锐角三角函2015
- 格式:doc
- 大小:497.00 KB
- 文档页数:3
锐角三角函数—知识讲解责编:康红梅【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值;3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即s i n A aA c∠==的对边斜边;Ca b锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c o s A bA c∠==的邻边斜边; 锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c∠==的对边斜边;cos B a B c ∠==的邻边斜边;tan B b B B a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成 “tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.要点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【答案】D.【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.举一反三:【高清课程名称:锐角三角函数高清ID号:395948关联的位置名称(播放点名称):例1(1)-(2)】【变式】在RtΔABC中,∠C=90°,若a=3,b=4,则c=,sinA=,c o s A=,sinB=,cosB=.a【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==12-(2) 原式=×﹣4×()2+×=﹣3+3;(3) 原式=+﹣=2+﹣=3﹣2+2【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【高清课程名称: 锐角三角函数 高清ID 号:395948 关联的位置名称(播放点名称):例1(3)-(4)】【变式】在Rt ΔABC 中,∠C =90°,若∠A=45°,则∠B = , sinA = ,cosA =,sinB =,cosB = .【答案】∠B =45°,sinA =2, cosA =2,sinB =2, cosB =2.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD 与BC相交于点P,若弦CD=6,试求cos∠APC的值.【答案与解析】连结AC ,∵ AB 是⊙O 的直径,∴ ∠ACP =90°,又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB ,∴ PC CD PAAB=.又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CD PAAB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BC AB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______. (3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB==得BC =3a ,∴4AC a ==,∴ CD =5a-4a =a ,BD ==,∴ sadA BD AD==.【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA=1;(2)在图①中设想AB =AC 的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BCWORD完美格式接近2AB,则sadA接近2但小于2,故sadA<2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.专业知识编辑整理。
28.1锐角三角函数(3)一、课前预习 (5分钟训练)1.在△ABC 中,∠C=90°,AC=1,AB=2,则∠B 的度数是( )A.30° B.45° C.60° D.90°2.∠B 是Rt △ABC 的一个内角,且sinB=23,则cosB 等于( ) A.3 B.23C.21 D.333.计算30tan 2-2sin60°cos45°+3tan30°sin45°=_______________. 4.计算cos60°sin30°-tan60°tan45°+(cos30°)2=___________________ 二、课中强化(10分钟训练)1.在△ABC 中,∠C=90°,AC=1,BC=3,则∠B 的度数是( ) A.30° B.45° C.60° D.90°2.已知α为锐角,tanα=3,则cosα等于( )A.21 B.22C.23 D.333.若|3-2sinα|+(tanβ-1)2=0,则锐角α=____________,β=______________.4.如图1,已知△ABC 中,∠C=90°,∠A=60°,a=15,根据定义求∠A,∠B 的三角函数值.5.如图2,沿倾斜角为30°的山坡植树,要求相邻两棵树的水平距离AC 为2 m ,那么相邻两棵树的斜坡距离AB 约为多少米?(精确到0.1 m ,可能用到的数据2≈1.41,3≈1.73)三、课后巩固(30分钟训练)1.已知△ABC 中,∠C=90°,a=35,∠B=30°,则c=_____________.2.已知Rt △ABC 中,∠C=90°,∠A=60°,a -b=2,则c=________________.3.如图3.在△ABC 中,∠B=30°,sinC=54,AC=10,求AB 的长.4.如图4,已知在Rt △ABC 中,∠C=90°,∠A=30°,D 在AC 上且∠BDC=60°,AD =20,求BC.5.如图,在旧城改造中,要拆除一建筑物AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区.现在从离点B 24 m 远的建筑物CD 的顶端C 测得点A 的仰角为45°,点B 的俯角为30°,问离点B 35 m 处的一保护文物是否在危险区内?6.如图,在高出海平面200 m 的灯塔顶端,测得正西和正东的两艘船的俯角分别是45°和30°,求两船的距离.28.2 解直角三角形(1)1.在下面条件中不能解直角三角形的是( )A .已知两条边B .已知两锐角C .已知一边一锐角D .已知三边3.在△ABC 中,∠C=90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,有下列关系式:•①b=ccosB ,②b=atanB ,③a=csinA ,④a=bcotB ,其中正确的有( )个 A .1 B .2 C .3 D .4 4.为测一河两岸相对两电线杆A 、B 间距离,在距A 点15m 的C 处,(AC ⊥AB ),测得∠ACB=50°,则A 、B 间的距离应为( )m A .15sin50°B .15cos50° C .15tan50°D .15/tan50° 5.在△ABC 中,∠C=90°,5/2,则斜边c=_____,∠A 的度数是____. 6.在直角三角形中,三个内角度数的比为1:2:3,若斜边为a ,•则两条直角边的和为________. 7.四边形ABCD 中,∠C=90°,AB=12,BC=4,CD=3,AD=13,•则四边形ABCD•的面积为________. 8.如图1,小明想测量电线杆AB•的高度,•发展电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD=4米,BC=10米,CD 与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为_______米.1.411.73)9.如图2,在Rt △ABC 中,a ,b 分别是∠A ,∠B 的对边,c 为斜边,如果已知两个元素a ,∠B ,就可以求出其余三个未知元素b ,c ,∠A .第一步:已知:a,∠B,用关系式:_______________,求出:_________________; 第二步:已知:_____,用关系式:_______________,求出:_________________; 第三步:已知:_____,用关系式:_______________,求出:_________________. 10.在等腰梯形ABCD 中,AB ∥CD ,CD=3cm ,AB=7cm ,高为,求底角B 的度数.11.如图3,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BCD=α,• 求cos α的值.12.国家电力总公司为了改善农村用电量过高的现状,目前正在全面改造各地农村的运行电网,莲花村六组有四个村庄A ,B ,C ,D 正好位于一个正方形的四个顶点,•现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图所示的实线部分,请你帮助计算一下,哪种架).13.在Rt △ABC 中,∠C=90°,斜边c=5,两直角边的长a ,b 是关于x 的一元二次方程x 2-mx+2m-2=0的两个根,求Rt △ABC 中较小锐角的余弦值.14.如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°,求AD ,CD 的长.15.(宜昌)如图,•某一时刻太阳光从教室窗户射入室内,•与地面的夹角∠BPC 为30°,窗户的一部分在教室地面所形成的影长PE 为3.5m ,窗户的高度AF 为2.5m ,求窗外遮阳篷外端一点D 到窗户上椽的距离AD .(结果精确到0.1m )b c aABCD28.1锐角三角函数(二)答案一、课前预习 (5分钟训练)1.在△ABC 中,∠C=90°,AC=1,AB=2,则∠B 的度数是( )A.30°B.45°C.60°D.90° 解:∵sinB=22,∴∠B=45°.答案:B2.∠B 是Rt △ABC 的一个内角,且sinB=23,则cosB 等于( ) A.3 B.23C.21 D.33解:由sinB=23得∠B=60°,∴cosB=21.答案:C 3.计算︒30tan 2-2sin60°cos45°+3tan30°sin45°=_______________.解:︒30tan 2-2sin60°cos45°+3tan30°sin45°=322233322232332=⨯⨯+⨯⨯- 答案:324.计算cos60°sin30°-tan60°tan45°+(cos30°)2=___________________.解:cos60°sin30°-tan60°tan45°+(cos30°)2=21×21-3×1+(23)2=1-3. 答案:1-3二、课中强化(10分钟训练)1.在△ABC 中,∠C=90°,AC=1,BC=3,则∠B 的度数是( )A.30°B.45°C.60°D.90°解:tanB=33,∴∠B=30°. 答案:A2.已知α为锐角,tanα=3,则cosα等于( )A.21B.22 C.23 D.33 解析:由tanα=3求得α=60°,故cosα=21.答案:A 3.若|3-2sinα|+(tanβ-1)2=0,则锐角α=____________,β=______________.解析:由题意得sinα=23,tanβ=1, ∴α=60°,β=45°. 答案:60° 45°4.如图28-1-2-1,已知△ABC 中,∠C=90°,∠A=60°,a=15,根据定义求∠A,∠B 的三角函数值.图28-1-2-1解:在Rt △ABC 中,∠B=90°-∠A=90°-60°=30°. b=21c,c 2=a 2+b 2=152+41c 2.∴c 2=300,即c=310.∴b=35.∴sinA=23=c a ,cosA=c b =21,tanA=3=b a ,sinB=cb=21,cosB=23=c a ,,tanB=33=a b 5.如图28-1-2-2,沿倾斜角为30°的山坡植树,要求相邻两棵树的水平距离AC 为2 m ,那么相邻两棵树的斜坡距离AB 约为多少米?(精确到0.1 m ,可能用到的数据2≈1.41,3≈1.73)图28-1-2-2解:∵∠BCA=90°,∴cos ∠BAC=ABAC.∵∠BAC=30°,AC=2,∴AB=︒30cos 2≈2.3.答:相邻两棵树的斜坡距离AB 约为2.3 m.三、课后巩固(30分钟训练) 1.已知△ABC 中,∠C=90°,a=35,∠B=30°,则c=_____________. 解析:由cosB=ca ,得c=Bacos =10.答案:102.已知Rt △ABC 中,∠C=90°,∠A=60°,a -b=2,则c=________________.解析:tanA 3=ba,又a -b=2, ∴a=3+3,c=Aasin =2+32. 答案:2+323.如图28-1-2-4,在△ABC 中,∠B=30°,sinC=54,AC=10,求AB 的长.图28-1-2-4解:作AD ⊥BC,垂足为点D ,在Rt △ADC 中,AD=AC·sinC=8, 在Rt △ADB 中,AB=BADsin=16.4.如图28-1-2-5,已知在Rt △ABC 中,∠C=90°,∠A=30°,D 在AC 上且∠BDC=60°,AD =20,求BC.图28-1-2-5解:设DC=x,∵∠C=90°,∠BDC=60°, 又∵DCBC=tan ∠BDC,∴BC=DCtan60°=3x.∵∠C=90°,∠A=30°,tanA=ACBC,∴AC=3x.∵AD=AC -DC,AD=20, ∴3x -x=20,x =10. ∴BC=3x=103.5.如图28-1-2-7,在旧城改造中,要拆除一建筑物AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区.现在从离点B 24 m 远的建筑物CD 的顶端C 测得点A 的仰角为45°,点B 的俯角为30°,问离点B 35 m 处的一保护文物是否在危险区内?图28-1-2-7解:在Rt △BEC 中,CE=BD=24,∠BCE=30°, ∴BE=CE·tan30°=38.在Rt △AEC 中,∠ACE=45°,CE=24,∴AE=24.∴AB=24+38≈37.9(米).∵35<37.9,∴离点B 35 m 处的一保护文物在危险区内. 答:略.6.如图28-1-2-8,在高出海平面200 m 的灯塔顶端,测得正西和正东的两艘船的俯角分别是45°和30°,求两船的距离.图28-1-2-8.解:如题图,A 表示灯塔的顶端,B 表示正东方向的船,C 表示正西方向的船,过A 作AD ⊥BC 于D ,则AD=200 (m),∠B=30°,∠C=45°. 从而在Rt △ADC 中,得CD=AD=200,在Rt △ADB 中, ∵tanB=BDAD,∴BD=3200tan =BAD.∴BC=CD+BD=200+3200≈546.4(m).答:两船距离约为546.4 m.28.2 解直角三角形(一)答案:1.B 2.D 3.C 4.C 5°6.12a 7.36 8.8.7 9.略 10.60° • •11.cos α12.设正方形边长为a ,则(1)3a ,(2)3a ,(3)(a ,(4))a ∴第(4)种方案最省电线13.4514.,15.过点E 作EG ∥AC 交BP 于点G ,∵EF ∥DP ,∴四边形BEFG 是平行四边形. 在Rt △PEG 中,PE=3.5,∠P=30°,tan ∠EPG=EGEP,∴EG=EP ·tan ∠ADB=3.5×tan30°≈2.02(或. 又∵四边形BFEG 是平行四边形,∴BF=EG=2.02,∴AB=AF-BF=2.5-2.02=0.48(或).又∵AD ∥PE ,∠BDA=∠P=30°, 在Rt•△BAD 中,tan30°=,ABADtan 30AB AD ∴=︒=0.48)≈0.8(m ),∴所求的距离AD 约为0.8m .。
1. (2015 内蒙古兴安盟) 计算:2sin45°+(﹣2)2﹣+(2015﹣π)0.答案:解:原式=2×+4﹣+1=5.2. (2015 黑龙江省绥化市) 先化简 ,再求值。
x x x x x x x 444122x 22-÷⎪⎭⎫⎝⎛+----+ , 其中 x =tan 600+2。
答案:解:原式=[﹣]•=•=•=,当x=tan60°+2=+2时,原式=.3. (2015 四川省南充市) 计算的结果是_____.答案:答案解析试题分析:首先根据二次根式和三角函数求出各式的值,然后进行计算.原式=2-2×=.4. (2015 山东省淄博市) 若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°答案:分析:先由特殊角的三角函数值及余弦函数随锐角的增大而减小,得出45°<α<90°;再由特殊角的三角函数值及正切函数随锐角的增大而增大,得出0<α<60°;从而得出45°<α<60°.解答:解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选B.点评:本题主要考查了余弦函数、正切函数的增减性与特殊角的余弦函数、正切函数值,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键.5. (2015 江苏省无锡市) tan45º的值为()A.12B.1 C.22D. 2答案:】.分析:根据45°角这个特殊角的三角函数值,可得tan45°=1,据此解答即可.解答:解:tan45°=1,即tan45°的值为1.故选:B.点评:此题主要考查了特殊角的三角函数值,要熟练掌握,解答此类问题的关键是牢记30°、45°、60°角的各种三角函数值.6. (2015 湖南省湘西市) 】.计算:32﹣20150+tan45°.答案:】.分析:分别进行乘方、零指数幂、特殊角的三角函数值等运算,然后合并.解答:解:原式=9﹣1+1=9.点评:本题考查了实数的运算,涉及了乘方、零指数幂、特殊角的三角函数值等知识,属于基础题.7. (2015 黑龙江省大庆市) sin60°=()A. B. C. 1 D.答案:分析:原式利用特殊角的三角函数值解得即可得到结果.解答:解:sin60°=,故选D点评:此题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解本题的关键.8. (2015 甘肃省武威市) 已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β= .答案:分析:根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.解答:解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.9. (2015 甘肃省庆阳市) 在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是()A.45°B.60°C.75°D.105°答案:分析:根据非负数的性质得出cosA=,tanB=1,求出∠A和∠B的度数,继而可求得∠C的度数.解答:解:由题意得,cosA=,tanB=1,则∠A=30°,∠B=45°,则∠C=180°﹣30°﹣45°=105°.故选D.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.。
锐角三角函数一.知识框架二、知识概念1、正弦,余弦,正切的概念ac 如图,在Rt ABC中,(1)sinA=,bc (2)cosA=,ab (3)tanA=。
2、a sina cosa tana30°12323345°2222160°3212 32. 坡度(坡比)的概念及表示形式如图所示,我们通常把坡面的铅直高度和水平宽度l的比叫做坡度(或坡比),坡度常用字母i表示.斜坡的坡度i 阳坡角的正切值有如下关系:hi tan ,即坡度是坡角的正切值.l1.正切与梯子的倾斜程度的关系:tan A 的值越大,梯子越陡.注意:梯子的倾斜程度与梯子和地面的夹角的大小有关,夹角越大说明梯子越倾斜.2.正弦、余弦与梯子的倾斜程度的关系:sin A 的值越大,梯子越陡;cos A的值越小,梯子越陡.3.解直角三角形:锐角A的正弦,余弦和正切都是∠A的三角函数,直角三角形中,除直角外,共 5 个元素:3 条边和 2 个角.除直角外只要知道其中 2 个元素(至少有 1 个是边),就可利用以上关系求出另外 3 个元素.4.仰角,俯角当从低处观测高处的目标时,视线与水平线所成的锐角,如图所示,为仰角,俯角:当从高处观测低处的目标时,仰角:视线与水平线所成的锐角,如图所示,为俯角,例题:题型一:三角函数的定义例1、(2015?崇左)如图,在Rt△ABC 中,∠C=90°,AB=13 ,BC=12 ,则下列三角函数表示正确的是( A )A.sinA= B.cosA= C.tanA= D.tanB=2=0,则∠C 的大例2、(2015?庆阳)在△ABC 中,若角 A ,B 满足|cosA﹣|+(1﹣tanB)小是( D )A.45°B.60°C.75°D.105°例3、(2015?牡丹江)在△ABC 中,AB=12 ,AC=13 ,cos∠B= ,则BC 边长为( D )A.7 B.8 C.8 或17 D.7 或17【解答】解:∵cos∠B= ,∴∠B=45°,当△ABC 为钝角三角形时,如图1,∵AB=12 ,∠B=45°,∴AD=BD=12 ,∵AC=13 ,∴由勾股定理得CD=5,∴BC=BD ﹣CD=12 ﹣5=7;当△ABC 为锐角三角形时,如图2,BC=BD+CD=12+5=17 ,故选D.题型分析:(1)对于利用三角函数求线段长度的问题,一般要把这条线段放在一个直角三角形中来解决,因此必须先构造出以该条线段为边的直角三角形。
第1节锐角三角函数第1课时正切1.经历探索直角三角形中边角之间关系的过程.2.理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明.3.能够运用tan A,sin A,cos A表示直角三角形中两边的比.4.能够根据直角三角形中的边角关系进行简单的计算.1.经历三个锐角三角函数的探索过程,确信三角函数的合理性,体会数形结合的数学思想.2.在探索锐角三角函数的过程中,初步体验探索、讨论、验证对学习数学的重要性.1.通过锐角三角函数概念的建立,使学生经历从特殊到一般的认识过程.2.让学生在探索、分析、论证、总结获取新知识的过程中体验成功的喜悦,从解决实际问题中感悟数学的实用性,培养学生学习数学的兴趣.【重点】1.理解锐角三角函数的意义.2.能利用三角函数解三角形的边角关系.【难点】能根据直角三角形的边角关系进行简单的计算1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.3.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.1.体验数形之间的联系,逐步学习利用数形结合思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略多样性,发展实践能力和创新精神.1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.【重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.【难点】理解正切的意义,并用它来表示生活中物体的倾斜程度、坡度等.【教师准备】多媒体课件.【学生准备】1.自制4个直角三角形纸板.2.复习直角三角形相似的判定和直角三角形的性质.导入一:课件出示:你知道图中建筑物的名字吗?是的,它就是意大利著名的比萨斜塔,是世界著名建筑奇观,位于意大利托斯卡纳省比萨城北面的奇迹广场上,是奇迹广场三大建筑之一,也是意大利著名的标志之一,它从建成之日起便由于土层松软而倾斜.【引入】应该如何来描述它的倾斜程度呢?学完本节课的知识我们就能解决这个问题了.[设计意图]创设新颖、有趣的问题情境,以比萨斜塔的倾斜程度激发学生的学习兴趣,从而自然引出课题,并且为学生探究梯子的倾斜程度埋下伏笔.导入二:课件出示:四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300cm,250cm,200cm,200cm;滑板与地面所成的角度分别为30°,45°,45°,60°.【问题】四个滑梯中哪个滑梯的高度最高[设计意图]利用学生所熟悉的滑梯进行引导,使学生有亲切感,滑梯与课本中引用梯子比较类似,学生的探究思路会比较顺畅.(一)探究新知请同学们看下图,并回答问题.探究一:问题1课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?小组讨论后展示结果:1组:梯子AB较陡.我们组是借助量角器量倾斜角,发现∠ABC>∠EFD,根据倾斜角越大,梯子就越陡,可以得到梯子AB较陡.师:哪组还有不同的判定方法?2组:我们也是认为梯子AB较陡.我们组是分别计算AC与BC的比,ED与FD的比,发现前者的比值大,根据铅直高度与水平宽度的比越大,梯子就越陡,可以得到梯子AB较陡.3组:我们组的方法和1组的大致相同,借助倾斜角来判断,不过不是测量,我们是过E作EG∥AB 交FD于G,就可以清晰比较∠ABC与∠EFD的大小了.4组:我们组发现这两架梯子的高度相同,水平宽度越小,梯子就越陡,所以我们也认为梯子AB较陡.探究二:问题2课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?学生会类比问题1给出的四种判断方法,只要说得合理即可.问题3课件出示:在下图中,梯子AB和EF哪个更陡?你是怎么判断的?多给学生思考和讨论的时间.代表发言:AB和EF的倾斜度一样.由于两个直角三角形的两直角边的比值相等,再加上夹角相等,可以判定两个直角三角形相似,根据相似三角形的对应角相等,可以证明两个倾斜角相等,所以AB和EF的倾斜度一样.教师引导:我们发现当直角三角形的两直角边的比值相等时,梯子的倾斜度一样,请大家判断一下在问题2与问题3中,两直角边的比值与倾斜度有什么关系?请继续探究下面的问题.问题4课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?教师引导:我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,可能就比较困难了.能不能从上面的探究中得到什么启示呢生讨论后得出:思路1:梯子EF较陡,因为∠EFD>∠ABC,根据倾斜角越大,梯子就越陡.思路2:梯子EF较陡,因为>,根据铅直高度与水平宽度的比越大,梯子就越陡.师生共同总结:在日常的生活中,我们判断哪个梯子更陡,应该从梯子AB 和EF 的倾斜角大小,或垂直高度和水平宽度的比的大小来判断.做一做:请通过计算说明梯子AB 和EF 哪一个更陡呢?生独立解答,代表展示:∵==,==,<,∴梯子EF 比梯子AB 更陡.[设计意图]通过探究逐层深入的问题,让学生经历由简单到复杂、由特殊到一般的探究过程,既对已学知识和生活经验进行了回味和运用,也让学生的思想逐步向本节课的中心“两直角边之比”靠近.[知识拓展]梯子的倾斜程度的判定方法:(1)梯子的倾斜程度和倾斜角有关系,倾斜角越大,梯子就越陡.(2)梯子的倾斜程度和铅直高度与水平宽度的比有关系,铅直高度与水平宽度的比越大,梯子就越陡.(二)再探新知课件出示:【想一想】如图所示,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系生很容易得出两个三角形相似.由生说明理由:∵∠B 2AC 2=∠B 1AC 1,∠B 2C 2A =∠B 1C 1A =90°,∴Rt△AB 1C 1∽Rt△AB 2C 2.(2)和有什么关系?由于Rt△AB 1C 1∽Rt△AB 2C 2,所以有=.(3)如果改变B 2在梯子上的位置呢?由此你得出什么结论?生先独立思考后分组讨论.生得出结论:改变B 2在梯子上的位置,铅直高度与水平宽度的比始终相等.想一想:现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?生讨论得出:∠A 的大小改变,∠A 的对边与邻边的比值会改变.∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.【总结提升】由于直角三角形中的锐角A 确定以后,它的对边与邻边的比也随之确定,因此我们有如下定义:如图所示,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent ),记作tan A ,即tan A =.当锐角A变化时,tan A的值也随之变化.能力提升:如果∠A+∠B=90°,那么tan A与tan B有什么关系?生讨论得出结论:tan A=,即任意锐角的正切值与它的余角的正切值互为倒数.【议一议】前面我们讨论了梯子的倾斜程度,在课本图1-3中,梯子的倾斜程度与tan A有关系吗?学生思考后,统一答案:tan A的值越大,梯子越陡.(反之,梯子越陡,tan A的值越大)[设计意图]此环节的设计是为了突出概念的形成过程,帮助学生理解概念.通过让学生参与、动手操作,让学生学会由特殊到一般、数形结合及函数的思想方法,提高学生分析问题和解决问题的能力.[知识拓展]正切的注意事项:(1)tan A是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”.(2)tan A没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.(3)tan A不表示“tan”乘以“A”.(4)初中阶段,我们只学习直角三角形中锐角的正切.(教材例1)如图所示表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?想一想:要判断哪个自动扶梯比较陡,只需求出什么即可?生思考后得出:比较甲、乙两个自动扶梯哪一个陡,只需分别求出tanα,tanβ的值进行比较大小即可,正切值越大,扶梯就越陡.要求学生独立解答,代表展示:解:甲梯中,tanα==.乙梯中,tanβ==.因为tanα>tanβ,所以甲梯更陡.[设计意图]通过对例题的解答让学生初步学会运用“正切”这一数学工具判断梯子的倾斜程度,同时规范学生的解题步骤,培养良好的解题习惯.课件出示:如图所示,有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度(即tanα)就是: i=tanα==.结论:坡面与水平面的夹角(α)称为坡角,坡面的铅直高度与水平宽度的比称为坡度(或坡比),tanα=,即坡度等于坡角的正切.[设计意图]正切在日常生活中的应用很广泛,通过正切刻画梯子的倾斜程度及坡度的数学意义,密切数学与生活的联系,使学生明白学习数学就是为了更好地应用数学,为生活服务.[知识拓展]坡度与坡面的关系:坡度越大,坡面越陡.(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.1.在Rt△ABC中,∠C=90°,AB=13,AC=12,则tan A等于()A.B. C. D.解析:∵在Rt△ABC中,∠C=90°,AB=13,AC=12,∴BC=5,∴tan A=.故选B.2.如图所示,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.解析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值,由图可得tan∠AOB=.故选B.3.(2014·温州中考)如图所示,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.解析:tan A==.故填.4.河堤横断面如图所示,堤高BC=5m,迎水坡AB的坡度是1∶(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是.解析:在Rt△ABC中,BC=5,tan A=1∶,∴AC=5,∴AB==10(m).故填10m.第1课时(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.一、教材作业【必做题】1.教材第4页随堂练习第1,2题.2.教材第4页习题1.1第1,2题.【选做题】教材第4页习题1.1第3,4题.二、课后作业【基础巩固】1.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,则tan A的值为()A. B. C. D.2.小明沿着坡度为1∶2的山坡向上走了1000m,则他升高了()A.500mB.200mC.500mD.1000m3.已知斜坡的坡度为i=1∶5,如果这一斜坡的高度为2m,那么这一斜坡的水平距离为m.【能力提升】4.(2015·山西中考)如图所示,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.5.如图所示,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A'B'C',使点B'与C重合,连接A'B,则tan∠A'BC'的值为.6.如图所示,在锐角三角形ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B的值.7.某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1∶1.8改为1∶2.4(如图所示).如果改动后电梯的坡面长为13m,求改动后电梯水平宽度增加部分BC的长.【拓展探究】8.如图所示,在△ABC中,AB=AC,BD是AC边上的中线,若AB=13,BC=10,试求tan∠DBC的值.【答案与解析】1.D(解析:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴tan A===.故选D.)2.B(解析:设铅直高度为x m,∵坡度为1∶2,∴水平宽度为2x m,由勾股定理得x2+(2x)2=10002,解得x=200.∴他升高了200m.故选B.)3.10(解析:∵斜坡的坡比是1∶5,∴=.∴=,∴斜坡的水平距离为=10m.故填10.)4.D(解析:如图所示,连接AC,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan B==.故选D.)5.(解析:如图所示,过A'作A'D⊥BC',垂足为D.在等腰直角三角形A'B'C'中,易知A'D是底边上的中线,∴A'D=B'D=.∵BC=B'C',∴tan∠A'BC'===.故填.)6.解:如图所示,过点A作AH⊥BC于H,∵S=27,∴×9×AH=27,∴AH=6.∵AB=10,∴BH===8,∴tan△ABCB===.7.解:在Rt△ADC中,AD∶DC=1∶2.4,AC=13,由AD2+DC2=AC2,得AD2+(2.4AD)2=132,∴AD=±5(负值不合题意,舍去),∴DC=12.在Rt△ABD中,∵AD∶BD=1∶1.8,∴BD=5×1.8=9,∴BC=DC-BD=12-9=3(m).答:改动后电梯水平宽度增加部分BC的长为3m.8.解:如图所示,过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为点H,F.∵BC=10,AH⊥BC,AB=AC,∴BH=5.∵AB=13,∴AH==12,在Rt△ACH中,AH=12,易知AH∥DF,且D为AC中点,∴DF=AH=6,∴BF=BC=,∴在Rt△DBF中,tan∠DBC==.本节课是三角函数部分的第一节概念教学,教学内容比较抽象,学生不易理解.为此结合初中学生身心发展的特点,运用实验教学、直观教学,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的认识规律,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.概念教学由学生熟悉的实例入手,引导学生观察、分析、动手、动脑、动口多种感官参与,并组织学生积极参与小组成员间合作交流.通过由特殊到一般、具体到抽象的探索过程,紧紧围绕着函数概念,引出正切概念,再通过相应的典型题组练习巩固概念.并且在教学过程中,注重了阶段性的反思小结,使学生能够及时总结知识和方法.本节课的开放性还不够,探究梯子倾斜程度时,学生的一些奇思妙想没有给予展示机会.第一个环节内容设计多了一些,所以导致后面的教学处理上稍显仓促.对第一个环节的处理力求更加简洁,并大胆放手让学生去探索、去发现,真正让学生成为学习的主人.随堂练习(教材第4页)1.解:能.tan C====.2.解:根据题意,得AB=200,BC=55,则AC===5,所以山的坡度为=≈0.286.习题1.1(教材第4页)1.解:∵BC===12,∴tan A==,tan B==.2.解:∵tan A==,BC=3,∴AC=BC=.4.tan A=.学生学习时首先通过情境题了解本节课学习的主要任务,做到有的放矢,然后利用“由一般到特殊”的数学思想,通过三个探究活动逐步得出梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系),在探究的过程中可以通过自主探究与合作交流的方式抓住重点,突破难点.学生在运用正切解决问题时,一定要注意其前提条件——在直角三角形中,找准直角是解题的关键.而有些题目需要作辅助线构造直角三角形,也可以通过角度的转化进行求解,同时还要注意数形结合思想的运用.如图所示,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α,β.已知h=2m,α=45°,tanβ=,CD=10m.求路基底部AB的宽.〔解析〕如图所示,过D,C分别作下底AB的垂线,垂足分别为E,F.在Rt△ADE和Rt△BCF中,可根据h的长以及坡角的度数或坡比的值,求出AE,BF的长,进而可求得AB的值.解:如图所示,过D作DE⊥AB于E,过C作CF⊥AB于F,∴DE∥CF.∵四边形ABCD为梯形,∴AB∥CD,∴EF=CD=10m.∴四边形DCFE为矩形.在Rt△ADE中,α=45°,DE=h=2m,∴CF=DE=h=2m.在Rt△BCF中,tanβ=,CF=2m,∴BF=2CF=4(m).故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(m).答:路基底部AB的宽为16m.[解题策略]此题主要考查了坡度问题的应用,求坡度、坡角问题通常要转换为解直角三角形的问题,必要时应添加辅助线,构造出直角三角形.。
锐角三角函数与特殊角一.选择题1.(2015·江苏常州·一模)在△ABC 中,AB =5,BC =6,B 为锐角且B sin =53,则∠C 的正弦值等于 A .56B .23C .31313D .21313答案:C2. (2015·湖南永州·三模)如图,河堤横断面迎水坡AB 的坡比是1:3,堤高BC =10m ,则坡面AB 的长度是( )A .15mB .203mC .20mD .103m答案:C 解析:Rt △ABC 中,BC =10m ,tanA =1:3;∴AC =BC ÷tanA =103m ,∴22AB AC BC =+=20m .故选C .3. (2015·屯溪五中·3月月考)如图,菱形ABCD 的对角线AC =6,BD =8,∠ABD =a ,则下列结论正确的是 【 】 A .54sin =a B .53cos =a C .34tan =a D .43tan =a 答案:D4. (2015·屯溪五中·3月月考)如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则sin ∠APB 等于【 】 A .32 B .22 C .12D .15. . (2015·安徽省蚌埠市经济开发·二摸)如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则tan OBC ∠ 的值为【 】PO第6题图 1A .12B .32C .33 D .3答案C6.(2015•山东滕州张汪中学•质量检测二)如图1,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,则tan A =A .35B .45C .34 D .43答案:D ;7.(2015·山东省枣庄市齐村中学二模)在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是( )A .7145B .1421 C .53 D .721 答案:B8.(2015·辽宁盘锦市一模)三角形在正方形方格纸中的位置如图所示,则cosα的值是A. 34B. 43C. 35D. 45答案:D9.(2015.河北博野中考模拟)∠A 是锐角,且sin A =cos A ,则∠A 的度数是 【 】A .30°B .45°C .60°D .75°答案:B10.(2015•山东济南•网评培训)如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=5,AC=6,则tan B 的值是 A.45 B. 35C. 34D. 43 第5题图ACBO答案:C11.(2015•山东济南•一模)如图,O ⊙是ABC △的外接圆,若O ⊙的半径为32, 2AC =,则sin B 的值是( ) A.23 B. 32 C. 34 D. 43答案:A12.(2015·江苏扬州宝应县·一模)三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是A .247B .73C .724 D .13答案: C13.(2015·无锡市南长区·一模)在锐角△ABC 中,|sin A -32 |+( cos B -22)2=0 ,则∠C 的度数是 ( )A .30°B .45°C .60°D .75° 答案:D14.(2015·无锡市宜兴市洑东中学·一模)如图1,在△ABC 中,∠ACB =90°,∠CAB =30°, △ABD 是等边三角形,E 是AB 的中点,连结CE 并延长交AD 于F ,如图2,现将四边形ACBD 折叠,使D 与C 重合,HK 为折痕,则sin ∠ACH 的值为 ( ) A .71-3 B .71C .61D . 61-3 答案:B二.填空题1. (2015·湖南岳阳·调研) 如图,在△ABC 中,记AB a =uu u r r ,AC b =uuu r r,点P 为BC 边的68CEABD(图3)中点,则AP =uu u r(用向量a r 、b r 来表示);答案:1122a b +r r2. (2015·安徽省蚌埠市经济开发·二摸)已知,△ABC ,按如下步骤作图:(1)以A 为圆心,AC 长为半径画弧;(2)以B 为圆心,BC 长为半径画弧,与前一条弧相交于点D , (3)连接CD .若AC =6,CD =8,则sin ∠CAB = . 答案:233.(2015·广东广州·二模)河堤横断面如图3所示,堤高BC =5米,迎水坡AB 的 坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是 ▲ 米. 答案:534.(2015·广东从化·一模) 在ABC Rt ∆中,090=∠C ,且a c 2=,则B ∠= * . 答案:0605.(2015•山东青岛•一模)如图,每个小正方形的边长为1,△ABC 的顶点都在方格纸的格点上,则sinA = 答案:556.(2015·江苏南菁中学·期中)在Rt △ABC 中,∠C =90°,AC =5,BC =12,则sinA =____▲___.第2题图第16题12答案:13三.解答题1. (2015·吉林长春·二模)答案:如图,过点A作AD⊥BC于点D.由题意可知在Rt△ADC中,∠ADC=90°,∠CAD=45°,CD=98,∴∠ACD =∠CAD =45°.∴AD=CD=98. (3分)在Rt△ABD中,BD=AD×tan∠BAD=98×1.28=125.44.∴BC=BD+CD=125.44+98=223.44≈223.4(米)答:塔高BC约为223.4米.(7分)2. (2015·湖南永州·三模)(6分)如图,我县某校新建了一座陶铸雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像3 )CD的高度.(最后结果精确到0.1米,参考数据:7.1解:在Rt △DEB 中,DE =BE •tan 45°=2.7米,在Rt △CEB 中,CE =BE •tan 30°=0.93米,则CD =DE ﹣CE =2.7﹣0.93≈1.2米,故塑像CD 的高度大约为1.2米.3. (2015·湖南岳阳·调研) 如图,在一笔直的海岸线上有A 、B 两个观察站,A 在B 的正东方向,A 与B 相距2千米,有一艘小船在点P 处,从A 测得小船在北偏西60°的方向,从B 测得小船在北偏东45°的方向; (1)求点P 到海岸线的距离;(2)小船从点P 处沿射线AP 的方向航行一段时间后到达点C 处,此时,从B 点测得小船在北偏西15°的方向,求点C 与点B 之间的距离;(注:答案均保留根号)答案:(11−; (2;4. (2015·江苏常州·一模)(本小题6分)如图,在同一平面内,两条平行高速公路1l 和2l 间有一条“Z ”型道路连通,其中AB 段与高速公路1l 成30°夹角,长为20km ,BC 段与AB 、CD 段都垂直,长为10km ,CD 段长为30km ,求两高速公路间的距离.(结果保留根号)解:过点A ,C 作1l 的垂线,过点B 作1l 的平行线,交于点E ,F ,F ,H ------------------ 1′30°ABCD1l 2ll 2l 1∵ △AEB 中,∠AEB =90°,∠ABE =30°,AB =20 ∴ AE =10 ---------------- 2′ ∵ △BHC 中,∠BHC =90°,∠HBC =60°,BC =10 ∴ CH =53 ---------- 3′ ∵ △CGD 中,∠CGD =90°,∠CDG =30°,CD =20 ∴ CG =15 ------------ 4′ ∴ AF =AE +EF =AE +CH +CG =25+53 ----------------------------------------------- 5′ 即两高速公路间的距离为(25+53)km . ------------------------------------------------ 6′5. (2015·江苏高邮·一模)(本题满分10分)(1)如图1, 4条直线l 1、l 2、l 3、l 4是一组平行线,相邻2条平行线的距离都是2 cm ,正方形ABCD 的4个顶点A 、B 、C 、D 分别在l 1、l 3、l 4、l 2上,求该 正方形的面积;(2)如图2,把一张矩形卡片ABCD 放在每格宽度为18mm 的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm )(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)解:(1)20 ………………………5分 (2)300 ………………………5分6. (2015·北京市朝阳区·一模)如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F.ADB1图1ABCl 1 l 3l 2 l 4D(1)求证:∠BAD =∠DAE ; (2)若AB =6,AD =5,求DF 的长.答案:.解:(1)连接OD ,∵ED 为⊙O 的切线,∴OD ⊥ED .……………………………………………………………………………1分∵AB 为⊙O 的直径,∴∠ACB =90°. ………………………………………………………………………… 2分 ∵BC ∥ED ,∴∠ACB =∠E =∠EDO ∴AE ∥OD . ∴∠DAE =∠ADO . ∵OA =OD , ∴∠BAD =∠ADO .∴∠BAD =∠DAE . ………………………………3分 (2)连接BD , ∴∠ADB =90°. ∵AB =6,AD =5,∴BD 2211AB AD −=……………………………………………………………4分 ∵∠BAD =∠DAE =∠CBD , ∴tan ∠CBD = tan ∠BAD 11. 在Rt △BDF 中, ∴DF =BD ·tan ∠CBD =115. ………………………………………5分 7. (2015·福建漳州·一模)()︒−−+−60tan 31130解:原式=3131−−+ =08.(2015·广东潮州·期中)计算:()0120142tan 60(π1(1)3−︒−−−+−.解:原式=233113+=………6分9.(2015·广东高要市·一模)计算:︒⨯+−⨯−+−45tan 592)3()2(2 解:原式=4﹣6﹣3+5……4’=0.……6’10.(2015•山东滕州东沙河中学•二模)计算:27-2cos 30°+(21)-2-31−; 答案:(1)3+5.(6分);11.(2015•山东滕州羊庄中学•4月模拟)计算: 001)3(45sin 22221π−+−−−⎪⎭⎫⎝⎛−−;答案:1222222+⨯−+−−=原式解:……………………………………3分 3−=……………………………………4分.12.(2015•山东滕州张汪中学•质量检测二)计算:1)21(12)2013(30tan 3−−−−+π;答案:解:原式=3×3+1-3 -2 ………………………………5分 3-1 ………………………………9分13.(2015•山东潍坊•第二学期期中)计算01(21)22452tan −−︒+−; 答案:(1)(5分)原式=1-21-2+2=21; 14. (2015·辽宁盘锦市一模)22.(12分)一艘观光游船从港口A 处以北偏东60°的方向出港观光,航行80海里至C 处时发生了侧翻沉船事故,立即发出了求救信号.一艘在港口正东方向B 处的 海警船接到求救信号,测得事故船在它的北偏东37°方向。
锐角三角比第一节 锐角的三角比1.锐角的三角比的定义如图 ,Rt △ABC 中,∠C =90°,锐角A 的四个三角比为: tanA =b aAC BC A A ==∠∠的邻边的对边cotA =abBC AC A A ==∠∠的对边的邻边sinA =c aAB BC A ==∠斜边的对边cosA =cbAB AC A ==∠斜边的邻边2.三角比的值(1)特殊角的三角比的值(30°、45°、60°)(2)锐角α三角比的值都是正数,并且有0<sin α<1,0<cos α<1 (3)同角三角比的关系:AA cot 1tan =(4)互余两角的三角比的关系:tan (90°—A )= cotA ,sin (90°—A )= cosA 注意点:1、要熟记30°、45°、60°等特殊角的三角比值;2、会使用计算器求锐角的三角比的值;3、要善于运用锐角三角比的定义求出锐角的三角比或边长,当所给的图形中没有直角三角形,会构造直角三角形;当图形较复杂,求一个角的三角比不方便时,会分析图形、条件,观察图形中是否有与所求角相等的角,然后转化成求另一个角的三角比. 例题精讲[例题1] 如图24—1,在△PQR 中,∠R =90°,tan P =3,RQ =12.求QR 和sin Q 的值.[例题分析]由已知在直角三角形中一个角的正切和一条直角边, 就可直接运用三角比的定义求出另一条直角边,再由勾股定理, 求出斜边,然后求出锐角的正弦或余弦.[解题过程] 在△PQR 中,∠R =90°,tan P =3,∴312==PRPR RQ ,∴4=PR 又∵222RQ PR PQ +=,∴5=PQ ∴53sin ==PQ PR Q [例题2] 如图24—2,在直角坐标平面内有一点),2(b A )0(>b .OA 与x 轴正半轴的┒R P Q 图24—1CAB夹角为α.(1)用含α的式子表示b . (2)用含b 的式子表示αcos .[例题分析]轴的距离有关,所以,只要过点A 作x 轴的垂线,就 可构造直角三角形,再运用三角比求解.[解题过程](1) 过点A 作x 轴的垂线,垂足为C ,则 ∠ACO =90°,∠AOC =α,由点),2(b A )0(>b ,得,,2b AC OC ==∴OCAC=αtan ,∴αtan 2=b . (2)∵22224b AC OC AO +=+=,∴42+=b AO∴44242cos 222++=+==b b b AO OC α. [例题3] 如图24—3,在△ABC 中,∠C =90°,DE ⊥AB 于点E ,交AC 于点D ,AC =5,BC =12. 求sin ∠ADE 的值.[例题分析]要求sin ∠ADE 的值,由正弦的定义即要求出AD DE的值,由于点D 、E 不确定,无法求DE 、AD 的值, 从题中的信息可以证明△ADE ∽△ABC ,得AB AC AD DE = 并可求ABAC 的值,但比较复杂,由于∠ADE 与∠B 都是∠A 的余角,所以∠ADE =∠B ,那么求sin ∠ADE 的值就转化为求sin ∠B 的值.[解题过程]∵ DE ⊥AB ∴∠AED =90°,又∠C =90°, ∴∠ADE =90°-∠A ==∠B在△ABC 中,∠C =90°, AC =5,BC =12,∴169222=+=BC AC AB ∴13=AB∴135sin ==∠AB AC B ∴sin ∠ADE =135. 锐角三角比的意义练习1.在Rt △ABC 中,∠C = 90°,AC = 4,BC = 5,则tan A = ,cot A = . 2.在Rt △MNP 中,∠P =90°,MP =10,52cot =N ,那么NP = ,MN = .3.如图24—4,在△PQR 中,∠R =90°,点M 在边PR 上. 设∠P =β,∠QMR =α,QR =a .用含a 和α、β的式子表示PM 的长.图24—2┒EC B A 图24—3DβαMRQP图24—44.如图24—5,在△ABC 中,∠ACB =90°,AC =6,AB =10,CD ⊥AB ,垂足为点D . 求(1) tan A ;(2)cot ∠ACD .5.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列关系中,正确的是( ) (A)c b A =sin ; (B)a c B =cos ; (C) b a A =tan ; (D)ab B =cot . 6.如果Rt △ABC 中,∠C =90°,各边的长都扩大到原来的2倍,那么锐角A 的各三角比的值( )(A)都扩大到原来的2倍; (B)都缩小到原来的2倍; (C)没有变化; (D) 不能确定. 7.在Rt △SQR 中,∠R =90°,如果tanS =512 ,那么sinQ 的值等于( )(A)135; (B) 1312 ; (C) 125 ; (D) 512 . 8.在直角坐标平面内有一点)4,(a P )0(>a .OP 与x 轴正半轴的夹角为α. (1)用含α的式子表示a .(2)用含a 的式子表示αsin .9.若3tan α=3,则锐角α = 度. 10.求下列各式的值:(1)3cot60°-tan45°+2sin45°-2cos30°;(2)0060cos 160sin 30tan -+.第二节 解直角三角形解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量.1.明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础.2.解直角三角形的基本类型和方法事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形┒DC A 图24—5是确定的,所以这样的直角三角形是可解的.解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。
第二十八章锐角三角函数单元检测(时间:45分钟,满分:100分)一、选择题(每小题3分,共30分) 1.在Rt △ABC 中,∠C =90°,若tan A =34,则sin A 等于( ). A.43 B.34C.53D.35210)1α+︒=,则锐角α的度数是( ).A .20°B .30°C .40°D .50°3.如图所示,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取∠ABD =145°,BD =500 m ,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )第3题图 第7题图A .500sin 55° mB .500cos 55° mC .500tan 55° mD.500cos55︒4.小明沿着坡度为1∶2的山坡向上走了1 000 m ,则他升高了( ).A .B .500 mC .D .1 000 m 5.已知在△ABC 中,∠C =90°,设sin B =n ,当∠B 是最小的内角时,n 的取值范围是( ).A .0<n <2B .0<n <12 C .0<n D .0<n6.某个水库大坝的横断面为梯形,迎水坡的坡度是11∶1,那么两个坡的坡角和为( ).A .90°B .75°C .60°D .105°7.如图,为测量一幢大楼的高度,在地面上距离楼底O 点20 m 的点A 处,测得楼顶B 点的仰角∠OAB =65°,则这幢大楼的高度为(结果保留3个有效数字)( ).A .42.8 mB .42.80 mC .42.9 mD .42.90 m 8.野外生存训练中,第一小组从营地出发向北偏东60°方向前进了3 km ,第二小组向南偏东30°方向前进了 3 km ,第一小组准备向第二小组靠拢,则行走方向和距离分别为( ).A .南偏西15°,B .北偏东15°,C .南偏西15°,3 kmD .南偏西45°,9.如图所示,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离(CE 的长度)为8m ,测得旗杆的仰角∠ECA 为30°,旗杆底部的俯角∠ECB 为45°,那么,旗杆AB 的高度是( )第9题图 第10题图A .m )3828(+B .m )388(+C .m )33828(+D .m )3388(+10.如图所示,要在离地面5m 处引拉线固定电线杆,使拉线和地面成60°角,若考虑既要符合设计要求,又要节省材料,则在库存的l 1=5.2m 、l 2=6.2m 、l 3=7.8m 、l 4=10m ,四种备用拉线材料中,拉线AC 最好选用( ) A .l 1 B .l 2 C .l 3 D .l 4 二、填空题(每小题3分,共18分)11.长为4 m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了__________ m.第11题图 第12题图 第13题图12.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的投影BC 的长为24米,则旗杆AB 的高度约是__________米.(结果保留31.732)13.如图,正方形ABCD 的边长为4,点M 在边DC 上,M ,N 两点关于对角线AC 对称,若DM =1,则tan ∠ADN =__________.14.如图,某河道要建造一座公路桥,要求桥面离地面高度AC 为3 m ,引桥的坡角∠ABC 为15°,则引桥的水平距离BC 的长是__________ m(精确到0.1 m).15.如果方程x 2-4x +3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为__________.16.如图,在正方形ABCD 中,O 是CD 边上一点,以O 为圆心,OD 为半径的半圆恰好与以B 为圆心,BC 为半径的扇形的弧外切,则∠OBC 的正弦值为__________.第14题图 第16题图 三、解答题(共72分) 17计算:(1)sin 245°+tan 60°cos 30°-tan 45°; (2)|+(cos 60°-tan 30°)018如图,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD . (1)求∠B 的度数; (2)求边AB 与BC 的长.19.如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20 m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度 1.732,结果保留一位小数).20.已知:如图,P是矩形ABCD的CD边上一点,PE⊥AC于E,PF⊥BD于F,AC =15,BC=8,求PE+PF.21.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40 m,坡角∠BAD=60°,为防夏季因暴雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)?22、为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图。
锐角三角函数一、选择题1.在Rt △ABC 中,∠C =90°,若sinA =,则cosB 的值是( ) A .B .C .D .2.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB 交AB 于D .已知cos ∠ACD =,BC =4,则AC 的长为( ) ..A .B .C .D .4.如图,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为3,tan 2αα=,则t 的值是【 】 A .1 B .1.5 C .2 D .35.在Rt △ACB 中,∠C =90°,AB =10,sinA =,cosA =,tanA =,则BC 的长为( )6.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM =) absinαabcosα 能,,B.C.D.﹣24米2二.填空题1.网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA = .2.如图,直线MN 与⊙O 相切于点M ,ME =EF 且EF ∥MN ,则cos ∠E = . 3.如图,在△ABC 中,∠C =90°,AC =2,BC =1,则tanA 的值是 . 4.孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为 米(结果保留整数,参考数据:sin 20°≈0.3420,sin 70°≈0.9397,tan 20°≈0.3640,tan 70°≈2.7475).5.如图,正方向ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE =30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ =AE ,则AP 等于 cm . 6.如图,在Rt △ABC 中,∠C =90°,∠B =37°,BC =32,则AC = . (参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)7.如图,在地面上的点A 处测得树顶B 的仰角为α度,AC =7米,则树高BC 为 米(用含α的代数式表示).8.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出 个这样的停车位.(≈1.4)9.如图,在△ABC 中,∠A =30°,∠B =45°,AC =,则AB 的长为 .10如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,已知平台CD 的高度为5m ,则大树的高度为 m (结果保留根号)三.解答题 1.计算:+(π﹣3)0﹣tan 45°.2.△ABC 为等边三角形,边长为a ,DF ⊥AB ,EF ⊥AC , (1)求证:△BDF ∽△CEF ;(2)若a =4,设BF =m ,四边形ADFE 面积为S ,求出S 与m 之间的函数关系,并探究当m 为何值时S 取最大值;(3)已知A 、D 、F 、E 四点共圆,已知tan ∠EDF =,求此圆直径.3. “中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.4.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)5.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE 为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)6.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)7.一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)8.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).9.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD 方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)10.如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:≈1.41,≈1.73,≈2.45)11.如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)12.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.13.解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB 等于47m ,从AB 的中点C 处开启,则AC 开启至A ′C ′的位置时,A ′C ′的长为 m ;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ ,在观景平台M 处测得∠PMQ =54°,沿河岸MQ 前行,在观景平台N 处测得∠PNQ =73°,已知PQ ⊥MQ ,MN =40m ,求解放桥的全长PQ (tan 54°≈1.4,tan 73°≈3.3,结果保留整数).14.如图,小明在M 处用高1米(DM =1米)的测角仪测得旗杆AB 的顶端B 的仰角为30°,再向旗杆方向前进10米到F 处,又测得旗杆顶端B 的仰角为60°,请求出旗杆AB 的高度(取≈1.73,结果保留整数)15.如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:)16.如图,在数学实践课中,小明为了测量学校旗杆CD 的高度,在地面A 处放置高度为1.5米的测角仪AB ,测得旗杆顶端D 的仰角为32°,AC 为22米,求旗杆CD 的高度.(结果精确到0.1米.参考数据:sin 32°= 0.53,cos 32°= 0.85,tan 32°= 0.62)17.如图,从A 地到B 地的公路需经过C 地,图中AC =10千米,∠CAB =25°,∠CBA =37°,因城市规划的需要,将在A 、B 两地之间修建一条笔直的公路. (1)求改直的公路AB 的长;(2)问公路改直后比原来缩短了多少千米?(sin 25°≈0.42,cos 25°≈0.91,sin 37°≈0.60,tan 37°≈0.75)18.如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,∠B =60°,AB =10,BC =4,点P 沿线段AB 从点A 向点B 运动,设AP =x . (1)求AD 的长;(2)点P 在运动过程中,是否存在以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;(3)设△ADP 与△PCB 的外接圆的面积分别为S 1、S 2,若S =S 1+S 2,求S 的最小值.19.如图,在Rt △ABC 中,∠C =90°,∠A 的平分线交BC 于点E ,EF ⊥AB 于点F ,点F 恰好是AB 的一个三等分点(AF >BF ).(1)求证:△ACE ≌△AFE ; (2)求tan ∠CAE 的值.第20题图。