极坐标与参数方程————教师版
- 格式:pdf
- 大小:747.27 KB
- 文档页数:18
一.自我诊断 知己知彼1. 若圆M 的方程为,则圆M 的参数方程为 .【答案】【解析】由圆M 的方程224x y +=,可知圆心()0,0,半径为 2.所以圆M 的参数方程为:. .2.已知圆M :x 2+y 2-2x -4y +1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为 .【答案】2【解析】由于圆M 的标准方程为:22(1)(2)4x y -+-=,所以圆心(1,2)M , 又因为直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)消去参数t 得普通方程为3450x y --=,422=+y x )(sin 2cos 2为参数ααα⎩⎨⎧==y x )(sin 2cos 2为参数ααα⎩⎨⎧==y x由点到直线的距离公式得所求距离2d ==;故答案为:2.3在极坐标系中,点(2,6π)到直线θρsin =2的距离等于________. 【答案】1【解析】在极坐标系中,点(2,6π1),直线θρsin =2对应直角坐标系中的方程为y =2,所以点到直线的距离为1. 4设曲线的参数方程为(是参数,),直线的极坐标方程为,若曲线与直线只有一个公共点,则实数的值是 .【答案】7【解析】曲线的普通方程为()()22116x a y -+-=,直线的普通方程3450x y +-=,直线l 与圆C相切,则圆心(),1a 到l 的距离345475a d d +-==⇒= 5.直角坐标系xOy 中,圆C的参数方程是cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立坐标系,则圆心C 的极坐标是 . 【答案】)6,2(π【解析】由圆C的参数方程是cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数)得⎩⎨⎧-=-=1s in 3c os y x θθ可得圆的标准方程为1)1()3(22=-+-y x ,圆心坐标为)1,3(,离圆心的距离33tan ,21)3(22==+=θρ,由题意6πθ=,则圆心C 的极坐标是)6,2(π.二.温故知新 夯实基础1.平面直角坐标系C 4cos 14sin x a y θθ=+⎧⎨=+⎩θ0>a l 3cos 4sin 5ρθρθ+=C l a C l设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎪⎩⎪⎨⎧==0>,0>,''λμλλy y x x 的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ) (ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎨⎧==θρθρsin cos y x 或⎪⎩⎪⎨⎧≠=+=0,tan 222x x yy x θρ,这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程4.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧==)()(t g y t f x 就是曲线的参数方程.5.常见曲线的参数方程和普通方程三.典例剖析 举一反三考点一 坐标系(一)典例剖析例1在平面直角坐标系xOy 中,直线l 的参数方程为12,22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),又以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 24sin 30ρθρθ+-=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 方程相交于A ,B 两点,求||AB .【答案】(1)曲线C 的直角坐标方程为22(2)1y x --=;(2)||AB = 【解析】(1)曲线C 的极坐标方程2cos 24sin 30ρθρθ+-=, 化为2222cossin 4sin 30ρθρθρθ-+-=,即22430x y y -+-=.∴曲线C 的直角坐标方程为22(2)1y x --=.(2)将直线l的参数方程12,22x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线C 方程得24100t t +-=,设A ,B 对应的参数分别为1t ,2t ,则124t t +=-,1210t t =-,所以12||||AB t t =-= 【方法点拨】(1)由极坐标与直角坐标相互转化公式cos sin x y ρθρθ=⎧⎨=⎩,可求出曲线C 的直角坐标方程;(2)将直线l 的参数方程代入曲线C 的方程并整理可得关于t 的一元二次方程,利用韦达定理可得12t t +,12t t ,运用直线的参数方程的几何意义可知,12||||AB t t =-,代入即可得出所求的结果. (二)举一反三1. 已知圆C 的参数方程为为参数),直线的极坐标方程为,则直线与圆C的交点的直角坐标为 . 【答案】)1,1(±【解析】圆C 的普通方程为()2211x y +-=,直线的普通方程为1y =,所以交点为)1,1(± 2. 将曲线22132x y +=按ϕ:变换后的曲线的参数方程为( ) A. B. C.D.【答案】Dcos ,(1sin .x y ααα=⎧⎨=+⎩l sin 1ρθ=l l【解析】由变换ϕ:可得:,代入曲线22132x y +=可得: ()()2232132x y ''+=,即为: 22321,x y +=令(θ为参数)即可得出参数方程.故选:D. 3.【2017北京卷理11】在极坐标系中,点A 在圆04sin 4-cos 2-2=+θρθρρ上,点P 的坐标为(1,0),则|AP |的最小值为 . 【答案】1【解析】将极坐标方程转化成标准方程:()();12122=-+-y x 所以AP 的最小值为1.4.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(1;(2)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB = (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. 考点二 参数方程(一)典例剖析例1已知曲线C 的极坐标方程式2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线L的参数方程是12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数). (1)求曲线C 的直角坐标方程和直线L 的普通方程;(2)设点(,0)P m ,若直线L 与曲线C 交于两点,A B ,且||||1PA PB ⋅=,求实数m 的值.【答案】(1)曲线C 的直角坐标方程为222x y x +=,直线L的普通方程为x m =+;(2)1m =± 【解析】(1)曲线C 的极坐标方程是2cos ρθ=,化为22cos ρρθ=,可得直角坐标方程:222x y x +=.直线L的参数方程是212x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),消去参数t可得x m +. (2)把212x t m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入方程:222x y x +=,化为:2220t t m m ++-=, 由0∆>,解得13m -<<.∴2122t t m m =-.∵12||||1PA PB t t ⋅==,∴221m m -=,解得1m =±0∆>.∴实数1m =±【方法点拨】(1)利用y x y x ==+=θρθρρsin ,cos ,222,即可将极坐标方程化为平面直角坐标系方程;消去参数t 即可将直线的参数方程化为普通方程;(2)将直线的参数方程代入曲线C 的普通方程得到一个含t 且关于x的一元二次方程2220t t m m ++-=,然后利用参数t 的几何意义知,12||||1PA PB t t ⋅==22m m =-,并由t 的范围(利用判别式大于零求范围)求出值域即可.例2. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系.曲线C 的极坐标方程是4cos (0)2πρθθ=≤≤,直线l 的参数方程是3cos 6()sin 6x t t y t ππ⎧=-+⎪⎪⎨⎪=⎪⎩为参数. (1)求直线l 的直角坐标方程和曲线C 的参数方程; (2)求曲线C 上的动点M 到直线l 的距离的范围.【答案】(1)30x +=,22cos 2sin x y αα=+⎧⎨=⎩(α为参数,0απ≤≤);(2)17,22⎡⎤⎢⎥⎣⎦.【解析】(1)直线:3l x +=,即:30x -+=由24cos ρρθ=得:224x y x +=,即:22(2)4x y -+=0,sin 02y πθρθ≤≤∴=≥.故C 的参数方程为:22cos (0)2sin x y ααπα=+⎧≤≤⎨=⎩ (2)设点(22cos ,2sin )M αα+到直线30x +=的距离为dd ==54sin()1654sin()(0)226παπααπ--⎛⎫==--≤≤ ⎪⎝⎭51sin()166626ππππαα-≤-≤-≤-≤时,min max 117sin()1,,sin(),62622d d ππαα∴-==-=-=时时点M 到直线l 的距离的范围是17,22⎡⎤⎢⎥⎣⎦【方法点拨】(1)消去t 可得直线l 的直角坐标方程,利用cos x ρθ=,sin y ρθ=代入曲线C 的极坐标方程可得曲线C 的直角坐标方程,进而引入参数α可得曲线C 的参数方程;(2)先计算点M 到直线l 的距离,再利用三角函数的性质可得点M 到直线l 的距离的范围. (二)举一反三 1. 若P 为椭圆上的点,则的取值范围是 .【答案】[]2,2- 【解析】依题意可得sin m n θθ⎧=⎪⎨=⎪⎩, 1sin 2cos sin 2sin 223m n πθθθθθ⎛⎫⎛⎫∴+=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, R θ∈, []sin 1,13πθ⎛⎫∴+∈- ⎪⎝⎭, []2sin 2,23πθ⎛⎫∴+∈- ⎪⎝⎭.即[]2,2m n +∈-),(n m n m +2. 在直角坐标系xOy 中,曲线1C 的方程是5222=+y x ,2C 的参数方程是⎪⎩⎪⎨⎧-==ty t x 3(t 为参数),则1C 与2C 交点的直角坐标是 . 【答案】)1 , 3(-【解析】由⎪⎩⎪⎨⎧-==ty t x 3消去参数t ,得2C的普通方程为(0)y x x =≥,代入1C 方程5222=+y x 整理得:23x =,解得x =1y =-,因此交点为1)-.3. 参数方程sin cos 2x y θθ=⎧⎨=⎩(θ为参数)化为普通方程为 .【答案】212y x =-,[1,1]x ∈-【解析】由2cos 212sin θθ=-得212y x =-,又sin [1,1]θ∈-,所以[1,1]x ∈-,因此普通方程为212y x =-,[1,1]x ∈-4.(2019天津理12)设a ∈R ,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为 . 【答案】34【解析】消去参数在,整理圆的方程22(2)(1)4x y -+-=;带入点到直线的距离公式,考点三 综合问题(一)典例剖析例1在直角坐标系xOy 中,直线l 的参数方程为 为参数,0απ≤<),曲线C 的参数方程为 为参数),以坐标原点O 为极点, x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设C 与l 交于,M N 两点(异于原点),求OM ON +的最大值. 【答案】(1)曲线C 的极坐标方程为24sin ρρθ=;(2)【解析】(1)曲线C 的普通方程为()2224x y +-=,化简得224x y y +=,则24sin ρρθ=,所以曲线C 的极坐标方程为24sin ρρθ=. (2)由直线l 的参数方程可知,直线l 必过点()0,2,也就是圆C 的圆心,则2MON π∠=,不妨设()12,,,2MN πρθρθ⎛⎫+⎪⎝⎭,其中0,2πθ⎛⎫∈ ⎪⎝⎭,则()1244424OM ON sin sin sin cos ππρρθθθθθ⎛⎫⎛⎫+=+=++=+=+ ⎪ ⎪⎝⎭⎝⎭,所以当4πθ=, OM ON +取得最大值为【方法点拨】(1)由题意可得曲线C 的普通方程为()2224x y +-=,将其转化为极坐标方程即24sin ρρθ=.(2)由参数方程可知直线l 过圆C 的圆心,则2MON π∠=,设()12,,,2MN πρθρθ⎛⎫+⎪⎝⎭,其中0,2πθ⎛⎫∈ ⎪⎝⎭,则4OM ON πθ⎛⎫+=+⎪⎝⎭,由三角函数的性质可得OM ON +取得最大值为.例2. 【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=; 若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=; 若3ππ4θ≤≤,则2cos θ-=5π6θ=. 综上,P的极坐标为π6⎫⎪⎭ 或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭. 【方法点拨】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大例 3. 在直角坐标系xoy 中,曲线1C 的参数方程为 ,( α为参数),以原点O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值.【答案】(1)2213x y +=, 80x y +-=(2)【解析】(1)由曲线1C :得{ cos y sin αα==即:曲线1C 的普通方程为: 2213x y +=由曲线2C :sin 4πρθ⎛⎫+= ⎪⎝⎭()sin cos ρθθ+=即:曲线2C 的直角坐标方程为: 80x y +-=(2)由(1)知椭圆1C 与直线2C无公共点,椭圆上的点),sin Pαα到直线80x y +-=的距离为d ==所以当sin 13πα⎛⎫+= ⎪⎝⎭时, d的最小值为【方法点拨】(1)对于1C ,利用22cos sin 1αα+=,化简得2213x y +=,对于2C ,展开后利用极坐标与直角坐标转化公式,化简的80x y +-=.(2)直接利用点到直线距离公式,求出距离,并用辅助角公式化简,利用三角函数最值求得距离的最小值. (二)举一反三例 1. 已知在平面直角坐标系xOy 中,直线l 的参数方程是(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设(),M x y 为曲线C 上任意一点,求x y +的取值范围. 【答案】(1)260x y -+=,(222x y +=(2)2⎡-+⎣【解析】(1)由{26x t y t ==+,得26y x =+,故直线l 的普通方程为260x y -+=,由ρθ=,得2cos ρθ=,所以22x y +=,即(222x y +=,故曲线C的普通方程为(222x y -+=;(2)据题意设点)Mθθ,则2sin 4x y πθθθ⎛⎫+=+ ⎪⎝⎭,所以x y +的取值范围是2⎡-⎣.例2. 在直角坐标系xOy 中,曲线C 的参数方程为(α为参数),以平面直角坐标系的原点为极点, x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)过原点O 的直线12,l l 分别与曲线C 交于除原点外的,A B 两点,若3AOB π=,求AOB 的面积的最大值.【答案】(1)4sin 3πρθ⎛⎫=+ ⎪⎝⎭;(2) .【解析】 (1)曲线C 的普通方程为(()2214x y -+-=,即2220x y y +--=,所以,曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+⎪⎝⎭. (2)不妨设()1,A ρθ, 2,3B πρθ⎛⎫+⎪⎝⎭,,33ππθ⎛⎫∈- ⎪⎝⎭.则14sin 3πρθ⎛⎫=+⎪⎝⎭,224sin 3πρθ⎛⎫=+⎪⎝⎭,AOB 的面积12112sinsin sin 232333S OA OB ππππρρθθθ⎛⎫⎛⎫=⋅==++= ⎪ ⎪⎝⎭⎝⎭所以,当0θ=时, AOB 的面积取最大值为例3. 在直角坐标系xOy 中,曲线C 的参数方程是 (α为参数),以该直角坐标系的原点O为极点, x 轴的正半轴为极轴建立极坐标系,直线l sin cos 0m θρθ-+=. (1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)设点(),0P m ,直线l 与曲线C 相交于,A B 两点,且1PA PB =,求实数m 的值.【答案】(1)曲线C 的普通方程为()2212x y -+=,直线l 的直角坐标方程为)3y x m =-;(2)1m =±0m =或2m =.【解析】(1)()2212x y ⇒-+=故曲线C 的普通方程为()2212x y -+=.直线l)3x m y x m -+⇒=-. (2)直线l的参数方程可以写为,{12x m y t =+=(t 为参数).设,A B 两点对应的参数分别为12,t t ,将直线l 的参数方程代入曲线C 的普通方程()2212x y -+=可以得到2221122m t t ⎛⎫⎛⎫+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭)()21120m t m -+--=, 所以()212121PA PB t t m ==--= 2211m m ⇒--= 2220m m ⇒-==或220m m -=,解得1m =±0m =或2m =.四.分层训练 能力进阶【基础】1. 曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的焦距是 .【答案】6【解析】消参后化为:14522=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛y x ,整理为1162522=+y x ,所以焦距6162522=-=c . 2. 把下列参数方程化为普通方程,并说明它们各表示什么曲线:⑴⎩⎨⎧==ϕϕsin 4cos 5y x (ϕ为参数); ⑵⎩⎨⎧=-=t y tx 431(t 为参数)【答案】⑴1162522=+y x ∴曲线是长轴在x 轴上且为10,短轴为8,中心在原点的椭圆.⑵0434=-+y x ,它表示过(0,43)和(1, 0)的一条直线. 【解析】本题主要是考查参数方程化为普通方程,(1)对两个式子中右边的系数挪到左边,利用三角函数的平方关系式消去ϕ整理即得到;(2)可以代入消元或加减消元消去t 得普通方程.解:⑴.∵⎩⎨⎧==ϕϕsin 4cos 5y x ∴⎪⎩⎪⎨⎧==ϕϕsin 4cos 5y x两边平方相加,得ϕϕ2222s i n c o s 1625+=+y x 即1162522=+y x ∴曲线是长轴在x 轴上且为10,短轴为8,中心在原点的椭圆. ⑵.∵⎩⎨⎧=-=ty t x 431∴由4y t =代入t x 31-=,得 431yx ⋅-=∴0434=-+y x∴它表示过(0,43)和(1, 0)的一条直线. 3.【2019北京卷理3】已知直线l 的参数方程为)(4231为参数t ty t x ⎩⎨⎧+=+=,则点()0,1到直线l 的距离是A .51 B .52 C .54 D .56 【答案】D【解析】直线l 的参数方程为)(4231为参数t ty tx ⎩⎨⎧+=+=,消参数得,3234+=x y 即0234=+-y x ,则点()0,1到直线l 的距离是564320422=++-=d ,故选D4. 已知直线l 的方程为2)4sin(=+πθρ,曲线C 的方程为()为参数θθθ⎩⎨⎧==sin cos y x . (1)把直线l 和曲线C 的方程分别化为直角坐标方程和普通方程; (2)求曲线C 上的点到直线l 距离的最大值. 【答案】(1)2=+y x ,122=+y x ;(2)12+=l .【解析】(1)222cos 22sin =⎪⎪⎭⎫⎝⎛⋅+⋅θθρ,根据⎩⎨⎧==θρθρsin cos y x ,代入得:2=+y x 根据1cos sin 22=+θθ,消参后的方程是:122=+y x .(2)直线与圆相离,所以圆上的点到直线的最大距离是圆心到直线的距离加半径,即222==d ,那么最大距离就是12+=l5. 已知曲线C 的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为χ轴的正半轴,建立平 面直角坐标系,直线l 的参数方程是⎪⎩⎪⎨⎧+==tm x t y 2222(t 是参数).(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,直线l 的参数方程化为普通方程; (Ⅱ)若直线l 与曲线C 相交于A 、B 两点,且|AB |=14,试求实数m 的值. 【答案】(Ⅰ)2240x y x +-=,y x m =-;(Ⅱ)1或3.【解析】(Ⅰ)曲线C 的极坐标方程是ρ=4cos θ化为直角坐标方程为:0422=-+x y x 直线l 的直角坐标方程为:m x y -=(5分)(Ⅱ)解法一:由(Ⅰ)知:圆心的坐标为(2,0),圆的半径R =2,圆心到直线l 的距离22)214(222=-=d ,∴ 1222202=-⇒=--m m ∴ 31==m m 或解法二:把22x t my t ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数)代人方程2x 042=-+x y得222)40t m t m m -+-=∵ m m t t m t t 42(222121-=--=+),∴ 21221214)(t t t t t t AB -+=-= ∴ []14)442(222=---=m m m ()∴ 31==m m 或【巩固】1.【2018北京卷理7】在平面直角坐标系中,记d 为点P (cosθ,sinθ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为 A .1 B .2C .3D .4【答案】C【解析】点P 的轨迹为x ²+y ²=1,则点P 到直线的距离可转化为圆上任意一点到直线的距离。
参数方程易错题1.极坐标方程ρ=cosθ和参数方程⎩⎨⎧+=--=ty tx 321 (t 为参数)所表示的图形分别为( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线 【答案】A 【解析】试题分析:将极坐标方程ρ=cosθ化为直角坐标方程得:x y x =+⇔=⇔222cos θρρ知表示圆;而将参数方程⎩⎨⎧+=--=t y tx 321 (t 为参数)消去参数化为普通方程得:013=++y x 知表示直线,故选A.考点:1.极坐标方程;2.参数方程. 2.已知直线l的参数方程为132x y t⎧=+⎪⎨=-⎪⎩(t 为参数 ),则直线l 的倾斜角为( )A .6π B .4π C .34π D .56π 【答案】D 【解析】试题分析:因为直线l 的参数方程为132x y t ⎧=+⎪⎨=-⎪⎩,消去t 得到1x +=+即333y x =-++,所以直线l 的斜率为3-,设直线l 的倾斜角为(0)ααπ<<,则由tan α=,可得56πα=,故选D.考点:1.参数方程;2.直线的倾斜角.3.直线的参数方程为⎪⎩⎪⎨⎧-=-=050cos 150sin t y t x (t 为参数),则直线的倾斜角为( )A .40°B .50°C .140°D .130°【答案】C 【解析】试题分析:()00005090tan 50cot 50sin 50cos 1tan +=-=-=+=x y α,所以0140=α,故选C. 考点:直线的参数方程 4.曲线为参数)为参数),曲线θθθ(sin cos 2:(11:21⎩⎨⎧==⎩⎨⎧-=+=y x C t t y t x C ,若21,C C 交于A 、B 两点,则弦长AB 为( )A .54 B .524 C .2 D .4 【答案】B 【解析】试题分析:设),(),,(2211y x B y x A ,因曲线1C 方程为2=+y x ,曲线2C 方程为1422=+y x , 交于A,B 两点,1C ,2C 联立得0121652=+-x x ,512,5162121==+x x x x ,2121x x k AB -+=,解得524=AB . 考点:直线与圆锥曲线的综合问题.5.直线l 的参数方程为()x a tt y b t =+⎧⎨=+⎩为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是( )A【答案】C【解析】 试题分析:()()1212112t b t b a t a P P =-++-+=,故选C.考点:参数方程6.直线11,2()x t t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为 A .(3,3)- B .(C .3)- D .(3,【答案】D【解析】试题分析:由题可得直线方程为y =-2680x x -+=,设直线与圆的交点坐标为A ()11,x y ,B ()22,x y ,可得126x x +=,1212y y +=--=-,所以中点1212,22x x y y ++⎛⎫⎪⎝⎭为(3,. 考点:参数方程,直线与圆的位置关系.7到直线cos sin 10ρθρθ--=的距离等于( ).A.2【答案】A 【解析】试题分析:将点4π⎫⎪⎭化为直角坐标为()1,1,将直线cos sin 10ρθρθ--=化为直角坐标方程为10x y --=,则所求距离为2d ==。
学习资料专题7第1讲 坐标系与参数方程极坐标方程授课提示:对应学生用书第65页考情调研考向分析会求点的极坐标和应用直线、圆的极坐标方程是重点,主要与参数方程相结合进行,以解答题的形式考查,难度中档。
1。
极坐标与直角坐标的互化. 2.求曲线的极坐标方程. 3.极坐标方程的应用。
[题组练透]1.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3+2cos θy =2sin θ(θ为参数),直线l :y =kx (k ≥0)与曲线C 交于A ,B 两点.以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程; (2)求错误!+错误!的最大值.解析:(1)由错误!(θ为参数),得(x -3)2+y 2=4,即x 2+y 2-6x +5=0. 故C 的极坐标方程为ρ2-6ρcos θ+5=0.(2)设A (ρ1,α),B (ρ2,α),直线l :y =kx (k ≥0)的极坐标方程为θ=α(ρ∈R ), 代入ρ2-6ρcos θ+5=0,得ρ2-6ρcos α+5=0, 所以ρ1+ρ2=6cos α,ρ1ρ2=5。
因为k ≥0,所以cos α>0,则ρ1>0,ρ2>0,则错误!+错误!=错误!+错误!=错误!=错误!。
当cos α=1时,错误!+错误!取得最大值,且最大值为错误!.2.已知曲线C 1:x +错误!y =错误!和C 2:错误!+错误!=1.以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的直角坐标方程化为极坐标方程;(2)设曲线C 1分别与x 轴,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 2交于点Q ,求P ,Q 两点间的距离.解析:(1)把x =ρcos θ,y =ρsin θ代入曲线C 1的直角坐标方程可得,ρcos θ+错误!ρsin θ=错误!,整理得曲线C 1的极坐标方程为ρsin (θ+错误!)=错误!.把x =ρcos θ,y =ρsin θ代入曲线C 2的直角坐标方程得,错误!cos 2θ+错误!sin 2θ=1,即ρ2(cos 2θ+3sin 2θ)=6.所以曲线C 2的极坐标方程为ρ2=错误!. (2)由题意知,M (3,0),N (0,1), 所以P (错误!,错误!),故点P 的极角为θ=错误!, 把θ=错误!代入ρsin(θ+错误!)=错误!,得ρ1=1, 即点P 的极坐标为(1,错误!); 把θ=π6代入ρ2=错误!,得ρ2=2,则点Q 的极坐标为(2,π6).所以|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1.[题后悟通]1.直角坐标与极坐标的互化设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则错误!错误! 2。
坐标系与参数方程1.(2008东莞调研文、理)极坐标内曲线2sin ρθ=的中心O 与点D ()1,π的距离为.2.(2008佛山二模文、理)球坐标(2,,)63ππ对应的点的直角坐标是1(2 ⎽⎽⎽⎽,对应点的柱坐标是(1,3π⎽⎽⎽⎽.3. (2008佛山一模文、理)在直角坐标系中圆C 的参数方程为⎩⎨⎧+==θθsin 22cos 2y x (θ为参数),则圆C 的普通方程为_____22(2)4x y +-=_____,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的圆心极坐标为____ )2,2(π_____.4.(2008广州一模文、理)在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是 cos 2ρθ= .5. (2008广州二模文、理)已知圆C 的参数方程为⎩⎨⎧=+=θθsin ,1cos y x (θ为参数), 则点()4,4P 与圆C 上的点的最远距离是 6 .6.(2008广州调研文、理) 在极坐标系中,点()1,0到直线()cos sin 2ρθθ+=的距离为.7.(2008惠州一模理) 已知动圆:0sin 2cos 222=--+θθby ax y x),,(是参数是正常数,θb a b a ≠,则圆心的轨迹是______椭圆__________8. (2008惠州调研二文) 极坐标系中,圆22cos 30ρρθ+-=上的动点到直线cos sin 70ρθρθ+-=的距离的最大值是2 .第13题9、(2008惠州调研二理) 曲线1C :⎩⎨⎧=+=)y x 为参数θθθ(sin cos 1上的点到曲线2C:12(112x t t y t⎧=-⎪⎪⎨⎪=-⎪⎩为参数)上的点的最短距离为 1 .10.(2008惠州调研三文)直线2()1x t t y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为82 .11.(2008惠州调研三理) 曲线的极坐标方程θρsin 4=化为直角坐标方程为22(2)4x y +-= .12.(2008揭阳一模文、理) 在极坐标系中,已知直线过点(1,0),且其向上的方向与极轴的正方向所成的最小正角为3π,则直线的极坐标方程为____sin()32πρθ-=__________.13.(2008揭阳调研文、理) 极坐标系中,曲线4sin ρθ=-和cos 1ρθ=相交于点,A B ,则AB =14.(2008梅州一模文) 已知圆的极坐标方程2cos ρθ=,直线的极坐标方程为cos 2sin 70ρθρθ-+=,则圆心到直线距离为.15. (2008汕头一模理)在极坐标系中,点A (1,)4π到直线sin 2ρθ=-的距离是__2+。
极坐标与参数方程环节1 明晰高考要求高考对极坐标与参数方程考查主要突出其工具性的作用,突出极坐标以及参数方程的几何用法,考查学生能根据实际问题的几何背景选择恰当的方法解决问题的能力,命题考查形式以极坐标与直角坐标的互化,参数方程的消参以及极坐标的几何意义与参数方程的参数的几何意义的综合应用。
主要考查四类题型:① 极坐标系中,极坐标的几何意义的应用真题示例题1 (2017年全国Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1) M 为曲线1C 上的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2) 设点A 的极坐标为2,3π⎛⎫⎪⎝⎭,点B 在曲线2C 上,求OAB ∆面积的最大值. 【解析】(1)设()00,M ρθ,(),P ρθ,则0OM ρ=,OP ρ=,依题意016ρρ=,00cos 4ρθ=,0θθ=, 解得4cos ρθ=,化为直角坐标系方程为()2224x y -+=()0x ≠.常规方法:曲线1C :4x =,设(),P x y ,()4,M t ,则4tx y =16=, 将224x y x +=(0x ≠),即点P 的轨迹2C 的直角坐标方程为()2224x y -+=()0x ≠.(2)连接2AC ,易知2AOC ∆为正三角形,OA 为定值. 所以当边AO 上的高最大时,AOB S △面积最大,如图,过圆心2C 作AO 垂线,交AO 于H 点,交圆C 于B 点,此时AOB S △最大max 12S AO HB =⋅()12AO HC BC =+2= 别解:设(),B ρθ(0ρ>),由题意知2OA =,4cos ρθ=,所以OAB ∆的面积1sin 2S OA AOB ρ=⋅∠4cos sin 3πθθ⎛⎫=⋅- ⎪⎝⎭2sin 223πθ⎛⎫=-≤+ ⎪⎝⎭当12πθ=-时,S取得最大值2, 所以OAB ∆面积的最大值为2+.题2 (2015年课标Ⅱ文理)选修44-:坐标系与参数方程在直角坐标系xOy 中,曲线1C :cos sin x t y t αα=⎧⎨=⎩,(t 是参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C:ρθ=. (Ⅰ) 求2C 与3C 的交点的直角坐标;(Ⅱ) 若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求AB 的最大值.【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为220x y +-=.联立222220x y y x y ⎧+-=⎪⎨+-=⎪⎩,解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩, 所以2C 与3C 的交点的直角坐标为()0,0和322⎛⎫⎪ ⎪⎝⎭. (Ⅱ)曲线1C 的极坐标方程为θα=(ρ∈R ,0ρ≠),其中0απ≤<. 因为A 的极坐标为()2sin ,αα,B的极坐标为(),αα,所以2sin 4sin 3AB πααα⎛⎫=-=-⎪⎝⎭,当56πα=时,AB 取得最大值,且最大值为4. ② 直角坐标系中,曲线参数方程的直接应用真题示例题1 (2017年全国Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩ (t 为参数).(1) 若1a =-,求C 与l 的交点坐标;(2) 若C 上的点到l求a .【解析】(1)1a =-时,直线l 的方程为430x y +-=,曲线C 的标准方程是2219x y +=, 联立方程2243019x y x y +-=⎧⎪⎨+=⎪⎩,解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,则C 与l 交点坐标是()3,0和2124,2525⎛⎫- ⎪⎝⎭. (2)直线l 一般式方程是440x y a +--=,设曲线C 上点()3cos ,sin P θθ, 则P 到l距离d ==,其中3tan 4ϕ=. 当40a +≥即4a ≥-时,max d ==即917a +=,解得8a =. 当40a +<即4a <-时,maxd ==解得16a =-. 综上,16a =-或8a =.题2 (2017年江苏)在平面直角坐标系xOy 中,已知直线l 的参考方程为82x t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为280x y -+=,因为P 在曲线C上,设()22,P s ,故点P 到直线l 的距离224s d -+==,当s=,min 5d =, 因此当P 的坐标为()4,4时,曲线C 上的点P 到直线l 的距离取得最小值5. ③ 直角坐标系中,直线参数方程的参数t 几何意义的应用真题示例题1 【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=2cos sin 0αα+=l tan 2k α==-题2【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程. (1)的直角坐标方程为.当时,与交于两点. 当时,记,则的方程为与交于两点当且仅当,解得或,即或. 综上,的取值范围是. (2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足. 于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,. ④ 通过互化或消参呈现几何背景,利用相关的几何法解决真题示例题5 【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P O 221x y +=2απ=l O 2απ≠tan k α=l y kx =lO ||1<1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A tB t 2sin 10t α-+=A B t t α+=P t α=P (,)x y cos ,sin .P Px t y t αα=⎧⎪⎨=⎪⎩P 2,2cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α44απ3π<<)(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. 当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 题6 (2017年深圳二模)已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 解析:(I )θθρsin 2cos 2-= ,θρθρρsin 2cos 22-=∴, …………(2分) 02222=+-+∴y x y x C 的直角坐标方程为圆, …………(3分)即1)22()22(22=++-y x ,)22,22(-∴圆心直角坐标为.…………(5分) (II )方法1:直线l 上的点向圆C 引切线长是6224)4(4081)242222()2222(2222≥++=++=-+++-t t t t t , …………(8分) ∴直线l 上的点向圆C引的切线长的最小值是62 …………(10分)方法2:024=+-∴y x l 的普通方程为直线, …………(8分)圆心C到l 直线距离是52|242222|=++,∴直线l 上的点向圆C 引的切线长的最小值是621522=-环节2 问题自主解决 1回归教材题组1 人教A 版选修4-4 P12 课本习题编选:题1 在极坐标系中,132511(4,),(4,),(4,),(4,)6666ππππ-表示的点有什么关系?你是如何刻画这些点的位置的?题2已知点的极坐标分别为2(3,),(2,),(4,),()4322ππππ,求它们的直角坐标题3已知点的直角坐标分别为7),(,0),(2,2--,求它们的极坐标 问题自主探索:① 极坐标与直角坐标之间的区别与联系是什么? ② 极坐标的几何意义是什么?题组2人教A 版选修4-4 P15 课本习题编选:题1 说明下列极坐标方程表示什么曲线? (1)5ρ= (2)5()6R πθρ=∈ (3)2sin ρθ=(4)sin()124πρθ-= (5)2sin cos ρθθ= (6)2cos 24ρθ= 题2 将下列直角坐标方程化成极坐标方程(1)4x = (2)2320x y +-= (3)22(1)(4x y -+= (4)22148x y += 题3 在极坐标系中,求适合下列条件的曲线的极坐标方程(1)过极点,倾斜角是3π的直线 (2)圆心在(1,)4π,半径为1的圆(3)过点(2,)3π,且和极轴垂直的直线 (4)过点)4π,且与2320x y +-=垂直的直线题4 设点P 的极坐标为11(,)ρθ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程题 5 已知椭圆的中心为O ,长轴、短轴的长分别2,2(0)a b a b >>,,A B 分别为椭圆上的两点,并且OA OB ⊥,求证:2211OAOB+为定值问题自主探索:① 实现曲线极坐标方程与直角坐标方程互化的桥梁是什么?② 求解曲线极坐标方程,你是怎么处理的?它跟直角坐标求点轨迹方程的思路一样吗? ③ 极坐标的几何意义是如何应用的?题组3 人教A 版选修4-4 P25-34 课本例题编选 题1把下列参数方程化为普通方程,并说明它们各表示什么曲线(1)11x y ⎧=⎪⎨=-⎪⎩t 为参数) (2) sin cos 1sin 2x y θθθ=+⎧⎨=+⎩(θ为参数)题2把下列普通方程化为参数方程,并说明它们各表示什么曲线(1)22(1)(2)4x y -+-= (2)221169x y +=题3 在椭圆22194x y +=上求一点M ,使点M 到2100x y +-=的距离最小,并求出最小距离。
v1.0可编辑可修改选修专题:第二部分极坐标与参数方程2 •直角坐标与极坐标的互化X = p cos 0 ,直角坐标、极坐标分别为(x , y )和(p , 0 ),贝Uy = p sin 0 知识点1直角坐标系与己坐标系点、方程互相转化 (1)点的转化1、①直角坐标为(—Q 2,边)、(0, 2)那么它的极坐标分别表示为 ________ >“宀 3 n1 •极坐标系的概念 记 作M(ptan心yX 工0答案2, 丁、(2,-)②极坐标为(2, —)、(1, 0)那么他们的直角坐标表示为、3(2)方程的转化n2、 在极坐标系中,直线I: p sin 9 + ~4 = 2,则直线在直角坐标系中方程为 _____________________在极坐标系中,圆O: p = 4,则在直角坐标系中,圆的方程 ________________ 直线I 与圆O 相交,所截得的弦长为 ________ •3、 若曲线的极坐标方程为 p = 2sin 9 + 4cos 9,以极点为原点,极轴为x 轴正半轴建立直角坐标 系,则该曲线的直角坐标方程为 __________ •4、 求满足条件的曲线极坐标方程⑴ 直线过点M (1,0)且垂直于x 轴 ____________ ⑵ 直线过M ( 0,a )且平行于x 轴 ______________⑶ 当圆心位于 Ma, 0),半径为r(4)当圆心位于 M (1,—),半径为2:2知识点2:常见曲线的参数方程的一般形式X = X 0+1 cos a ,(1)经过点P 0(x 。
,y 。
),倾斜角为a 的直线的参数方程为 —;(t 为参数).y = y0+ tsin a(其中参数t 是以定点P (X 。
,y °)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称 为点P 与点M 间的有向距离.)①.设A 、B 是直线上任意两点,它们对应的参数分别为 .(tBtA) 4tA tB② .线段AB 的中点所对应的参数值等于 匕主 2③ 定点P (x °, y °)为线段AB 中点,贝U t B t A =0x = acos 9 ,y =關二 (9为参数).题型1、直线与圆位置关系t A 和 t B ,则 AB = t B t A =(2)圆的参数方程x = rcos 9,y = rsin 9(9为参数).2 2x y⑶椭圆2+ 2= 1a b的参数方程为x t 3例:已知直角坐标系xOy 中,直线I 的参数方程为1 3,(t 为参数).以直角坐标系xOy 中的原点 y <3t ,O 为 极点,x 轴的非负半轴为极轴,圆C 的极坐标方程为2 4 cos 3 0 , (I)求I 的普通方程及C 的直角坐标方程; (n ) P 为圆C 上的点,求P 到I 距离的取值范围.解:I 的普通方程,3x y 3 3 0, C 的直角坐标方程为x 2 y 2 4x 3 0.…4分C 的标准方程为(x 2)2 y 21,圆心C(2,0),半径为1,点C 到I 的距离为d 23 0 3 3 出, ............................................ 6分2 2―P 到'距离的取值范围是[罟「罟1]. .....................................................................................题型2:椭圆上的点到直线上的距离 (求椭圆上的动点到直线距离,参数方程形式切入) 例:在直接坐标系xOy 中,直线I 的方程为x-y+4=0,曲线C 的参数方程为(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点 O 为极点,以x 轴正半轴为n ..极轴)中,点P 的极坐标为(4,-),判断点P 与直线I 的位置关系; 2(II )设点Q 是曲线C 上的一个动点,求它到直线I 的距离的最小值. 解:(I )把极坐标系下的点P(4,—)化为直角坐标,得P ( 0, 4)。
1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点为极点,以x 轴正半轴为极轴,已知曲线C 1的极坐标方程为ρ=4cos θ,曲线C 2的参数方程为⎩⎨⎧=+=ααsin cos t t m x y (t 为参数,0≤α<π),射线θ=φ,θ=φ+4π,θ=φ﹣4π与曲线C 1交于(不包括极点O )三点A 、B 、C .(I )求证:|OB|+|OC|=2|OA|;(Ⅱ)当φ=12π时,B ,C 两点在曲线C 2上,求m 与α的值.1解:(Ⅰ)依题意,|OA|=4cos φ,|OB|=4cos (φ+4π),|OC|=4cos (φ﹣4π),…则|OB|+|OC|=4cos (φ+4π)+4cos (φ﹣4π)=22(cos φ﹣sin φ)+22(cos φ+sin φ)=42cos φ,=2|OA|.…(Ⅱ)当φ=12π时,B ,C 两点的极坐标分别为(2,3π),(23,﹣6π).化为直角坐标为B (1,3),C (3,﹣3).…C 2是经过点(m ,0),倾斜角为α的直线,又经过点B ,C 的直线方程为y=﹣(x ﹣2),故直线的斜率为﹣3,所以m=2,α=32π. 2.已知曲线C 1的参数方程是⎩⎨⎧==θθsin 2cos y x (θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=﹣2cos θ.(Ⅰ)写出C 1的极坐标方程和C 2的直角坐标方程;(Ⅱ)已知点M 1、M 2的极坐标分别是(1,π)、(2,2π),直线M 1M 2与曲线C 2相交于P 、Q 两点,射线OP 与曲线C 1相交于点A ,射线OQ 与曲线C 1相交于点B ,求22||1||1OB OA +的值2解:(Ⅰ)∵曲线C 1的参数方程是⎩⎨⎧==θθsin 2cos y x (θ为参数),化为普通方程是x 2+42y =1;化为极坐标方程是ρ2cos 2θ+4sin 22θρ=1;又∵曲线C 2的极坐标方程是ρ=﹣2cos θ,化为直角坐标方程是(x+1)2+y 2=1;(Ⅱ)∵点M 1、M 2的极坐标分别是(1,π)、(2,2π), ∴直角坐标系下点M 1(﹣1,0),M 2(0,2);∴直线M 1M 2与圆C 2相交于P 、Q 两点,所得线段PQ 是圆(x+1)2+y 2=1的直径;∴∠POQ=,∴OP ⊥OQ ,∴OA ⊥OB ;又A 、B 是椭圆x 2+=1上的两点,在极坐标系下,设A (ρ1,θ),B (ρ2,θ+),分别代入方程ρ2cos 2θ+4sin 22θρ=1中,有cos 2θ+4sin 221θρ=1,cos 2(θ+)+42sin 222)(πθρ+=1;解得=cos 2θ+,=sin 2θ+;∴+=cos 2θ++sin 2θ+=1+=;即22||1||1OB OA +=.a=﹣1,b=2.用必修2的知识解决。
极坐标与参数方程解答题(二(教师版)1.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标4π),直线l 的极坐标方程为ρcos(θ-4π)=a ,. (1)若点A 在直线l 上,求直线l 的直角坐标方程; (2)圆C 的参数方程为2cos sin x y αα=+⎧⎨=⎩(α为参数),若直线l 与圆C,求a 的值。
【答案】(1) 20x y +-= (2)2a =或2a = 2.在直角坐标系xOy 中,曲线C的参数方程是1 x y αα⎧=+⎪⎨=⎪⎩(α为参数),以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程sin cos 0m θρθ-+=.(Ⅰ)写出曲线C 的普通方程和直线l 的直角坐标方程;(Ⅱ)设点(,0)P m ,直线l 与曲线C 相交于A ,B 两点,且||||2PA PB ⋅=,求实数m 的值.【答案】(Ⅰ))y x m =-;(Ⅱ)1m =或1m =-或3m = 3.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的方程为()222cos 4sin 4ρθθ+=,过点()2,1P 的直线l的参数方程为2212x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数). (Ⅰ)求直线l 的普通方程与曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A 、B 两点,求AB 的值,并求定点P 到A ,B 两点的距离之积.【答案】(Ⅰ)直线l 的普通方程10x y --=,曲线C 的直角坐标方程为22440x y +-=;(Ⅱ)85. 4.直角坐标系中曲线C 的参数方程为4cos {3sin x y θθ==(θ为参数).(1)求曲线C 的直角坐标方程;(2)经过点(0,1)M 作直线l 交曲线C 于,A B 两点(A 在B 上方),且满足2BM AM =,求直线l 的方程.【答案】(1)221169x y +=;(2)0x =.5.已知曲线C 的参数方程为12cos 12sin x y θθ=-+⎧⎨=+⎩(θ为参数),直线l 的极坐标方程为3()4R pq r =?,直线l 与曲线C 相交于M ,N 两点,以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系. (1)求曲线C 的极坐标方程;(2)记线段MN 的中点为P ,求OP 的值.【答案】(1)2cos 24ρθπ⎛⎫++= ⎪⎝⎭;(2)OP =6.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ(1+cos2θ)=8sinθ. (1)求曲线C 的普通方程;(2)直线l 的参数方程为x tcos αy 1tsin α=⎧⎨=+⎩,t 为参数直线l 与y 轴交于点F 与曲线C 的交点为A ,B ,当|FA|•|FB|取最小值时,求直线l 的直角坐标方程. 【答案】(1)x 2=4y ;(2)y=17.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为10sin ρθ=,直线l 的极坐标方程为sin 42πρθ⎛⎫-=⎪⎝⎭. (1)求曲线C 与直线l 的直角坐标方程.(2)直线l 与x 轴的交点为P ,与曲线C 的交点为A ,B ,求PA PB ⋅的值.【答案】(1) C 的直角坐标方程为22100x y y +-=,l 的直角坐标方程为3y x =+.(2)||||9PA PB ⋅=8.在直角坐标系 中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线 的参数方程为 = +2 =2 +2 为参数).(1)写出 的普通方程,求 的极坐标方程;(2)若过原点的直线 与 相交于 两点, 中点 的极坐标为 ,,求 的直角坐标.【答案】(1) + +1 = , +1 = ;(2),.9.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y ββ=⎧⎨=⎩(β为参数).以坐标原点O 为原点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫+=⎪⎝⎭. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴的交点为P ,过点P 作倾斜角为α的直线m 与曲线C 交于,A B 两点,求PA PB -的最大值.【答案】(1):10l x y +-=,22:14x C y +=;(2)2 10.在直角坐标系xOy 中,圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,其中a 为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)B 为圆C 上一点,且B 点的极坐标为()000,,,26ππρθθ⎛⎫∈- ⎪⎝⎭,射线OB 绕O 点逆时针旋转3π,得射线OA ,其中A 也在圆C 上,求OA OB +的最大值. 【答案】(1)2cos ρθ=;(2)11.在直角坐标系xOy 中,直线l的参数方程为3x t y =⎧⎪⎨=⎪⎩(t 为参数),曲线1C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),以该直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C的极坐标方程为2sin ρθθ=-. (1)分别求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)设直线l 交曲线1C 于O ,A 两点,交曲线2C 于O ,B 两点,求||AB 的长. 【答案】(Ⅰ)曲线1C 的极坐标方程为:4cos ρθ=;2C的直角坐标方程为:22((1)4x y ++=;(Ⅱ)4-12.在平面直角坐标系 中,已知点 的直角坐标为 1 ,直线 的参数方程为=1+=( 为参数).以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为 sin = cos .(1)求直线 的普通方程和曲线 的直角坐标方程; (2)直线 和曲线 交于 、 两点,求+的值. 【答案】(1) 1= 和 = .(2)113.在平面直角坐标xOy 中,直线l的参数方程为212x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数,a 为常数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos sin θρθ=. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 相交于A B 、两点,若16AB =,求a 的值.【答案】0x y --=,24y x =(Ⅱ)1a = 14.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为2x ty =+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(1)求C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,求弦长AB . 【答案】(1)28y x =;(2)323. 15.在平面直角坐标系xOy 中,椭圆C的参数方程为x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 1ρθρθ+=.(1)求椭圆C 的极坐标方程和直线l 的直角坐标方程;(2)若点P 的极坐标为(1,)2π,直线l 与椭圆C 相交于A ,B 两点,求PA PB +的值.【答案】(1)22132x y +=,1x y +=;(216.在平面直角坐标系xOy 中,曲线C 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为2cos ,sin x t y t αα=+⎧⎨=⎩ (t 为参数).(1)求曲线C 和直线l 的普通方程,(2)直线l 与曲线C 交于A ,B 两点,若1AB =,求直线l 的方程。
第三章参数方程、极坐标教案直线和圆的极坐标方程教案教学目标1.理解建立直线和圆的极坐标方程的关键是将已知条件表示成ρ与θ之间的关系式.2.初步掌握求曲线的极坐标方程的应用方法和步骤.3.了解在极坐标系内,一个方程只能与一条曲线对应,但一条曲线即可与多个方程对应.教学重点与难点建立直线和圆的极坐标方程.教学过程师:前面我们学习了极坐标系的有关概念,了解到极坐标系是不同于直角坐标系的另一种坐标系,那么在极坐标系下可以解决点的轨迹问题吗?问题:求过定圆内一定点,且与定圆相切的圆的圆心的轨迹方程.师:探求轨迹方程的前提是在坐标系下,请你据题设先合理地建立一个坐标系.(巡视后,选定两个做示意图,(如图3-8,图3-9),画在黑板上.)解设定圆半径为R,A(m,0),轨迹上任一点P(x,y)(或P(ρ,θ)).(1)在直角坐标系下:|ρA|=R-|Oρ|,(两边再平方,学生都感到等式的右边太繁了.)师:在直角坐标系下,求点P的轨迹方程的化简过程很麻烦.我们看在极坐标系下会如何呢?(2)在极坐标系下:在△AOP中|AP|2=|OA|2+|OP|2-2|OA|·|OP|·cosθ,即(R-ρ)2=m2+ρ2-2mρ·cosθ.化简整理,得2mρ·cosθ-2Rρ=m2-R2,师:对比两种解法可知,有些轨迹问题在极坐标系下解起来反而简坐标方程有什么不同呢?这就是今天这节课的讨论内容.一、曲线的极坐标方程的概念师:在直角坐标系中,曲线用含有变量x和y的方程f(x,y)=0表示.那么在极坐标系中,曲线用含有变量ρ和θ的方程f(ρ,θ)=0来表示,也就是说方程f(ρ,θ)=0应称为极坐标方程,如上面问题中的:ρ=(投影)定义:一般地,在直角坐标系中,如果曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:1.曲线上的点的坐标都是这个方程的解;2.以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.师:前面的学习知道,坐标(ρ,θ)只与一个点M对应,但反过来,点M的极坐标都不止一个.推而广之,曲线上的点的极坐标有无穷多个.这无穷多个极坐标都能适合方程f(ρ,θ)=吗?如曲线ρ=θ上有一点(π,π),它的另一种形式(-π,0)就不适合ρ=θ方程,这就是说点(π,π)适合方程,但点(π,π)的另一种表示方法(-π,0)就不适合.而(-π,0)不适合方程,它表示的点却在曲线ρ=θ上.因而在定义曲线的极坐标方程时,会与曲线的直角坐标方程有所不同.(先让学生参照曲线的直角坐标方程的定义叙述曲线的极坐标方程的定义,再修正,最后打出投影:曲线的极坐标方程的定义)曲线的极坐标方程定义:如果极坐标系中的曲线C和方程f(ρ,0)=0之间建立了如下关系:1.曲线C上任一点的无穷多个极坐标中至少有一个适合方程f(ρ,θ)=0;2.坐标满足f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.师:下面我们学习最简单的曲线:直线和圆的极坐标方程.求直线和圆的极坐标方程的方法和步骤应与求直线和圆的直角坐标方程的方法和步骤类似,关键是将已知条件表示成ρ和θ之间的关系式.解设M(ρ,θ)为射线上任意一点,因为∠xOM=θ,师:过极点的射线的极坐标方程的形式你能归纳一下吗?生:是.师:一条曲线可与多个方程对应.这是极坐标方程的一个特点.你能猜想一下过极点的直线的极坐标方程是什么形式吗?学生讨论后,得出:θ=θ0(θ0是倾斜角,ρ∈R)是过极点的直线的极坐标方程.师:把你认为在极坐标系下,有特殊位置的直线都画出来.例2 求适合下列条件的极坐标方程:(1)过点A(3,π)并和极轴垂直的直线;解(1)设M(ρ,θ)是直线上一点(如图3-15),即ρcosθ=-3为所示.解(2)设M(ρ,θ)是直线上一点,过M作MN⊥Ox于N,则|MN|是点B到Ox的距离,师:不过极点也不垂直极轴、不平行极轴的直线的极坐标方程如何确立呢?例3 求极坐标平面内任意位置上的一条直线l的极坐标方程(如图3-17,图3-18).让学生根据以上两个图形讨论确定l的元素是什么?结论直线l的倾斜角α,极点到直线l的距离|ON|可确定直线l的位置.解设直线l与极轴的夹角为α,极点O到直线l的距离为p(极点O到直线l的距离是唯一的定值,故α、p 都是常数).直线l上任一点M(ρ,θ),则在Rt△MNO中|OM|·sin∠OMN=|ON|,即ρsin(α-θ)=p为直线l的极坐标方程.(如图3-19,图3-20)师:直线的极坐标方程的一般式:ρsin(α-θ)=p,其中α是直线的倾斜角,p是极点到l的距离,当α、p 取什么值时,直线的位置是特殊情形呢?当α=π时,ρsinθ=p,直线平行极轴;当p=0时,θ=α,是过极点的直线.师:以上我们研究了极坐标系内的直线的极坐标方程.在极坐标系中的圆的方程如何确立呢?如图3-21:圆上任一点M(r,θ),即指θ∈R时圆上任一点到极点的距离总是r,于是ρ=r是以极点为圆心r为半径的一个圆的极坐标方程.师:和在直角坐标系中,把x=a和y=b看作是二元方程一样,θ=θ0及ρ=r也应看作是二元方程.在方程θ=θ0中,ρ不出现,说明ρ可取任何非负实数值;同样,在方程ρ=r中,θ不出现,说明θ可取任何实数值.例4 求圆心是A(a,0),半径是a的圆的极坐标方程.(让学生画图,教师巡视参与意见)解设⊙A交极轴于B,则|OB|=2a,圆上任意一点M(ρ,θ),则据直径上的圆周角是直角可知:OM⊥MB,于是在Rt△OBM中,|OM|=|OB|cosθ,即ρ=2acosθ就是所求圆的极坐标方程.如图3-22.师:在极坐标系下,目前我们理解下面几种情形下的圆的极坐标方程即可.让学生自己得出极坐标方程.图3-23:ρ=2rcosθ;图3-24:ρ=-2rcosθ;图3-25:ρ=2rsinθ;图3-26:ρ=-2rsinθ.师:建立直线和圆的极坐标方程的步骤与建立直线和圆的直角坐标方程的步骤一样,你能小结一下吗?(投影)分4个步骤:(1)用(ρ,θ)表示曲线上任意一点M的坐标;(2)写出适合条件ρ的点M的集合P={M|p(M)};(3)用坐标表示条件ρ(M),列出方程f(ρ,θ)=0;(4)化方程f(ρ,θ)=0为最简形式.练习:分别作出下列极坐标方程表示的曲线(2)ρcosθ=sin2θ(cosθ=0或ρ=2sinθ);设计说明直线和圆的极坐标方程一节的教学重点是如何根据条件列出等式.至于在极坐标系中由于点的极坐标的多值性,而带来的曲线的极坐标方程与直角坐标系中的方程有不同的性质,这一点只需学生了解即可.另外,由于删除了3种圆锥曲线的统一的极坐标方程,实际上就降低了对极坐标一节学习的难度.所以用一课时来学习曲线的极坐标方程只能是在前面学习曲线的直角坐标方程的基础上初步掌握建立极坐标方程的方法.为此本节课围绕着这一主题进行了充分的课堂活动,达到了教学目的.。
极坐标与参数方程教学设计教学目标:1.了解极坐标和参数方程的概念和特点。
2.掌握极坐标和参数方程的转换关系。
3.能够利用极坐标和参数方程描述和绘制简单的图形。
教学内容:1.极坐标的引入极坐标是一种用极径和极角表示平面上点的坐标系统。
极坐标中,每个点由它到极点的距离和与极轴的夹角确定。
极点是坐标轴的原点,极轴是一条从极点到无穷远处的射线。
极径通常用正数表示,极角用角度或弧度表示。
2.参数方程的引入参数方程是一种用参数表示物体的坐标方程。
在参数方程中,坐标值都是由参数决定的表达式,用来描述一个曲线或曲面的运动或变化。
3.极坐标和参数方程的转换方法(1)极坐标转参数方程:已知点P的极坐标(r,θ),则其对应的参数方程为x = rcosθ,y = rsinθ。
(2)参数方程转极坐标:已知参数方程x = f(t),y = g(t),则其对应的极坐标为r =√(f(t)²+g(t)²),θ = tan^(-1)(g(t)/f(t))。
4.极坐标和参数方程的应用利用极坐标和参数方程可以描述和绘制很多有趣的图形,如圆、椭圆、心形线等。
教学步骤:步骤一:导入1.引出极坐标和参数方程的概念和特点。
2.通过示例和图示介绍极坐标和参数方程的基本表示方法。
步骤二:极坐标和参数方程的转换关系1.介绍极坐标和参数方程的转换关系,包括极坐标转参数方程和参数方程转极坐标的方法。
2.通过示例演示转换过程,让学生理解和掌握转换的思路和方法。
步骤三:极坐标和参数方程的绘制1.引导学生利用极坐标和参数方程描述和绘制简单的图形,如圆、椭圆、心形线等。
2.通过实例演示和练习让学生掌握绘制图形的方法和技巧。
步骤四:综合应用1.引导学生利用极坐标和参数方程解决实际问题,如天文学中的行星运动、工程中的曲线绘制等。
2.通过实例和讨论,激发学生的兴趣和创造力,培养学生的实际应用能力。
步骤五:总结和拓展1.对极坐标和参数方程的知识进行总结归纳。
板块一.参数方程.教师版典例分析【例1】曲线C:x cos1〔为参数〕的普通方程为〔〕y sin12y122y12A.x11B.x112y122y12C.x11D.x11【考点】参数方程【难度】3星【题型】选择【关键字】2021年,重庆高考【解析】略【答案】C.【例2】将参数方程x12cos,为参数〕化成普通方程为.y2sin,〔【考点】参数方程【难度】3星【题型】填空【关键字】2021年,崇文一模【解析】由x12cos,y2sin知224.x1y【答案】x2y24;1【例3】假设直线l1x12t,x s,:2〔t为参数〕与直线l2:y〔s为参数〕垂直,那么y kt.12s.k.【考点】参数方程【难度】3星【题型】填空【关键字】2021年,广东高考k【解析】(2)1,于是k1.2【答案】1;【例4】假设直线x12t〔t为参数〕与直线4x ky1垂直,那么常数k.y23t 【考点】参数方程【难度】3星【题型】填空【关键字】无【解析】由题意知3.421k6.k【答案】6;【例5】假设直线3x4yx1cos〔为参数〕没有公共点,那么实数m的m0与圆2siny取值范围是.【考点】参数方程【难度】3星【题型】填空【关键字】2021年,福建高考【解析】由圆的参数方程得到圆的标准方程为(x1)2(y2)21,故圆心坐标为1,2,于是1324m10或m0.32421m【答案】(,0)(10,)【例6】在平面直角坐标系xOy中,直线l的参数方程为x1R〕,圆C的参y〔参数tt1数方程为x cos 1〔参数0,2π〕,那么圆心到直线l的距离是.y sin 【考点】参数方程【难度】3星【题型】填空【关键字】2021年,丰台一模【解析】直线方程为y x1,圆的方程为21.于是圆心1,0到直线x1y2x y10的距离为2.【答案】2x cos,【例7】曲线C的参数方程为(为参数),那么曲线C的普通方程y2sin,参数方程和极坐标.板块一.参数方程.教师版普通高中数学复习讲义Word 版2x y 2≥ 0是;点A 在曲线C 上,点M(x,y)在平面区域xy 2≤0上,那么 2y ≥ 01AM 的最小值是.【考点】参数方程【难度】3星【题型】填空【关键字】2021年,石景山一模【解析】C 是圆x 2(y 2)21;不等式组的可行域如图阴影所示:y2O xAC-2A 点为(0,1)、M 为0,1 时,|AM|最短,长度是 3.22【答案】x 2(y2)21,3;2x t1,【例8】曲线C 的参数方程为t0〕.求曲线C 的普通〔t 为参数,ty3 1tt方程.【考点】参数方程【难度】3星【题型】解答【关键字】2021 年,江苏高考【解析】x2t 1 21y2,故曲线C 的普通方程为y3x 26 .t 3 【答案】y3x 2 6【例9】在平面直角坐标系xOy 中,设P(x ,y)是椭圆x 2y 2 1上的一个动点,求3xy 的最大值.【考点】参数方程【难度】3星【题型】解答【关键字】2021年,江苏高考【解析】由可设 P 3cos ,sin (0≤ 2π),那么S xy3cos sin 2sinπ.3所以当π时,S 取最大值2.6【答案】2.【例10】曲线C 1:x 4cost〔t 为参数〕,C 2: x 8cos 〔 为参数〕. y 3 sint y 3sin化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线.【考点】参数方程【难度】3星【题型】解答【关键字】2021 年,海南宁夏高考【解析】C 1∶x 4 y3 1,C 2∶x2 y 2 1.2264 9C 1为圆心是4,3 ,半径是 1 的圆.C 2为中心是坐标原点,焦点在 x 轴上,长半轴长是 8,短半轴长是 3的椭圆.【答案】C 1∶x 4 y3 1,C 2∶x2y 2 1.2264 9C 1为圆心是4,3 ,半径是 1 的圆.C 2为中心是坐标原点,焦点在 x 轴上,长半轴长是 8,短半轴长是 3的椭圆.【例11】假设C 1上的点P 对应的参数为tπ,Q 为C 2 上的动点,求PQ 中点M 到直线2C 3:x 3 2t,〔t 为参数〕距离的最小值.y2 t【考点】参数方程【难度】4星【题型】解答【关键字】无【解析】当tπ时,P 4,4 ,Q8cos,3sin ,故M24cos ,23sin.22C 3为直线x 2y7 0,M 到C 3的距离d5 4cos3sin135 5cos( )13 ,其中tan3,5540,π,2从而当cos4,sin3时,d 取得最小值85. 55585【答案】x2x cos t2【例12】曲线C 1:2(t 为参数).y (为参数),曲线C 2:siny2t2⑴指出C 1,C 2 各是什么曲线,并说明 C 1与C 2公共点的个数;⑵假设把C C 上各点的纵坐标都压缩为原来的一半,分别得到曲线 C 1, C 2.写1, 2出C 1,C 2的参数方程.C 1与C 2公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.【考点】参数方程 【难度】4星 【题型】【关键字】2021年,海南宁夏高考【解析】⑴C 1是圆,C 2是直线. C 1的普通方程为 x 2 y 21 ,圆心C 1(0,0),半径r1.C 2的普通方程为 x y 2 0 .因为圆心C 1到直线 x y2 0的距离为1,所以C 2与C 1只有一个公共点.⑵压缩后的参数方程分别为x cos2 t 2xC 1:1sin 〔为参数〕; C 2:2 〔t 为参数〕.2yt2y4化为普通方程为:C 1:x 2 4y 21,C 2:y 1 x2,22联立消元得2x 2 2 2x 1 0 ,其判别式(2 2)2 4 2 1 0,所以压缩后的直线 C 2与椭圆C 1 仍然只有一个公共点,和C 1与C 2公共点个数相同.【答案】⑴C 1是圆,C 2是直线,C 2与C 1只有一个公共点.⑵压缩后的直线C 2 与椭圆C 1 仍然只有一个公共点,和 C 1与C 2公共点个数相同.。
极坐标与参数方程教案目标:通过本节课的学习,学生能够理解和应用极坐标和参数方程的原理,能够将直角坐标系下的函数转换为极坐标或参数方程,并能够使用极坐标和参数方程解决问题。
一、引入(10分钟)1.通过引诱学生思考问题,引出极坐标和参数方程的概念。
提问:如果我们要描述一个物体在平面上运动的轨迹,可以使用直角坐标系的方程来表示。
那么是否还有其他方式来表示这个轨迹呢?2.引入极坐标的概念,定义极坐标的含义。
讲解:极坐标是一种描述平面上点位置的方式,使用极径和极角来表示点的坐标。
极径表示点到原点的距离,极角表示点与坐标轴正半轴的夹角。
二、极坐标(20分钟)1.转换方式讲解:将直角坐标系转换为极坐标可以通过以下公式进行:x = rcosθ,y = rsinθ这样,一个在直角坐标系上的点(x,y)就可以用极坐标(r,θ)来表示。
2.根据已知的极坐标点,求直角坐标示例:已知一个点的极坐标为(r,θ),求出对应的(x,y)坐标。
练习:学生进行练习题,验证是否掌握了极坐标与直角坐标之间的转换。
三、参数方程(20分钟)1.参数方程的概念讲解:参数方程是一种描述曲线的方式,使用参数的形式来表示坐标点的位置。
通过给出参数的范围,可以描绘出整个曲线。
2.转换方式讲解:将直角坐标系转换为参数方程可以通过以下形式进行:x=f(t),y=g(t)这样,一个在直角坐标系上的点(x,y)就可以用参数t来表示。
3.根据已知的参数方程,求直角坐标示例:已知一个点的参数方程为x=f(t),y=g(t),求出对应的(x,y)坐标。
练习:学生进行练习题,验证是否掌握了参数方程与直角坐标之间的转换。
四、综合运用(30分钟)1.根据已知的直角坐标系方程,转换为极坐标或参数方程示例:将直角坐标系方程y=x²转换为极坐标和参数方程。
2.根据已知的极坐标或参数方程,转换为直角坐标系方程示例:将极坐标方程r = 2cosθ转换为直角坐标系方程。
(新课标)2013高考数学 三轮必考热点集中营 热点23参数方程和极坐标方程(教师版)【三年真题重温】1.【2011⋅新课标全国理,23】选修4—4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =,P 点的轨迹为曲线2C .(Ⅰ)当求2C 的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .2.【2010⋅新课标全国理,23】选修4-4:坐标系与参数方程 已知直线C 1x 1t cos sin y t αα=+⎧⎨=⎩(t 为参数),C 2x cos sin y θθ=⎧⎨=⎩(θ为参数),(Ⅰ)当α=3π时,求C 1与C 2的交点坐标; (Ⅱ)过坐标原点O 做C 1的垂线,垂足为,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线。
【2012⋅新课标全国理,23】坐标系与参数方程 已知曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上, 且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值X 围。
【命题意图猜想】 2011年高考考查了参数方程和极坐标的题目,可化为普通方程求解,涉及到直线和圆的参数方程;2010年高考主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.2012年高考主要考查直角坐标系与极坐标系之间的互化,以椭圆的参数方程为背景,意在考查考生利用坐标之间的转化求解。
极坐标与参数方程【教学目标】1、知识目标:(1)掌握极坐标的意义,会把极坐标转化一般方程(2)掌握参数方程与一般方程的转化2、能力目标:通过对公式的应用,提高学生分析问题和解决问题的能力,多方面考虑事物,培养他们的创新精神和思维严谨性.3、情感目标:培养学生数形结合是思想方法.【教学重点】1、极坐标的与一般坐标的转化2、参数方程和一般方程的转化3、几何证明的整体思路【教学难点】极坐标意义和直角坐标的转化 【考点分析】坐标系与参数方程和几何证明在广东高考中为二者选一考,一般是5分的比较容易的题,知识相对比较独立,与其他章节联系不大,容易拿分.根据不同的几何问题可以建立不同的坐标系,坐标系选取的恰当与否关系着解决平面内的点的坐标和线的方程的难易以及它们位置关系的数据确立.有些问题用极坐标系解答比较简单,而有些问题如果我们引入一个参数就可以使问题容易入手解答,计算简便.高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题,交点问题和位置关系的判定.【基本要点】一、极坐标和参数方程:1.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点.极点O 的坐标为)R )(,0(∈θθ.3.极坐标与直角坐标的互化:4.圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ;在极坐标系中,以 )0,a (C (a>0)为圆心, a 为半径的圆的极坐标方程是θρ2acos =; 在极坐标系中,以 )2,a (C π(a>0)为圆心,a 为半径的圆的极坐标方程是 θρ2asin =; 5.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t的函数⎩⎨⎧==),t (g y ),t (f x 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.6.圆222r )b y ()a x (=-+-的参数方程可表示为)(.rsin b y ,rcos a x 为参数θθθ⎩⎨⎧+=+=.椭圆1b y a x 2222=+(a>b>0)的参数方程可表示为)(.bsin y ,acos x 为参数ϕϕϕ⎩⎨⎧==.抛物线2px y 2=的参数方程可表示为)t (.2pt y ,2pt x 2为参数⎩⎨⎧==. 经过点)y ,x (M o o O ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.tsin y y ,tcos x x o o αα(t 为参数).【典型例题】题型一:极坐标与直角坐标的互化和应用 例1、(1)点M 的极坐标)32,5(π化为直角坐标为( )B A .)235,25(--B .)235,25(- C .)235,25(- D .)235,25( (2)点M 的直角坐标为)1,3(--化为极坐标为( )B A .)65,2(π B .)67,2(π C .)611,2(π D .)6,2(π 评注:极坐标和直角坐标的互化,注意角度的范围.变式1:(1)点()22-,的极坐标为 . (2)在极坐标系中,圆心在)4A(1,π,半径为1的圆的极坐标方程是___________ .评注:注意曲线极坐标与直角坐标的互化之间的联系.例2、(1)曲线的极坐标方程θρsin 4=化 成直角坐标方程为( )A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4【解析】将ρ=22y x +,sin θ=22yx y+代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.(2)⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ. ①把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; ②求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.【解析】以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x=ρcos θ,y=ρsin θ,由ρ=4cos θ,得ρ2=4ρcos θ.所以x 2+y 2=4x.即x 2+y 2-4x=0为⊙O 1的直角坐标方程.同理x 2+y 2+4y=0为⊙O 2的直角坐标方程.(2)由⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x 解得⎩⎨⎧==,0,011y x 或⎩⎨⎧-==.2,222y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.变式1:极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆【解析】原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.变式2:在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+D .4sin()3πρθ=-【解析】A 4sin ρθ=的普通方程为22(2)4x y +-=,cos 2ρθ=的普通方程为2x = 圆22(2)4x y +-=与直线2x =显然相切.例3、在极坐标系中,已知两点P (5,45π),Q )4,1(π,求线段PQ 的长度;变式1、在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为 .变式2、在极坐标系中,点()1,0到直线()cos sin 2ρθθ+=的距离为 .例4、极坐标方程分别为θρcos 2=和θρsin =的两个圆的圆心距为____________;变式1、把极坐标方程cos()16πρθ-=化为直角坐标方程是 .变式2、在极坐标系中,圆心在)π且过极点的圆的方程为_ .变式3、在极坐标系中,若过点)0,3(A 且与极轴垂直的直线交曲线θρcos 4=于A 、B 两点,则=||AB _________ _.题型二:参数方程的互化和应用例1、若直线1223x ty t =-⎧⎨=+⎩(t 为参数)与直线41x ky +=垂直,则常数k = .变式1、设直线1l 的参数方程为113x ty t=+⎧⎨=+⎩(t 为参数),直线2l 的方程为y=3x+4则1l 与2l 的距离为_______变式2、已知直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。
选修4-4 坐标系与参数方程第一节 坐 标 系1.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标的概念 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,从O 点引一条射线Ox ,叫做极轴,选定一个单位长度和角及其正方向(通常取逆时针方向),这样就确定了一个平面极坐标系,简称为极坐标系。
(2)极坐标:对于平面内任意一点M ,用ρ表示线段OM 的长,θ表示以Ox 为始边、OM 为终边的角度,ρ叫做点M 的极径,θ叫做点M 的极角,有序实数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ)。
当点M 在极点时,它的极径ρ=0,极角θ可以取任意值。
(3)点与极坐标的关系:平面内一点的极坐标可以有无数对,当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点,而用平面直角坐标表示点时,每一个点的坐标是唯一的。
如果规定ρ>0,0≤θ<2π,或者-π<θ≤π,那么,除极点外,平面内的点和极坐标就一一对应了。
3.极坐标和直角坐标的互化(1)互化背景:把平面直角坐标系的原点作为极点,x 轴的正半轴作为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度,如图所示。
(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ>0,θ∈[0,2π)),于是极坐标与直角坐标的互化公式如表:⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ4.常见曲线的极坐标方程1.明辨两个坐标伸缩变换关系式⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),点(x ,y )在原曲线上,点(x ′,y ′)在变换后的曲线上,因此点(x ,y )的坐标满足原来的曲线方程,点(x ′,y ′)的坐标满足变换后的曲线方程。
高中数学备课教案极坐标系与参数方程高中数学备课教案:极坐标系与参数方程一、引言数学中的坐标系是描述平面上点位置的重要工具,常见的坐标系有直角坐标系和极坐标系。
而参数方程则是一种描述曲线的方程形式。
本教案将介绍高中数学中的极坐标系和参数方程,并探讨其应用。
二、极坐标系1. 定义与转换公式极坐标系是以原点为中心,极轴为正方向的坐标系。
任意点P在极坐标系中的位置可以由两个量确定:极径r和极角θ。
其中,极径r表示点P距离原点的长度,极角θ表示点P与极轴的夹角。
将直角坐标系中的点(x, y)转换为极坐标系中的点(r, θ)的公式为:r = √(x^2 + y^2)θ = arctan(y/x)2. 极坐标下的曲线方程在极坐标系中,曲线的方程可以表示为r = f(θ),其中f(θ)是关于θ的函数。
常见的极坐标曲线有:- 极径为常数:以原点为圆心的圆。
- 极径关于角度的函数:如r = a + bsin(θ),表示螺旋线。
- 极径为角度的函数:如r = aθ,表示阿基米德螺线。
三、参数方程1. 定义与示例参数方程是用参数表示自变量和因变量之间关系的方程。
常用的参数方程形式为x = f(t)和y = g(t),其中x和y分别表示平面上的横纵坐标,t是参数。
例如,参数方程x = cos(t),y = sin(t),描述了一个单位圆的轨迹。
2. 参数方程与直角坐标系之间的转换将参数方程x = f(t)和y = g(t)转换为直角坐标系中的方程,可以通过消去参数t来实现。
通常使用代数方法或几何方法进行转换,并根据具体情况选择适当的方法。
四、极坐标系与参数方程的应用1. 曲线的绘制极坐标系和参数方程在曲线的绘制中具有很强的优势,特别适用于描述复杂的几何图形,如心形线、螺旋线等。
通过设置极角或参数的范围,可以绘制出完整的曲线图形。
2. 积分计算对于一些特殊形状的区域,使用极坐标系可以简化积分计算。
通过转换成极坐标系的面积元素,可以减少积分的复杂程度,简化计算过程。