总体均值相等。
在单样本T检验中,收集一个样本的数据,计算样本的均值和标准差。
T检验的原假设是样本的均值等于总体的均值,备择假设是样本的均值不
等于总体的均值。
根据计算的T值和自由度,计算P值,从而判断原假设
是否成立。
总的来说,T检验是一种常用的统计方法,可以用于比较两个样本均值是否有差异,并判断这种差异是否显著。
根据实际问题的需求,可以选择独立样本T检验、配对样本T检验或单样本T检验来进行分析。
两独立样本T检验-SPSS步骤详解
1)首先确认是否为相互独立,没有任何关系的两组数据(如何确认)。
2)确定样本量:
(1)样本量N≥30,默认为大样本(有的要求为N≥50)进行方差齐性分析,方差齐采用两独立样本T检验,方差不齐采用秩和检验。
(2)如样本量N<30,为小样本,首先应进行各组资料正态性分布分析,如为正态分布,进行方差分析,方差齐,进行独立样本T检验,方差不齐,采用秩和检验;
如为非正态分布,采用秩和检验。
3)如确定应采用两独立样本T检验,则按照以下步骤进行分析,以两组患者收缩压水平为例,首先在SPSS“变量视图”(variable view)中对变量进行命名,可修改变量类型,定义变量宽度(即数字长度)等
随后调整到“数据视图(data view)”,录入数据
随后在上方菜单栏“分析(Analyze)”找到“比较均值(Compare Means)”,找到“独立
样本T检验(Independent Sample T Test)”,得到以下对话框:
将变量收缩压选入“检验变量”,分组情况选入“分组变量”,点击“定义组”,得到以下对话框:
定义组1为“1”,定义组2为“2”,点击继续,并点击“独立样本T检验”对话框(即上一对话框)中的“确定”,得到以下数据:
1组均值±标准差为126.25±12.45,2组均值±标准差为168.75±16.25
一般不确定数据方向,应检测双尾P值(Sig-two tail)=0.000,P<0.05,组间差异有统计学意义。
当确定2组数据一定大于1组时(即数据方向一定),可选用单尾P值,否则选用双尾P值。
独立样本T检验SPSS操作
例如:男生和女生之间的学业自我效能感有没有统计学意义上的差异
第一步:点击分析→比较均值→独立样本T检验
第二步:出现如下界面,将“学业自我效能感”选入检验变量,将“性别”选入分组变量。
第三步:点击“定义组”,在“使用指定值”下“组1”文本框中填入“1”,“组2”文本框中填入
“2”(因为数据中“1”代表男生,“2”代表女生),然后点击“继续”。
第四步:点击“确定”,出现得到T检验的结果。
第五步:分析结果。
第一张表的名字叫组统计量,实际上这个性别就是男性组和女性组,即按照不同的组别进行分组。
统计出男性组和女性组每一组的均值和标准差。
一列数据是可以选择用均值和标准差来表示的,均值表示的是这一组的学业自我效能感分数的一个均衡状态,标准差反映的就是同学们得分与这个均衡状态的这个偏离程度。
男性和女性在均值上的差异是否具有统计学意义,我们还需要继续考察独立样本T检验的表。
假设方差相等,看F和F对应的显著性水平,要看显著性水平是不是小于0.05,判断方差是否齐性。
若这个数小于0.05,说明假设方差相等的可能性小
于0.05,小概率事件发生,拒绝原假设,即假设方
差不相等,看第二行的数据t和t对应的显著性水平。
如果方差齐性,也就是sig值大于0.05,就看第一
行的数据。