换元积分法(一) 3
- 格式:pptx
- 大小:94.17 KB
- 文档页数:8
常用积分换元公式换元积分法的公式积分换元法是求解积分的一种重要方法,通过引入合适的变量替换的方式,将原积分转化为更容易求解的形式。
下面是一些常用的积分换元公式和换元积分法:1.换元公式(1)第一类换元公式:设函数u=u(x)具有一阶连续导数,则有如下公式:∫f(u)du = ∫f(u(x))u'(x)dx(2)第二类换元公式:设函数x=x(u)可导,且反函数存在,则有如下公式:∫f(x)dx = ∫f(x(u))x'(u)du(3)第三类换元公式:设函数x=x(t),y=y(t)可导,且满足y=y(x),则有如下公式:∫f(x,y)dx = ∫f(x(t),y(t))x'(t)dt2.常见换元积分法(1)坐标换元法:根据问题中给定的坐标关系,选择适当的新坐标,从而简化积分的计算。
常见的坐标换元法包括:极坐标、柱坐标、球坐标等。
(2) 幂次换元法:对于形如∫f(x)(ax+b)^n dx的积分,可以引入变量u=ax+b进行代换,从而将积分转化为幂函数的积分。
(3) 三角换元法:对于形如∫f(x)sin(ax+b) dx或∫f(x)cos(ax+b) dx的积分,可以引入变量u=ax+b进行代换,从而将积分转化为三角函数的积分。
(4) 指数换元法:对于形如∫f(x)e^x dx的积分,可以引入变量u=e^x进行代换,从而将积分转化为指数函数的积分。
(5) 对数换元法:对于形如∫f(x)/x dx的积分,可以引入变量u=ln,x,进行代换,从而将积分转化为对数函数的积分。
(6) 倒代换法:对于形如∫f(g(x))dg(x)的积分,可以引入变量u=g(x)进行代换,然后将dg(x)用du表示,从而将积分转化为对u的积分。
(7) Weierstrass换元法:对于形如∫R(x,√(ax^2+bx+c)) dx的积分,可以引入变量u=√(ax^2+bx+c)+px+q进行代换,然后将积分转化为对u的积分。
§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求:理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微分”,dx x x d )()(ϕ'=ϕ .掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想,难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容:一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+⎰.若u 是中间变量,()u x ϕ=,()x ϕ可微,则根据复合函数求导法则,有(())()[()]()dF x dF du duf u f x x dx du dx dxϕϕϕ'===。
所以根据不定积分的定义可得:()[()]()[()][][()]u x f x x dx F x C F u C f u du ϕϕϕϕ='=++=⎰⎰ 以上是一个连等式可以改变顺序从新写一遍,就有[][]()[()]()][()]()u x f x x dx f u du F u C F x C ϕϕϕϕ='=+=+⎰⎰.以上就是第一换元积分法。
从以上可以看出,虽然[()]()f x x dx ϕϕ'⎰是一个整体记号,但是被积表达式中的dx 可当作变量x 的微分来对待从而上式中的()x dx ϕ'可以看成是()x ϕ的微分,通过换元()u x ϕ=,应用到被积表达式中就得到()x dx du ϕ'=.定理1 设)(u f 具有原函数)(u F ,)(x u ϕ=可导,dx x du )(ϕ'=,则[()()()()[()]f x x dx f u du F u C F x C ϕϕϕ'==+=+⎰⎰ (1)如何应用公式(1),在求不定积分积分()g x dx ⎰时如果被积函数g(x)可以化为一个复合函数与它内函数的导函数的积的形式[()]()f x x ϕϕ'的形式 那么()()[()]()[()]x u g x dx f x x dx f u du ϕϕϕ='=⎰⎰⎰()()[()]u x F u C F x C ϕϕ==++.所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积[()]()f x x ϕϕ'来.例1 求33x e dx ⎰解33333=3x x x e dx e dx e x dx '=⎰⎰⎰(),可设中间变量x u 3=,dx x d du 3)3(== 3dx du ∴=,所以有3333x x u u x e dx e dx e du e C e C ===+=+⎰⎰⎰.首先观察被积函数的复合函数是什么样的,然后看是否有它的内函数的导数,若没有就去凑。
§ 4.2 -换元积分法(第一类换元§ 4.2 换元积分法I 授课题目§ 4.2 换元积分法(第一类换元法)n 教学目的与要求:1. 理解第一类换元法的基本思想,它实际上是 复合函数求导法则的逆过程,其关键是“凑微 分",d (x) (x)dx.2. 掌握几种典型的凑微分的方法,熟练应用第 一类换元积分法求有关不定积分. 皿教学重点与难点:重点:第一换元法的思想,难点:熟练应用第一换元法计算有关函数的不定积 分.W 讲授内容:一、第一类换元积分法设f(u)具有原函数F(u), f(u)du F(u) C .若u 是中间变 量,u (x),(x)可微,则根据复合函数求导法则,有所以根据不定积分的定义可得:dF( (x))dxd£du du dxf(u)乎 dxf[ (x)] (x)。
f[ (X)] (x)dx F[ (x)] C u (x)F[u] C [ f(u)du]以上是一个连等式可以改变顺序从新写一遍,就有f[ (x)] (x)]dx u (x)[ f (u)du] F u C F (x) C .以上就是第一换元积分法。
从以上可以看出,虽然f[ (x)] (x)dx是一个整体记号,但是被积表达式中的dx可当作变量x的微分来对待从而上式中的(x)dx可以看成是(x)的微分,通过换兀u(X),应用到被积表达式中就得到(x)dx du .定理1设f(u)具有原函数F(u) , u (x)可导,du (x)dx , 则f[ (x) (x)dx f(u)du F(u) C F[ (x)] C (1)如何应用公式(1),在求不定积分积分g(x)dx时如果被积函数g(x)可以化为一个复合函数与它内函数的导函数的积的形式f[ (x)] (x)的形式那么g(x)dx f[ (x)] (x)dx (x) u[ f(u)du] F(u) C u (x)F[ (x)] C.所以第一换元积分法体现了“凑”的思想•把被积函数凑出一个复合函数与其内函数的积f[ (x)] (x)来.例 1 求3e3x dx角军3e3x dx e3x3dx= e3x(3x) dx,可设中间变量u 3x,du d (3x) 3dx 3dx du,1 5 1 63dx 二一(3x 2) d(3x 2)(3x 2) 3183 2x^^以^^ e 3xdxe 3x 3dxe u du e u C e 3x C .首先观察被积函数的复合函数是什么样的, 看是否有它的内函数的导数,若没有就去凑。
2第一类换元积分法部分常用的凑微分公式:(1)) dx 1d( ax b) a(2)x ndx 1d( x n 1)n 1( 3)1dx d ( x ) (4) 1 dx1 d( )2 x x x(5)) 1dx d(ln x) x(6)e xdx d (e x)(7)) cos xdx d (sinx)(8) sin xdx d (cos x)常用的凑微分公式积分类型换元公式1. f (ax b)dx 1 f ( ax b)d (ax b) a u ax b2. f ( x2a)xdx1 f ( x22 a)d ( x2a)u x2a3. f ( x n) xn1dx1f (x n ) dxnn u x n4.f ( x n) 1dx1 f (x n ) 1 dx nu xnx n x n5.f ( 第 一x)1 dx x2 f ( x )d xux 6.1 1 1 11 f ( ) 换 元 x2 dx f ( )d ( ) uxx x x7. f (ln x) 积 分1dxf x(ln x)d (ln x)u ln x8. f (e x) 法e x dxf (e x )de xu ex9.f (sin x) cosxdx f (sin x)d sin x u sin xf (cos x) sin xdxf (cosx)d cosx u cos xf (tan x) 1 cos 2dx f (tan x) d tan xxu tan x10.sin mxcosnxdx利用积化和差sin mxsin nxdx 公式进行变换cosmxcosnxdx11.sin m xdx 用公式1 sin2 x cos2 xcos m xdx (m 为奇数) 1 cos2 x sin 2 x变换12.sin m xdx 化为倍角的三角函cos m xdx (m 为偶数)数降幂后再积分13. f (tan x)sec2xdx f (tan x)d tan x u tan x14.f (arctanx)1 1dx fx2(arctanx) d (arctanx)u arctan xf (arcsin x)11 x2dx f (arcsin x)d (arcsin x)u arcsin x第二类换元积分法1. 当被积函数中含有1) a2x2 ,可令x a sint 或x a cost ;2) a2x2 ,可令x a tant ;3) x2a2 ,可令x asect .通过三角代换化掉根式。