重亚硫酸盐测序技术介绍
- 格式:pptx
- 大小:327.62 KB
- 文档页数:12
第三代测序技术的三种技术平台介绍随着生物学的发展,人们对基因的功能研究更加透彻,为了进一步研究和改造基因的目的需要详细了解生物的基因组全序列,因为DNA序列是改造基因的基础,这就要求具有高效的DNA测序技术。
DNA测序技术到目前为止已经发展到了第三代测序技术。
最早的Sanger测序在人类基因组计划中立下赫赫战功,但也给基因组测序贴上了数亿美元的价格标签,让人生畏。
这两年发展迅猛的第二代测序仪——Illumina的Genome Analyzer、Roche 454的GS系列以及ABI的SOLiD系统——让人类基因组重测序的费用蹭地降低到10万美元以下。
现在,能对单个DNA分子进行测序的第三代测序仪也加入到这场比赛中,让竞争更加激烈。
目前,第三代测序主要有三种技术平台。
两种通过掺入并检测荧光标记的核苷酸,来实现单分子测序。
Helicos的遗传分析系统已上市,而Pacific Biosciences准备在明年推出单分子实时(SMRT)技术。
第三种Oxford Nanopore的纳米孔(nanopore)测序还尚未有推出的时间表,但有可能是这三种当中最便宜的。
纳米孔测序的优势在于它不需要对DNA进行标记,也就省去了昂贵的荧光试剂和CCD照相机。
最近,Oxford Nanopore T echnologies的Hagan Bayley及他的研究小组正致力于改善纳米孔。
根据他们之前的工作,他们以a-溶血素来设计纳米孔,并将环式糊精共价结合在孔的内侧(下图)。
当核酸外切酶消化单链DNA后,单个碱基落入孔中,它们瞬间与环式糊精相互作用,并阻碍了穿过孔中的电流。
每个碱基ATGC以及甲基胞嘧啶都有自己特有的电流振幅,因此很容易转化成DNA序列。
每个碱基也有特有的平均停留时间,它的解离速率常数是电压依赖的,+180 mV的电位能确保碱基从孔的另一侧离开。
a-溶血素纳米孔(剖面图)以及共价结合的环式糊精(浅蓝色)瞬间结合落入孔中的碱基(红色)。
甲基化检测方法(亚硫酸氢盐修饰后测序法)第一部分基因组DNA的提取。
这一步没有悬念,完全可以购买供细胞或组织使用的DNA提取试剂盒,如果实验室条件成熟,自己配试剂提取完全可以。
DNA比较稳定,只要在操作中不要使用暴力,提出的基因组DNA应该是完整的。
此步重点在于DNA的纯度,即减少或避免RNA、蛋白的污染很重要。
因此在提取过程中需使用蛋白酶K及RNA酶以去除两者。
使用两者的细节:1:蛋白酶K可以使用灭菌双蒸水配制成20mg/ml;2:RNA酶必须要配制成不含DNA酶的RNA酶,即在购买市售RNA酶后进行再处理,配制成10mg/ml。
否则可能的后果是不仅没有RNA,连DNA也被消化了。
两者均于-20度保存。
验证提取DNA的纯度的方法有二:1:紫外分光光度计计算OD比值;2:1%-1.5%的琼脂糖凝胶电泳。
我倾向于第二种方法,这种方法完全可以明确所提基因组DNA的纯度,并根据Marker的上样量估计其浓度,以用于下一步的修饰。
第二部分亚硫酸氢钠修饰基因组DNA如不特别指出,所用双蒸水(DDW)均经高压蒸汽灭菌。
1:将约2ugDNA于1.5mlEP管中使用DDW稀释至50ul;2:加5.5ul新鲜配制的3M NaOH;3:42℃水浴30min;水浴期间配制:4:10mM对苯二酚(氢醌),加30ul至上述水浴后混合液中;(溶液变成淡黄色)5:3.6M亚硫酸氢钠(Sigma,S9000),配制方法:1.88g亚硫酸氢钠使用DDW稀释,并以3M NaOH滴定溶液至PH 5.0,最终体积为5ml。
这么大浓度的亚硫酸氢钠很难溶,但加入NaOH后会慢慢溶解,需要有耐心。
PH一定要准确为5.0。
加520ul至上述水浴后溶液中。
6:EP管外裹以铝箔纸,避光,轻柔颠倒混匀溶液。
7:加200 ul 石蜡油,防止水分蒸发,限制氧化。
8:50℃避光水浴16h。
一般此步在4pm开始做,熟练的话不到5pm即可完成,水浴16h正好至次日8am 以后收,时间上很合适。
Illumina HiSeq 2000Illumina Hiseq 2000测序系统是一种高通量测序技术,其测序原理和Illumina Genome Analyzer II 测序系统相似,仍然是采用可逆终止法的边合成边测序技术。
这种测序技术通过将基因组DNA的随机片断附着到光学透明的表面,这些DNA片断通过延长和桥梁扩增,形成了具有数以亿计cluster的Flowcell,每个cluster具有约1000拷贝的相同DNA模板,然后用4种末端被封闭的不同荧光标记的碱基进行边合成边测序。
这种新方法确保了高精确度和真实的一个碱基接一个碱基的测序,排除了序列方面的特殊错误,能够测序同聚物和重复序列。
这种技术避免了像传统测序技术那样耗费大量人力、物力进行片段克隆、转化、质粒抽提等繁琐的操作。
而且多种样品制备方法使此技术有一系列的广泛应用,包括基因表达、小RNA的发现,蛋白质核酸相互作用等。
HiSeq 2000测序系统是前所未有的高通量测序系统,不仅提高测序通量,降低了成本,而且具有创新的用户体验。
预先配置、即插即用的试剂,简单的流动槽上样,简单的触摸屏用户界面,这种人机交互设计特征以及轻松的测序流程,使操作更简单,更方便。
HIseq 2000 cBotFlowcell Cluster Image测序实验流程:•基因组DNA打断;• DNA 末端修复;•连接接头;• DNA片段杂交到 Flowcell上;• DNA模板延伸,桥式扩增;• Flowcell制备;• SBS(synthesis-based-sequenceing)边合成边测序;• Hiseq上自动化测序;•图片处理,实时分析,碱基识别;•图片实时分析;•变异分析;•总结报告;技术特点:•每个run平均达到200G的数据通量,读长为2 x 100bp;•每个run可同时运行2张Flow cell, 且每张Flow cell 可进行上下两面扫描;•采用TDI 线性扫描技术,4个相机同时扫描;•预先配置、即插即用的试剂,简单的流动槽上样,触摸屏式的用户界面;•低成本:单次运行即可以~30倍的覆盖度同时对两个人类基因组样品进行测序,或同时绘制200个基因表达谱。
Illumina HiSeq 2000Illumina Hiseq 2000测序系统是一种高通量测序技术,其测序原理和Illumina Genome Analyzer II 测序系统相似,仍然是采用可逆终止法的边合成边测序技术。
这种测序技术通过将基因组DNA的随机片断附着到光学透明的表面,这些DNA片断通过延长和桥梁扩增,形成了具有数以亿计cluster的Flowcell,每个cluster具有约1000拷贝的相同DNA模板,然后用4种末端被封闭的不同荧光标记的碱基进行边合成边测序。
这种新方法确保了高精确度和真实的一个碱基接一个碱基的测序,排除了序列方面的特殊错误,能够测序同聚物和重复序列。
这种技术避免了像传统测序技术那样耗费大量人力、物力进行片段克隆、转化、质粒抽提等繁琐的操作。
而且多种样品制备方法使此技术有一系列的广泛应用,包括基因表达、小RNA的发现,蛋白质核酸相互作用等。
HiSeq 2000测序系统是前所未有的高通量测序系统,不仅提高测序通量,降低了成本,而且具有创新的用户体验。
预先配置、即插即用的试剂,简单的流动槽上样,简单的触摸屏用户界面,这种人机交互设计特征以及轻松的测序流程,使操作更简单,更方便。
HIseq 2000 cBotFlowcell Cluster Image测序实验流程:•基因组DNA打断;• DNA 末端修复;•连接接头;• DNA片段杂交到 Flowcell上;• DNA模板延伸,桥式扩增;• Flowcell制备;• SBS(synthesis-based-sequenceing)边合成边测序;• Hiseq上自动化测序;•图片处理,实时分析,碱基识别;•图片实时分析;•变异分析;•总结报告;技术特点:•每个run平均达到200G的数据通量,读长为2 x 100bp;•每个run可同时运行2张Flow cell, 且每张Flow cell 可进行上下两面扫描;•采用TDI 线性扫描技术,4个相机同时扫描;•预先配置、即插即用的试剂,简单的流动槽上样,触摸屏式的用户界面;•低成本:单次运行即可以~30倍的覆盖度同时对两个人类基因组样品进行测序,或同时绘制200个基因表达谱。
#流程大放送#WGBS和RRBS测序分析流程介绍WGBS全称Whole Genome Bisulfite Seuqneicng,即全基因组重亚硫酸盐测序。
该方法通过Bisulfite处理,将原基因组中未发生甲基化的C碱基转换成U的同时,保留所有甲基化C 的碱基不发生转变,从而帮助科研人员识别发生甲基化的CpG位点。
该种测序技术适用于绘制单碱基分辨率的全基因组DNA甲基化图谱。
RRBS全称Reduced Representation Bisulfite Sequencing,即简化代表性重亚硫酸盐测序。
该方法在Bisulfite处理前,使用MspI(该酶的酶切位点为CCGG)酶切对样本进行处理,去除低CG含量DNA片段,从而使用较小的数据量富集到尽可能多的包含CpG位点的DNA片段。
相比于WGBS技术,RRBS是一种准确、高效且经济的DNA甲基化研究方法,通过酶切,并进行Bisulfite测序,该方法在保证DNA甲基化状态检测的高分辨率的同时提升测序数据的高利用率。
该项技术可用于以下研究1、处于特定时期或特定处理条件下的样本中,研究样本中染色体高精度DNA甲基化模式;2、比较不同细胞、组织、样本间的高精度DNA甲基化修饰模式的差异;3、疾病样本中,与疾病发生发展相关的高精度DNA甲基化表观遗传机理研究和相关高精度DNA甲基化位点分子标志的探索性研究。
数据处理和分析流程图分析结果示例图片展示示例图1 样本中各区域DNA甲基化水平信息统计和样本间差异DNA甲基化分析结果展示[1]示例图2 差异DNA甲基化区域内转录因子基序识别[1]示例图3 DNA甲基化水平变化与基因表达水平变化的关联性分析[1]示例图来源文献[1]. Ng, C.W., et al., Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc Natl Acad Sci U S A, 2013. 110(6): p. 2354-9.。
亚硫酸氢盐测序介绍亚硫酸氢盐测序(Bisulfite sequencing)是一种用于研究DNA甲基化状态的测序技术。
DNA甲基化是一种常见的表观遗传修饰形式,它在基因组的调控、细胞分化和发育等过程中发挥重要作用。
亚硫酸氢盐测序通过对DNA进行特定的化学处理,可以将未甲基化的胞嘧啶(C)转化为尿嘧啶(T),而已甲基化的胞嘧啶不受影响。
通过测序这些转化后的DNA片段,可以确定原始DNA序列中的甲基化位点,从而获得DNA甲基化的信息。
测序过程亚硫酸氢盐测序包括以下几个主要步骤:DNA提取首先,需要从研究对象的细胞中提取DNA。
通常使用常规的DNA提取方法,例如酚/氯仿法或商用DNA提取试剂盒。
亚硫酸氢盐处理提取的DNA与亚硫酸氢盐溶液混合,在低pH条件下进行反应,使未甲基化的C转化为T。
这个处理过程是亚硫酸氢盐测序的关键步骤,确保只有未甲基化的C被转化。
PCR扩增经过亚硫酸氢盐处理后的DNA片段需要进行PCR扩增。
PCR扩增可以增加DNA数量,使得后续的测序实验能够顺利进行。
在PCR扩增过程中,可以添加特定的引物,以选择性地扩增亚硫酸氢盐处理后的DNA片段。
DNA测序扩增后的DNA片段需要进行测序。
目前可选择的测序方法很多,包括Sanger测序、Illumina测序等。
测序后可以得到大量的DNA序列数据。
数据分析最后,对测序得到的数据进行分析。
这包括对测序质量的评估、数据清洗、比对到参考基因组、甲基化位点检测等步骤。
应用领域亚硫酸氢盐测序技术在生物医学研究中有着广泛的应用。
以下是一些常见的应用领域:基因组甲基化研究亚硫酸氢盐测序可以用来研究基因组中的甲基化状态。
通过比较不同样品或不同组织中的甲基化水平,可以揭示基因组的甲基化模式与疾病或生理过程的关联。
癌症研究DNA甲基化异常在肿瘤中很常见。
亚硫酸氢盐测序可以通过检测肿瘤细胞中的甲基化变化,帮助我们理解肿瘤的发生和发展机制。
它还可以作为癌症早期诊断和预测预后的依据。