_酶与细胞的固定化
- 格式:ppt
- 大小:723.00 KB
- 文档页数:40
固定化技术应用-酶和细胞的固定化试题中出现固定酶能不能催化一系列反应,查找资料,没有权威资料认为已经存在催化系列反应的酶,应该是研究方向。
选修知识的考查已经出现应用方向,也拓展到了技术的前景。
也就是说,需要在教学中创设情境适当扩大知识面,结合试题进行教学会收到很好的效果,如固定化酶技术可以拓展到固定化细胞。
问题:固定化技术以及发展前景如何?什么是固定化酶?什么是固定化细胞?011.固定化酶技术固定化酶技术是用物理或化学手段。
将游离酶封锁住固体材料或限制在一定区域内进行活跃的、特有的催化作用,并可回收长时间使用的一种技术。
酶的固定化技术已经成为酶应用领域中的一个主要研究方向。
经固定化的酶与游离酶相比具有稳定性高、回收方便、易于控制、可反复使用、成本低廉等优点,在生物工业、医学及临床诊断、化学分析、环境保护、能源开发以及基础研究等方面发挥了重要作用。
2.固定化酶技术的发展以前,固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。
1916年Nelson和GrImn最先发现了酶的固定化现象。
科学家们就开始了同定化酶的研究工作。
1969年日本一家制药公司第一次将固定化的酰化氨基酸水解酶用于从混合氨基酸中生产L-氮基酸,开辟了固定化酶在工业生产中的新纪元。
我国的固定化酶研究开始于1970年,首先是微生物所和上海生化所的工作者开始了固定化酶的研究。
当今,固定化酶技术发展方向是无载体的酶固定化技术。
邱广亮等用磁性聚乙二醇胶体粒子作载体,采用吸附-交联法,制备出具有磁响应性的固定化糖化酶,简称磁性酶(M I E)一方面由于载体具有两亲性,M I E可稳定的分散于水相或有机相中,充分的进行酶催化反应;另一方面,由于载体具有磁响应性,M I E又可借助外部磁场简单地回收,反复使用,大大提高酶的使用效率。
Puleo等将钛合金表面用丙烯酸胺等离子体处理引入氨基,然后将含碳硝化甘油接枝于钛合金表面,或者将等离子体处理的钛合金先由琥珀酸酐处理,再用含碳硝化甘油接枝,进而将溶菌酶和骨形态蛋白进行固定,实现了生物分子在生物惰性金属上的固定化。
酶及细胞固定化技术酶作为生物体内的催化剂,具有高效性和高特异性的特点。
但在工业生产中,酶稳定性差、易流失,造成成本过高,限制其广泛应用。
因此将酶采用固定化技术,使酶在发挥其高效、专一性同时,还能增强酶的贮存稳定性,提高了生产效率,节约了成本。
本文对酶和细胞的固定化技术进行综述。
【关键词】酶细胞固定化载体应用酶及细胞固定化技术是生物技术的重要组成部分。
20世纪60年代出现了固定化酶技术,60年代末固定化酶技术用于工业生产,70年代出现了固定化细胞技术,80年代又发展了固定化增殖细胞技术以及包括辅助因子在内的固定化多酶反应体系技术。
工程技术日益成熟,成为近代工业生产中不可缺少的组成部分。
所谓固定化技术,是指利用化学或物理手段将游离的酶或细胞(微生物),定位于限定的空间区域并使其保持活性和可反复使用的一种基本技术,包括固定化酶技术和固定化细胞技术。
固定化细胞的制备方法是多种多样的,任何一种限制细胞自由流动的技术,都可以用于制备固定化细胞。
一般来说,固定化技术大致可以分成吸附法、共价结合法、交联法和包埋法等4大类,其中以包埋法使用最为普遍。
一、固定化技术分类1.吸附法很多细胞都有吸附到固体物质表面的能力,这种吸附能力可以是天生具有的,也可以是经过处理诱导产生的,依靠这种吸附能力,人们发展起许多廉价而又有效的固定化方法。
吸附法可分为物理吸附法和离子吸附法,前者是使用具有高度吸附能力的硅胶、活性炭、多孔玻璃、石英砂和纤维素等吸附剂将细胞吸附到表面上使之固定化,是一种最古老的方法,操作简单、反应条件温和、载体可以反复利用,但结合不牢固,细胞易脱落。
后者根据细胞在解离状态下可因静电引力(即离子键合作用)而固着于带有相异电荷的离子交换剂上,如DEAE-纤维素、DEAE-Sephadex、CM-纤维素等。
2.共價结合法共价结合法是细胞表面上功能团和固相支持物表面的反应基团之间形成化学共价键连接,从而成为固定化细胞。
酶和细胞固定化方法
作用力载体
物理吸附法物理吸附石英砂,多孔玻璃,淀粉,硅胶,活性碳
载体结合法离子结合法离子键离子交换树脂
共价结合法共价键纤维素,尼龙
交联法:利用双功能试剂,在酶分子间发生交联,凝胶形成网状结构。
包埋法:将酶包埋在凝胶的微细格子里,或被半透性的聚合膜所包埋,使酶分子只能从凝胶的网络中漏出,而小分子的底物和产物可自由通过。
格子型常用凝胶:角叉菜胶,明胶,淀粉凝胶,聚丙烯酰胺凝胶
微胶囊。
酶与细胞的固定化
一、为什么要进行酶的固定化?
(1)游离酶的稳定性较差:在温度、pH值和无机离子等外界因素的影响下,容易变性失活。
(2)游离酶难于连续化生产:酶与底物和产物混在一起,反应结束后,即使酶仍有较高的活力,也难于回收利用。
这种一次性使用酶的方式,不仅使成本较高,而且难于连续化生产。
(3)游离酶给下游的纯化工作带来了难度:酶反应后成为杂质与产物混在一起,无疑给进一步的分离纯化带来一定的困难。
二、固定化酶的概念:是指固定在载体上或被限制在一定的空间范围内,能连续进行催化反应,且反应后能回收并重复利用的酶。
三、固定化细胞是指固定在载体上并在一定的空间范围内进行生命活动的细胞。
也称为固定化活细胞或固定化增殖细胞。
四、与游离酶相比,固定化酶优缺点各在哪里?
固定化酶优点:
五、固定化方法有哪几类?各类的优缺点及适合范围是什么?
酶固定化的方法很多,主要可分为载体结合法、交联法、包埋法和热处理法等。
现分述如下;。
固定化酶与固定化细胞技术酶是具有生物催化功能的生物大分子(蛋白质或RNA),但通常指的是由氨基酸组成的酶,本章也仅探讨此类酶。
作为一种生物催化剂,参与生物体内各种代谢反应,而且反应后其数量和性质不发生变化。
由于酶的高级结构对环境十分敏感,各种因素(包括物理因素、化学因素和生物因素)均有可能使酶丧失活力。
但在常温常压条件下能高效地进行反应,且具有很高的专一性,副反应少,许多难以进行的有机化学反应在酶的作用下都能顺利进行。
由于酶的这些特点,大大促进了酶的应用和酶技术的研究。
酶被人们广泛应用于酿造、食品、医药等领域,特别是近几年来,随着分子生物学的发展,酶的应用更加活跃。
由于酶反应随着时间的延长,反应速度会逐渐降低,反应后酶不能回收,这就限制了酶的应用范围。
如果能将酶固定在惰性支持物上制成固定化酶,仍具有催化作用,还能回收反复使用,并且生产可以连续化、自动化。
从20世纪60年代固定化酶技术发展以来,不仅在酶学理论研究中发挥独特作用,在实际应用中也显示出强大的威力。
随着技术的不断发展,广义的固定化酶发展到固定化辅酶、固定化细胞及固定化细胞器等,固定化酶在食品、医药、化工和生物传感器制造上都有成功的应用实例。
对一个特定的目的和过程来说,是采用细胞,还是采用分离后的酶作催化剂,要根据过程本身来决定。
一般来说,对于一步或两步的转化过程用固定化酶较合适;对多步转换,采用固定化细胞显然有利。
第一节固定化酶固定化酶(immobilized enzyme)是指在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复使用。
酶的固定化是将酶与水不溶性载体结合,制备固定化酶的过程。
固定化酶的形状依不同用途有颗粒、线条、薄膜和酶管等,颗粒状占绝大多数;颗粒和线条主要用于工业发酵生产;薄膜主要用于酶电极;酶管机械强度较大,主要用于化学工业生产。
目前,由于固定化酶的性质比游离酶及其相关技术优越,人们对其极感兴趣,因此固定化酶的应用也与日俱增。
酶及细胞固定化技术酶及细胞固定化技术是一种将酶或细胞固定在某种材料上,以便进行特定反应的技术。
这种技术可以有效地提高反应速率、稳定性和重复使用性,广泛应用于生物技术、食品工业、环境保护和医药领域。
本文将介绍酶及细胞固定化技术的原理、应用和未来发展方向。
酶及细胞固定化技术的关键在于将酶或细胞固定在一种载体上,以便进行特定反应。
常用的载体材料包括天然材料如海藻酸钠、明胶、聚乙烯醇等,以及合成材料如聚丙烯酸酯、氧化硅、氨基硅烷等。
通过交联、吸附、包埋等方法,将酶或细胞与载体结合在一起,形成固定化的酶或细胞系统。
固定化技术的主要优点在于可以提高酶或细胞的稳定性和重复使用性。
通过固定在载体上,酶或细胞可以更好地抵抗外界因素的影响,如温度、pH值、离子强度等。
固定化的酶或细胞可以通过简单的分离和回收,实现反应产物的纯化和酶的再利用。
二、酶及细胞固定化技术的应用酶及细胞固定化技术在生物技术、食品工业、环境保护和医药领域有着广泛的应用。
1. 生物技术领域在生物技术领域,酶及细胞固定化技术被用于生产化学品、药物和生物燃料。
以葡萄糖氧化酶为例,固定化的葡萄糖氧化酶可以用于葡萄糖检测、生物传感器以及生物燃料电池中。
固定化的工程酶也被用于合成生物材料、精细化学品和医药中间体,以实现高效、环保的生产过程。
2. 食品工业领域在食品工业领域,酶及细胞固定化技术被用于食品加工、酿造和酶制剂制备。
在酿造过程中,固定化的酵母细胞可以实现连续发酵,提高酒精产率和控制发酵过程。
而在食品加工中,固定化的酶可以用于降解醣类、蛋白质和脂肪,改善食品的口感和营养价值。
3. 环境保护领域在环境保护领域,酶及细胞固定化技术被用于废水处理、土壤修复和污染物降解。
固定化的微生物可以被用于处理含有重金属、有机物和氮、磷等污染物的废水,减少对环境的影响。
固定化的酶也可以用于土壤修复,去除油污和有机污染,改善土壤的质量。
4. 医药领域在医药领域,酶及细胞固定化技术被用于药物的制备、生物传感器和组织工程。