MAX263BEPI中文资料
- 格式:pdf
- 大小:4.04 MB
- 文档页数:28
MAX9632/MAX9633 低噪音
Maxim 的新轨至轨运算放大器提供高电压性能在低频率,精确的规格,高收益,能够在工业应用精密的信号调理。
位于美国加州Sunnyvale,2010 年11 月9 日,MAXIM 集成产品公司(NASDAQ:MXIM)推出MAX9632/MAX9633 的36V,低噪音,低失真精密运算放大器。
在Maxim 的高电压,精密运算放大器新系列的第一个器件,MAX9632/MAX9633 的设计采用了一个专有的高速互补BiCMOS 工艺
(CB5HV)。
这个高电压模拟工艺优化交流优秀的动态性能,超低噪声,工作电压范围宽,低漂移信号调理。
MAX9632/MAX9633 目标的工业数据采集系统的精度要求在低频信号调理。
在MAX9632 是单运放具有超低输入电压噪声密度0.94nV /,低偏移的125μV(最大值),和偏移量温度系数的0.5μV/° C(最大)。
在MAX9633 是一款双用的3nV 输入电压噪声密度运算放大器/,对200μ偏移(最大)一,和偏移量温度系数的0.9μV/° C(最大)。
这两款器件提供高规格的信号保真度和总谐波失真调节优于-一三六分贝,能够在专业音响设备和高端测试和仪器仪表应用。
增益带宽积(GBWP)是典型的MAX9632 和MAX9633 27MHz 时为55MHz 的。
这可用带宽,慷慨的4.5V 至36V 工作电压范围,典型的三点九毫安(MAX9632)电流消耗相结合,。
第32卷第3期2000年5月四川大学学报(工程科学版)J OURNA L OF SICHUAN UNIVERSITY(ENGINEERING SCIENCE EDITIO N)Vol.32No.3May2000文章编号:1009-3087(2000)03-0058-03MAX26系列数字编码式滤波器的使用方法羿飒,田远富(四川大学电气信息学院,成都610065)摘要:主要介绍MAX26系列4阶开关电容滤波器的使用方法。
给出了其引脚图及各引脚功能,指明了其使用的电压频率范围,说明了如何进行模式选择以及在不同模式下频率编码输入端和Q值编码输入端的设定。
总结了其性能优点,特别指出了实际应用中应注意的问题。
并在理论计算的基础上,设计出用MAX267实现中心频率220 Hz,带宽6.875Hz的带通滤波电路,进一步通过实验测试,验证了MAX26系列数字滤波器的滤波效果。
关键词:数字滤波器;中心频率;带宽中图分类号:TN713.92文献标识码:AUsage of MAX26Series Digital FilterY I Sa,TIAN Y uan-f u(College of Electrical Informati on,Sichuan Uni v.,Chengdu610065,Chi na)Abstract:This paper mainly introduces the operation methods of the MAX26series four-order on-off capacitance filter. We provide the pin description,show clearly the applicable range of volt and frequency,demonstrate how to select mode and set up the frequency-encode input and Q value-encode input under each mode,summarize the virtues of properties, especially point out the problems which should be a ware of in actual applications.Then on the basis of theoretic calcula-tion,we have designed the band-pass filter circuit,which can realize center frequenc y220Hz,bandwidth6.875Hz by using MAX267.Through experimental test,take further steps to verify the filter effect of MAX26series digital filter. Key words:digital filter;center frequenc y;bandwidthMAX263/264/267/268是MAXIM公司新推出的4种应用非常广泛的4阶开关电容滤波器。
?在电子电路中,滤波器是不可或缺的部分,其中有源滤波器更为常用。
一般有源滤波器由运算放大器和RC元件组成,对元器件的参数精度要求比较高,设计和调试也比较麻烦。
美国Maxim公司生产的可编程滤波器芯片MAX262可以通过编程对各种低频信号实现低通、高通、带通、带阻以及全通滤波处理,且滤波的特性参数如中心频率、品质因数等,可通过编程进行设置,电路的外围器件也少。
本文介绍MAX262的情况以及由它构成的程控滤波器电路。
1MAX262芯片介绍???MAX262芯片是Maxim公司推出的双二阶通用开关电容有源滤波器,可通过微处理器精确控制滤波器的传递函数(包括设置中心频率、品质因数和工作方式)。
它采用CMOS工艺制造,在不需外部元件的情况下就可以构成各种带通、低通、高通、陷波和全通滤波器。
图1是它的引脚排列情况。
?图1MAX262引脚V+——正电源输入端。
V-——负电源输入端。
GND——模拟地。
CLKA——外接晶体振荡器和滤波器A部分的时钟输入端,在滤波器内部,时钟频率被2分频。
CLKB——滤波器B部分的时钟输入端,同样在滤波器内部,时钟频率被2分频。
CLKOUT——晶体振荡器和R-C振荡的时钟输出端。
OSCOUT——与晶体振荡器或R-C振荡器相连,用于自同步。
INA、INB——滤波器的信号输入端。
BPA、BPB——带通滤波器输出端。
LPA、LPB——低通滤波器输出端。
HPA、HPB——高通、带阻、全通滤波器输出端。
WR——写入有效输入端。
接V+时,输人数据不起作用;接V-时,数据可通过逻辑接口进入一个可编程的内存之中,以完成滤波器的工作模式、f0及Q的设置。
此外,还可以接收TTL电平信号,并上升沿锁存输人数据。
A0、A1、A2、A3——地址输人端,可用来完成对滤波器工作模式、f0和Q的相应设置。
D0、D1——数据输入端,可用来对f0和Q的相应位进行设置。
OPOUT——MAX262的放大器输出端。
OPIN——MAX262的放大器反向输入端。
_______________General DescriptionThe MAX2630/MAX2631/MAX2632/MAX2633 are low-voltage, low-noise amplifiers for use from VHF to microwave frequencies. Operating from a single +2.7V to +5.5V supply, these devices have a flat gain response to 900MHz. Their low noise figure and low supply current make them ideal for receive, buffer, and transmit IF applications.The MAX2630/MAX2631 are biased internally, eliminat-ing the need for external bias resistors or inductors. The MAX2632/MAX2633 have a user-selectable supply cur-rent, which can be adjusted by adding a single external resistor. This allows customized output power and gain according to specific applications requirements. The MAX2631/MAX2633 feature a shutdown pin that allows them to be powered down to less than 1µA supply cur-rent. Aside from a single bias resistor required for the MAX2632/MAX2633, the only external components needed for this family of amplifiers are input and output blocking capacitors and a V CC bypass capacitor.The MAX2630 comes in a 4-pin SOT143 package, re-quiring minimal board space. The MAX2631/MAX2632come in small 5-pin SOT23 packages. The MAX2633comes in a 6-pin SOT23 package.________________________ApplicationsPersonal Communicating Systems Cordless Phones Global Positioning Systems Cellular Phones Wireless Local Area Networks ISM Radios Wireless Local Loops TV Tuners Land Mobile RadiosSet-Top Boxes____________________________Featureso Single +2.7V to +5.5V Operation o Internally Biased (MAX2630/MAX2631)o Adjustable Bias (MAX2632/MAX2633)o 6.6mA Supply Current (insensitive to supply voltage)o 1µA Shutdown Current (MAX2631/MAX2633)o 3.7dB Noise Figure o 13.4dB Gaino Ultra-Small SOT PackagesMAX2630–MAX2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers________________________________________________________________Maxim Integrated Products1_________________Pin Configurations__________Typical Operating Circuit______________Ordering Information19-1181; Rev 1; 7/97*The first two letters in the SOT top mark identify the part,while the remaining two letters are the lot-tracking code.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 408-737-7600 ext. 3468.M A X 2630–M A X 2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3V, Z 0= 50Ω, f IN = 900MHz, R BIAS = 10k Ω(MAX2632/MAX2633), V SHDN = V CC (MAX2631/MAX2633), T A = +25°C, unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 1:Guaranteed by design and characterization.V CC to GND................................................................-0.3V to 6V Input Power.........................................................................5dBm OUT Current.....................................................................±12mA IN to GND Voltage...................................................-1.2V to 1.2V Bias to GND Voltage....................................................0.0V to 3V Voltage at SHDN Input(MAX2631/MAX2633)............................-0.3V to (V CC + 0.3V)Current into SHDN Input (MAX2631/MAX2633).................100µAContinuous Power Dissipation (T A = +70°C)SOT143 (derate 4mW/°C above +70°C).....................320mW SOT23-5 (derate 7.1mW/°C above +70°C).................571mW SOT23-6 (derate 7.1mW/°C above +70°C).................571mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°CMAX2630–MAX2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers_______________________________________________________________________________________3__________________________________________Typical Operating Characteristics(V CC = +3V, V SHDN = V CC (MAX2631/MAX2633), Z 0= 50Ω, f IN = 900MHz, R BIAS = 10k Ω(MAX2632/MAX2633), T A = +25°C, unless otherwise noted.)108642023456SUPPLY CURRENT vs. SUPPLY VOLTAGEV CC (V)I C C (m A )252015105005.02.510.015.0MAX2632/MAX2633GAIN vs. SUPPLY CURRENTI CC (mA)G A I N (d B )7.512.52016128400.10.30.71.11.31.5GAIN vs. FREQUENCY AND VOLTAGEFREQUENCY (GHz)G A I N (d B )0.50.9-5.0-7.5-10.0-12.5-15.00.10.30.71.11.31.5OUTPUT 1dB COMPRESSIONPOWER vs. FREQUENCY AND TEMPERATUREFREQUENCY (GHz)P -1 (d B m )0.50.92016128400.10.30.71.11.31.5GAIN vs. FREQUENCYAND TEMPERATUREFREQUENCY (GHz)G A I N (d B )0.50.9-5.0-7.5-10.0-12.5-15.00.10.30.71.11.31.5OUTPUT 1dB COMPRESSIONPOWER vs. FREQUENCY AND VOLTAGEFREQUENCY (GHz)P -1 (d B m )0.50.9-4-8-12-16-202.57.512.515.0MAX2632/MAX2633OUTPUT 1dB COMPRESSION POWER vs. SUPPLY CURRENTI CC (mA)P -1 (d B m )5.010.05432100.10.30.50.91.11.5NOISE FIGURE vs. FREQUENCYM A X 2630-8FREQUENCY (GHz)N O I S E F I G U R E (d B )0.71.3M A X 2630–M A X 2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers 4_____________________________________________________________________________________________________________________________________________________Pin Description15129630110100MAX2632/MAX2633SUPPLY CURRENT vs. R BIASR BIAS (k Ω)I C C (m A)00.010.030.020.040.05-40-2020406080MAX2631/MAX2633SHUTDOWN SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)S H U T D O W N I C C (µA )5:14:13:12:11:10.10.30.7 1.1 1.3 1.5VOLTAGE STANDING-WAVE RATIO vs. FREQUENCYFREQUENCY (GHz)V S W R0.50.9____________________________Typical Operating Characteristics (continued)(V CC = +3V, V SHDN = V CC (MAX2631/MAX2633), Z 0= 50Ω, f IN = 900MHz, R BIAS = 10k Ω(MAX2632/MAX2633), T A = +25°C, unless otherwise noted.)MAX2630–MAX2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers_______________________________________________________________________________________5Table 1a. Typical Scattering Parameters(V CC = +3V, V SHDN = V CC , Z 0= 50Ω, R BIAS = 10k Ω, T A = +25°C.)M A X 2630–M A X 2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers 6_______________________________________________________________________________________Table 1b. MAX2633 Typical Scattering Parameters(V CC = +5V, V SHDN = V CC , Z 0= 50Ω, R BIAS = 10k, T A = +25°C.)MAX2630–MAX2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers_______________________________________________________________________________________7_______________Detailed DescriptionThe MAX2630–MAX2633 are broadband amplifiers with 3dB bandwidth greater than 1GHz. Their small size and internal bias circuitry make them ideal for applications where board space is limited. The MAX2632/MAX2633have a user-selectable bias current that allows the user to set both gain and output power for a particular appli-cation, and the MAX2631/MAX2633 incorporate shut-down capability.__________Applications InformationExternal ComponentsThe MAX2630–MAX2633 are easy to use, as shown in the Typical Operating Circuit and Figures 1, 2 and 3. Input and output series capacitors may be necessary to block DC bias voltages generated by the amplifiers from inter-acting with adjacent circuitry. These capacitors must be large enough to contribute negligible reactance in a 50Ωsystem at the minimum operating frequency. Use the fol-lowing equation to calculate their minimum value:where f (in megahertz) is the minimum operating frequency.The V CC pin must be RF bypassed for correct opera-tion. To accomplish this, connect a capacitor between the V CC pin and ground, as close to the package as is practical. Use the same equation given above (for DC-blocking capacitor values) to calculate the minimum capacitor value. If the PC board has long V CC lines,additional bypassing may be necessary. This can be done farther away from the package, if needed.Proper grounding of the GND pin is essential. If the PC board uses a topside RF ground, connect it directly to the GND pin. For a board where the ground plane is not on the component side, the best technique is to con-nect the GND pin to it with a plated through-hole close to the package.An on-chip buffer at the MAX2631/MAX2633’s SHDN pin makes bypassing this pin unnecessary except in very noisy applications. When RF filtering is needed,use a bypass capacitor similar to the one used on V CC .Since negligible current flows into this pin, additional RF filtering may be done with a series resistor.To set the MAX2632/MAX2633’s supply current,connect a resistor from the BIAS pin to ground. To estimate the value of this resistor, refer to the graph Supply Current vs. R BIAS in the Typical Operating Characteristics .C BLOCK =53,000f(pF)M A X 2630–M A X 2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers 8_______________________________________________________________________________________Figure 4. MAX2630 Example PC Board LayoutFigure 5. MAX2631 Example PC Board LayoutFigure 7. MAX2633 Example PC Board LayoutFigure 6. MAX2632 Example PC Board Layout PC Board Layout ExampleExample PC board layouts are given in Figures 4 to 7.They use FR-4 with a 31mil layer thickness between the RF lines and the ground plane. The boards satisfy all of the above recommendations.MAX2630–MAX2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers_______________________________________________________________________________________9__________________________________________________Tape-and-Reel Information___________________Chip InformationTRANSISTOR COUNT: 199M A X 2630–M A X 2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers 10______________________________________________________________________________________________________________________________________________Package InformationMAX2630–MAX2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers ______________________________________________________________________________________11___________________________________________Package Information (continued)M A X 2630–M A X 2633VHF-to-Microwave, +3V ,General-Purpose Amplifiers___________________________________________Package Information (continued)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.。
Keithley Model 2635A/2636A System SourceMeter® Specifications1.SPECIFICATION CONDITIONSThis document contains specifications and supplemental information for the Models 2635A and 2636A System SourceMeters ®. Specifications are the standards against which the Models 2635A and 2636A are tested. Upon leaving the factory the 2635A and 2636A meet these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information.Accuracy specifications are applicable for both Normal and High Capacitance Modes.The source and measurement accuracies are specified at the SourceMeters ® CHANNEL A (2635A and 2636A) or SourceMeters ® CHANNEL B (2636A) terminals under the following conditions: 1.23°C ± 5°C, < 70% relative humidity.2.After two-hour warm-up.3.Speed normal (1 NPLC).4.A/D auto-zero enabled.5.Remote sense operation or properly zeroed local operation.6.Calibration period: one year.2.SOURCE SPECIFICATIONSVOLTAGE SOURCE SPECIFICATIONSSpecifications Category SpecificationsRANGE PROGRAMMING RESOLUTION ACCURACY (1 Year) 23°C ± 5°C± (% rdg. + volts) TYPICAL NOISE(peak-peak) 0.1 Hz–10 Hz 200.000 mV 5 µV 0.02% + 375 µV 20 µV 2.00000 V 50 µV 0.02% + 600 µV 50 µV 20.0000 V 500 µV 0.02% + 5 mV 300 µV Voltage Programming Accuracy 1200.000 V5 mV0.02% + 50 mV2 mVTemperature Coefficient 2 ± (0.15 × accuracy specification)/°C•For temperatures (0°–18°C & 28°–50°C)Maximum Output Powerand Source/Sink Limits 3 30.3 W per channel maximum. •± 20.2 V @ ± 1.5 A •± 202 V @ ± 100 mA•Four-quadrant source or sink operation.Voltage Regulation Line: 0.01% of rangeLoad: ± (0.01% of range + 100 µV).Noise10 Hz – 20 MHz< 20 mV peak-peak (typical), < 3 mV RMS (typical) •20 V range1Add 50 µV to source accuracy specifications per volt of HI lead drop.2High Capacitance Mode accuracy is applicable at 23°C ± 5°C only.3Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.Model 2635A/2636ASystem SourceMeter® SpecificationsSpecifications Category SpecificationsCurrentLimit/Compliance 4 Bipolar current limit (compliance) set with single value. Minimum value is 100 pA. Accuracy is the same as current source. Overshoot< ± (0.1% + 10 mV) (typical )•Step size = 10% to 90% of range, resistive load, maximum current limit/compliance.Guard Offset Voltage< 4 mV•Current < 10 mACURRENT SOURCE SPECIFICATIONSSpecifications Category SpecificationsRANGE PROGRAMMING RESOLUTION ACCURACY (1 Year) 23°C ± 5°C± (% rdg. + amps) TYPICAL NOISE(peak-peak) 0.1 Hz–10 Hz 1.00000 nA 20 fA 0.15% + 2 pA 800 fA 10.0000 nA 200 fA 0.15% + 5 pA 2 pA 100.000 nA 2 pA 0.06% + 50 pA 5 pA 1.00000 µA20 pA 0.03% + 700 pA 25 pA 10.0000 µA 200 pA 0.03% + 5 nA 60 pA 100.000 µA 2 nA 0.03% + 60 nA 3 nA 1.00000 mA 20 nA 0.03% + 300 nA 6 nA 10.0000 mA 200 nA 0.03% + 6 µA 200 nA 100.000 mA 2 µA 0.03% + 30 µA 600 nA 1.00000 A 520 µA 0.05% + 1.8 mA 70 µA 1.50000 A 550 µA0.06% + 4 mA 150 µACurrent ProgrammingAccuracy10.0000 A 5,6 200µA 0.5% + 40 mA (typical)Temperature Coefficient 7± (0.15 × accuracy specification)/°C•For temperatures (0° – 18°C & 28° – 50°C)4For sink mode operation (quadrants II and IV), add 0.06% of limit range to the corresponding current limit accuracy specifications. Specifications apply with sink mode enabled.5Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.610A range accessible only in pulse mode.7High Capacitance Mode accuracy is applicable at 23°C ± 5°C only.Model 2635A/2636ASystem SourceMeter® SpecificationsSpecifications Category SpecificationsMaximum Output Power and Source/Sink Limits 8 30.3 W per channel maximum. •± 1.515 A @ ± 20 V •± 101 mA @ ± 200 V•Four-quadrant source or sink operation.Current Regulation Line: 0.01% of rangeLoad: ± (0.01% of range + 100pA).VoltageLimit/Compliance 9 Bipolar voltage limit (compliance) set with single value. Minimum value is 20 mV. Accuracy is the same as voltage source. Overshoot< ± 0.1% (typical)•step size = 10% to 90% of range, resistive load•See CURRENT SOURCE OUTPUT SETTLING TIME for additional test conditionsADDITIONAL SOURCE SPECIFICATIONS Specifications Category SpecificationsTransient Response Time< 70 µs for the output to recover to within 0.1% for a 10% to 90% step change in load.Time required to reach within 0.1% of final value after source level command is processed on a fixed range.Range Settling Time 200 mV < 50 µs (typical) 2 V < 50 µs (typical) 20 V < 110 µs (typical) Voltage Source OutputSettling Time200 V < 700 µs (typical)Time required to reach within 0.1% of final value after source level command is processed on a fixed range.•Values below for Iout × Rload = 2 V unless notedCurrent Range Settling Time 1.5 A – 1 A < 120 µs (typical) (Rload > 6 ) 100 mA – 10 mA < 80 µs (typical)1 mA < 100 µs (typical) 100 µA < 150 µs (typical) 10 µA < 500 µs (typical) 1 µA <2 ms (typical) 100 nA < 20 ms (typical) 10 nA < 40 ms (typical) Current Source Output Settling Time1 nA < 150 ms (typical)8Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.9For sink mode operation (quadrants II and IV), add 10% of compliance range and ±0.02% of limit setting to corresponding voltage source specification. For 200mV range add an additional 120mV of uncertainty.Model 2635A/2636ASystem SourceMeter® SpecificationsSpecifications Category SpecificationsDC Floating Voltage Output can be floated up to ± 250 VDCRemote Sense Operating Range10Maximum voltage between HI and SENSE HI = 3 V Maximum voltage between LO and SENSE LO = 3VVoltage Output Headroom 200 V Range•Maximum output voltage = 202.3 V – total voltage drop across source leads. (maximum 1 Ω per source lead)20 V Range•Maximum output voltage = 23.3 V – total voltage drop across source leads. (maximum 1 Ω per source lead)Over TemperatureProtectionInternally sensed temperature overload puts unit in standby mode.Voltage Source Range Change Overshoot < 300 mV + 0.1% of larger range (typical) •Overshoot into a 200 kΩ load, 20 MHz BWCurrent Source Range Change Overshoot < 5% of larger range + 300 mV/Rload (typical – With source settling set to SETTLE_SMOOTH_100NA)•See CURRENT SOURCE OUTPUT SETTLING TIME for additional test conditions.PULSE SPECIFICATIONSSpecifications Category SpecificationsRegionCircled On Quadrant DiagramMaximumCurrent LimitMaximumPulse Width11MaximumDuty Cycle121 100 mA at 200 V DC, no limit100%1 1.5 A at 20 V DC, no limit 100%2 1 A at 180 V 8.5 ms 1%313 1 A at 200V 2.2 ms 1% Pulse Specifications4 10 A at5 V 1 ms 2.2%10Add 50 µV to source accuracy specifications per volt of HI lead drop.11 Times measured from the start of pulse to the start off-time; see figure below.12Thermally limited in sink mode (quadrants 2 and 4) and ambient temperatures above 30°C. See power equations in the Reference Manual for more information.13Voltage source operation with 1.5 A current limit.Model 2635A/2636ASystem SourceMeter® SpecificationsTypical performance for minimum settled pulse widths: Typical tests were performed using remote opera 14tion, 4W sense, and best fixed measurement range. Fo n on p ripts, e M Source Value Source Sett r more informatio ulse sc see the Series 2600A Referenc anual.Load ling (% of range)Min. Pulse Width5 V 0.5 Ω1%300 µs 20 V 200 Ω0.2%200 µs 180 V 180 Ω0.2% 5 ms 200 V (1.5 A Limit) 200 0.2%Ω 1.5 ms100 mA 200 Ω1%200 µs 1 A 200 Ω1%500 µs 1 A 180 Ω0.2% 5 ms 10 A 0.5 Ω0.5%300 µs 15Times measured from the start of pulse to the start off-time; see figure below.Model 2635A/2636ASystem SourceMeter® Specifications3.METER SPECIFICATIONSVOLTAGE MEASUREMENT SPECIFICATIONS Specifications Category SpecificationsRANGEDISPLAYRESOLUTION18INPUT IMPEDANCE ACCURACY (1 Year)23°C ± 5°C ± (% rdg. + volts) 200.000 mV 1 µV >1014Ω0.015% + 225 µV 2.00000 V 10 µV >1014 Ω0.02% + 350 µV 20.0000 V 100 µV >1014 Ω0.015% + 5 mV Voltage Measurement Accuracy 16,17200.000 V1 mV>1014 Ω0.015% + 50 mVTemperature Coefficient 19± (0.15 × accuracy specification)/°C•For temperatures (0°–18°C & 28°–50°C)16Add 50µV to source accuracy specifications per volt of HI lead drop.17De-rate accuracy specifications for NPLC setting < 1 by increasing error term. Add appropriate % of range term using table below.NPLC Setting 200 mV Range 2 V – 200 V Ranges 100 nA Range 1 µA – 100 mA Ranges 1 A – 1.5 ARanges0.10.01%0.01%0.01%0.01%0.01%0.010.08 %0.07%0.1 %0.05%0.05%0.0010.8 %0.6 %1 % 0.5 % 1.1 % 18Applies when in single channel display mode.19High Capacitance Mode accuracy is applicable at 23°C ± 5°C only.Model 2635A/2636ASystem SourceMeter® SpecificationsCURRENT MEASUREMENT SPECIFICATIONS Specifications Category SpecificationsRANGEDISPLAY RESOLUTION 20VOLTAGEBURDEN 21ACCURACY (1 Year)23°C ± 5°C ± (% rdg. + amps) 100.000 pA 22,23 1 fA < 1 mV 0.15% + 120 fA 1.00000 nA 22,2410 fA < 1 mV 0.15% + 240 fA 10.0000 nA 100 fA < 1 mV 0.15% + 3 pA 100.000 nA1 pA < 1 mV 0.06% + 40 pA 1.00000 µA 10 pA < 1 mV 0.025% + 400 pA 10.0000 µA 100 pA < 1 mV 0.025% +1.5 nA 100.000 µA 1 nA < 1 mV 0.02% + 25 nA 1.00000 mA 10 nA < 1 mV 0.02% +200 nA 10.0000 mA 100 nA < 1 mV 0.02% + 2.5 µA 100.000 mA 1 µA < 1 mV 0.02% +20 µA 1.00000 A 10 µA < 1 mV 0.03% +1.5 mA 1.50000 A 10 µA < 1 mV 0.05% + 3.5 mA Current Measurement Accuracy 1710.000025A100 µA< 1 mV0.4% + 25 mATime required to reach within 0.1% of final value after source level command is processed on a fixed range.•Values below for Vout = 2 V unless notedCurrent Range Settling TimeCurrent Measure 26 Settling Time(Time for measurement to settle after a Vstep) 1 mA < 100 µs (typical)Temperature Coefficient 27± (0.15 × accuracy specification)/°C•For temperatures (0°–18°C & 28°–50°C)20 Applies when in single channel display mode.21Four-wire remote sense only and with current meter mode selected. Voltage measure set to 200 mV or 2 V range only.2210-NPLC, 11-Point Median Filter, < 200V range, measurements made within 1 hour after zeroing. 23°C ± 1°C 23Under default specification conditions: ±(0.15% + 750 fA).24Under default specification conditions: ±(0.15% + 1 pA).2510 A range accessible only in pulse mode.26Delay factor set to 1. Compliance equal to 100 mA.27High Capacitance Mode accuracy is applicable at 23°C ± 5°C only.Model 2635A/2636ASystem SourceMeter® SpecificationsSpecifications Category SpecificationsSpeedMaximum measurement time to memory for 60Hz(50Hz) ACCURACY (1 Year)23°C ± 5°C ± (% rdg. + ohms)Fast 1.1 ms (1.2 ms) 5% + 10 Ω Medium 4.1 ms (5 ms) 5% + 1 Ω Contact Check Specifications 28Slow36 ms (42 ms)5% + 0.3 ΩADDITIONAL METER SPECIFICATIONS Specifications Category SpecificationsMaximum Load ImpedanceNormal Mode 10nF (typical)High Capacitance Mode50uF(typical)Common Mode Voltage 250 VDC Common Mode Isolation >1 G Ω< 4500 pFOverrange101% of source range 102% of measure range Maximum Sense Lead Resistance1 k Ω for rated accuracy Sense High Input Impedance>1014Ω28Includes measurement of SENSE HI to HI and SENSE LO to LO contact resistances.Model 2635A/2636ASystem SourceMeter® SpecificationsHIGH CAPACITANCE MODE 29,30,31Specifications CategorySpecifications Accuracy SpecificationsAccuracy specifications are applicable in both Normal and High Capacitance Modes.Time required to reach within 0.1% of final value after source level command is processed on a fixed range.Current limit = 1AVoltage Source RangeSettling Time withC load = 4.7µF 200 mV600 µs (typical) 2 V600 µs (typical) 20 V1.5 ms (typical) Voltage Source Output Settling Time200 V20 ms (typical) Time required to reach within 0.1% of final value after voltage source is stabilized on a fixed range.•Values below for Vout = 2 V unless notedCurrent Measure RangeSettling Time 1.5 A – 1 A< 120 µs (typical) (Rload > 6 Ω) 100 mA – 10 mA< 100 µs (typical) 1 mA< 3 ms (typical) 100 µA< 3 ms (typical) 10 µA< 230 ms (typical) Current Measure Settling Time1 µA < 230 ms (typical) Capacitor Leakage PerformanceUsing HIGH-C scripts 32200 ms (typical) @ 50 nALoad = 5µF||10M ΩTest: 5V step & measureMode Change Delay100 µA Current Range and above:Delay into High Capacitance Mode: 11 ms Delay out of High Capacitance Mode: 11 ms 1 µA and 10 µA Current Ranges:Delay into High Capacitance Mode: 250 ms Delay out of High Capacitance Mode: 11 ms Voltmeter Input Impedance 30 G Ω in parallel with 3300 pF Noise10 Hz – 20 MHz< 30 mV peak-peak (typical)∙20 V Range29High Capacitance Mode specifications are for DC measurements only. 30100 nA range and below are not available in High Capacitance Mode.31High Capacitance Mode utilizes locked ranges. Auto Range is disabled . 32Part of KI Factory scripts. See the reference manual for details.Model 2635A/2636ASystem SourceMeter® Specifications Specifications Category SpecificationsVoltage Source Range Change Overshoot < 400 mV + 0.1% of larger range (typical) •For 20 V range and below•Overshoot into an 200 k load, 20 MHz BW4.GENERALSpecifications Category SpecificationsIEEE-488 IEEE Std 488.1 compliant. Supports IEEE Std 488.2 common commands and status model topology.RS-232 Baud rates from 300bps to 115200bps.Programmable number of data bits, parity type, and flow control (RTS/CTS hardware or none). When not programmed as the active host interface, the SourceMeter can use the RS-232 interface to control other –instrumentationEthernet RJ-45 connector, LXI Class C, 10/100BT, Auto MDIXLXI Compliance LXI Class C 1.2Total Output Trigger Response Time: 245 µs min., 280 µs typ., (not specified) max.Receive LAN[0-7] Event Delay: UnknownGenerate LAN[0-7] Event Delay: UnknownExpansion Interface The TSP-Link™ expansion interface allows TSP™ enabled instruments to trigger and communicate with each other.Cable Type: Category 5e or higher LAN crossover cable.3 meters maximum between each TSP enabled instrumentUSB USB 2.0 Host ControllerPower Supply 100 V to 250 VAC, 50 Hz – 60 Hz (auto sensing), 250 VA maxModel 2635A/2636ASystem SourceMeter® Specifications Connector: 25-pin female DInput/Output Pins: 14 open drain I/O bitsModel 2635A/2636ASystem SourceMeter® Specifications Specifications Category SpecificationsCooling Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mountedWarranty1yearEMC Conforms to European Union Directive 2004/108/EEC, EN 61326-1Safety Conforms to European Union Directive 73/23/EEC, EN 61010-1, and UL 61010-1Dimensions 89 mm high × 213 mm wide × 460 mm deep (31⁄2 in × 83⁄8 in × 171⁄2 in). Bench Configuration (with handle & feet): 104 mm high × 238 mm wide × 460 mm deep (41⁄8 in × 93⁄8 in × 171⁄2 in)Weight 2635A: 4.75 kg (10.4 lbs). 2636A: 5.50 kg (12.0 lbs).Environment For indoor use only.Altitude: Maximum 2000 meters above sea levelOperating: 0°– 50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°– 50°C Storage: – 25°C to 65°CModel 2635A/2636ASystem SourceMeter® Specifications 5.MEASUREMENT SPEED SPECIFICATIONS33,34,35Maximum Sweep Operation Rates (operations per second) for 60Hz (50Hz):A/D converterspeed TriggeroriginMeasure tomemoryusinguser scriptsMeasure toGPIBusinguser scriptsSourcemeasure tomemoryusinguser scriptsSourcemeasure toGPIBusinguser scriptsSourcemeasure tomemoryusingsweep APISourcemeasure toGPIBusingsweep API0.001 NPLC Internal 20000 (20000) 9800 (9800) 7000 (7000) 6200 (6200)12000(12000)5900 (5900)0.001 NPLC Digital I/O 8100 (8100) 7100 (7100) 5500 (5500) 5100 (5100)11200(11200)5700 (5700)0.01 NPLC Internal 4900 (4000) 3900 (3400) 3400 (3000) 3200 (2900) 4200 (3700) 4000 (3500)0.01 NPLC Digital I/O 3500 (3100) 3400 (3000) 3000 (2700) 2900 (2600) 4150 (3650) 3800 (3400)0.1 NPLC Internal 580 (480) 560 (470) 550 (465) 550 (460) 560 (470) 545 (460)0.1 NPLC Digital I/O 550 (460) 550 (460) 540 (450) 540 (450) 560 (470) 545 (460)1.0 NPLC Internal 59 (49) 59 (49) 59 (49) 59 (49) 59 (49) 59 (49)1.0 NPLC Digital I/O 58 (48) 58 (49) 59 (49) 59 (49) 59 (49) 59 (49) Maximum Single Measurement Rates (operations per second) for 60Hz (50Hz):A/D converterspeed TriggeroriginMeasure to GPIBSource measureto GPIBSource measure pass/fail to GPIB0.001 NPLC Internal 1900 (1800) 1400 (1400) 1400 (1400)0.01 NPLC Internal 1450 (1400) 1200 (1100) 1100 (1100)0.1 NPLC Internal 450 (390) 425 (370) 425 (375)1.0 NPLC Internal 58 (48) 57 (48) 57 (48)Maximum measurement range change rate: >7000/second for >10 µA typical. When changing to or from a range ≥1A, maximum rate is >2200/second typical.Maximum source range change rate: >400/second >10 µA typical. When changing to or from a range ≥1A, maximum rate is >190/second typical.Maximum source function change rate: >1000/second, typical.Command processing time: Maximum time required for the output to begin to change following the receipt of the smux.source.levelv or smux.source.leveli command. <1ms typical.33 Tests performed with a 2636A on Channel A using the following equipment: Computer hardware (Intel® Pentium® 4 2.4 GHz,2 GB RAM, National Instruments™ PCI-GPIB). Driver (NI-488.2 Version 2.2 PCI-GPIB). Software (Microsoft® Windows® XP,Microsoft® Visual Studio® 2010, VISA™ version 4.1).34 Exclude current measurement ranges less than 1mA.35 2635A/2636A with default measurement delays and filters disabled.Model 2635A/2636ASystem SourceMeter® Specifications6.TRIGGERING AND SYNCHRONIZATION SPECIFICATIONSTriggering:Trigger in to trigger out: 0.5μs, typical.Trigger in to source change:3610 μs, typical.Trigger Timer accuracy: ±2μs, typical.change36 after LXI Trigger: 280μs, typical.SourceSynchronization:Single-node synchronized source change:36<0.5μs, typical.Multi-node synchronized source change:36<0.5μs, typical.7.SUPPLEMENTAL INFORMATIONFront Panel Interface:Two-line vacuum fluorescent display (VFD) with keypad and rotary knob.Display:∙Show error messages and user-defined messages∙Display source and limit settings∙Show current and voltage measurements∙View measurements stored in dedicated reading buffersKeypad operations:∙Change host interface settings∙Save and restore instrument setups∙Load and run factory and user-defined test scripts (i.e., sequences) that prompt for input and send results to the display∙Store measurements into dedicated reading buffersProgramming:Embedded Test Script Processor (TSP): Accessible from any host interface.∙Responds to individual instrument control commands.∙Responds to high-speed test scripts comprised of instrument control commands and Test Script Language (TSL) statements (for example branching, looping, and math).∙Able to execute high-speed test scripts stored in memory without host intervention.Minimum user memory available: 16MB (approximately 250,000 lines of TSL code).Test Script Builder: Integrated development environment for building, running, and managing TSP scripts. Includes an instrument console for communicating with any TSP-enabled instrument in an interactive manner. Requires:∙VISA (NI-VISA included on CD)∙Microsoft .NET Framework (included on CD)∙Keithley I/O Layer (included on CD)36Fixed source range, with no polarity change.Model 2635A/2636ASystem SourceMeter® Specifications TSP™ Express (embedded):Tool that allows users to quickly and easily perform common I-V tests withoutprogramming or installing software. To run TSP Express, you need:∙Java™ Platform, Standard Edition 6∙Microsoft® Internet Explorer®, Mozilla® Firefox®, or another Java-compatible web browserSoftware Interface: TSP Express (embedded), direct GPIB/VISA, read/write with Microsoft® Visual Basic®, Visual C/C++®, Visual C#®, LabVIEW™, CEC TestPoint™ Data Acquisition Software Package, NI LabWindows™/CVI, and so on.Reading Buffers:Non-Volatile memory utilizes dedicated storage area(s) reserved for measurement data. Reading buffers are arrays of measurement elements. Each element can hold the following items:∙Measurement∙Source setting (at the time the measurement was taken)∙Measurement status∙Range information∙TimestampTwo reading buffers are reserved for each SourceMeter channel. Reading buffers can be filled using the front panel STORE key, and retrieved using the RECALL key or host interface.Buffer Size, with timestamp and source setting: > 60,000 samples.Buffer Size, without timestamp and source setting: > 140,000 samples.System Expansion:The TSP-Link expansion interface allows TSP-enabled instruments to trigger and communicate with each other. See figure below:Model 2635A/2636ASystem SourceMeter® SpecificationsEach SourceMeter has two TSP-Link connectors to make it easier to connect instruments together in sequence.∙Once SourceMeter instruments are interconnected via TSP-Link, a computer can access all of the resources of each SourceMeter via the host interface of any SourceMeter.∙ A maximum of 32 TSP-Link nodes can be interconnected. Each SourceMeter consumes one TSP-Link node.TIMER:Free-running 47-bit counter with 1MHz clock input. Reset each time instrument powers up. Rolls over every 4 years.Timestamp: TIMER value automatically saved when each measurement is triggered.Resolution: 1μs.Timestamp Accuracy: ±100ppm.。
Max263(264)是开关电容有源滤波器设计用于精密滤波应用。
中心频率,Q,工作模式都可以通过输入引脚选择。
Max263不需要用外部元件去实现带通,低通,高通,全通滤波。
max263是专门带通应用程序和包含一个通用运算放大器。
两个第二阶滤波器部分都包含在这两个设备。
通过fclk/f0Max263和267的中心频率可以到达57KHZ,而max264和268可以到达140KHZ。
Max263(264)有28个引脚,max267(268)有24个引脚。
1、滤波器设计软件化2、中心频率32阶可控3、Q值128阶可控4、Q值与f0独立可编程5、f0可达140KHz6、支持+5V和士5V两种供电方式芯片诸引脚功能如下(括号内数字为引脚号):V+(10):供电正极, 并接旁路电容尽量靠近该脚V-(18):供电负极, 并接旁路电容尽量靠近该脚GND(19):模拟地CLKA(13):A单元元时钟输人, 该时钟在芯片内部被二分频CLKB(14):B单元时钟输人, 该时钟在芯片内部被二分频OSC OUT(20):连至晶体, 组成晶振电路(若接时钟信号时, 该脚不连)INA,INB(5,1):滤波器输人BPA,BPB(3,27): 带通输出LPA,LPB(2,28):低通输出HPA,HPB(4,26):高通、带陷、全通输出M0,M1(8,7):模式选择,+5V高,-5V低F0-F4(24,17,23,12,11):时钟与中心频率比值(FCLK/f0)编程端Q0-Q6(15,16,21,22,25,6,9):Q编程端。
1、供给电压士15V2、输入电压士0.3V3、输入电流士50Ma对M0、M1两个管脚编程可使芯片工作于模式1、2、3、4几种方式,对应的功能如表1所示。
时钟与中心频率比值与编码对应如表2所示。
模式1:当我们要实现全极点低通或带通滤波器如切比雪夫、巴特沃斯滤波器时这种模式是很有用的, 有时该模式也用来实现带陷滤波器, 但由于相关零极点位置固定, 使得用作带陷时受到限制。
DESCRIPTIONThe Model 263 continuously monitors 3-phase power systems for phase loss, low voltage and phase reversal. The monitor consists of a solid-state sensing circuit, driving an electromechanical relay.Applying correct voltage and phase rotation energizes the relay. When properly adjusted, a fault condition will cause the relay to de-energize, even when regenerated voltage is present.When the fault is corrected, the Model 263 automatically resets. A manual reset version is also available. The SG Model has silver with gold flash contacts for low current applications.The Model 263 does not require a neutral connection, and can be used on Wye or Delta systems. Each of the five different voltage ranges is adjustable to allow the monitor to be set for existing conditions. NORMAL and TRIP L E D indicators are provided to aid in adjustment and system troubleshooting.l Detects Phase Loss or Reversal and Low Voltagel 400Hz and Gold Contact Options l Automatic or Manual Resetl UL Recognized and CSA Certified3-Phase MonitorINSTALLATIONConnect the 3-phase wires to the terminals marked A , B and C .The control wiring will be connected to the opposite end of the unit, to the terminals with the contact markings. Markings on the unit are the failed condition of the contacts.AUTOMATIC RESET VERSIONS:Apply power. If the contacts do not transfer (TRIP LED-Off), check that all three phases are present and of the correct voltage.If all phases are correct, rotate the VOLTS adjustment potentiometer counter-clockwise, to the low position.If the contacts still do not transfer, remove power from the unit. Reverse any two of the three input wires and re-apply power. The contacts should transfer to the energized condition; N.O. contact-closed, NORMAL LED-On.MANUAL RESET VERSIONS:Apply power and press the RESET button. If the contacts do not transfer (TRIP LED-Off), check that all three phases are present and of the correct voltage.If all phases are correct, rotate the VOLTS adjustment potentiometer counter-clockwise, to the low position and press the RESET button.If the contacts still do not transfer, remove power from the unit. Reverse any two of the three input wires and re-apply power. Press the RESET button. The contacts should then transfer to the energized condition; N.O. contact-closed, NORMAL LED-On.TYPICAL APPLICATIONADJUSTMENT SETTINGSNOTE: During adjustment, you may wish to install a jumper across the control contacts, to prevent cycling the load on and off.AUTOMATIC RESET VERSIONS:Rotate the VOLTS adjustment slowly clockwise, until the contacts transfer to the failed condition (TRIP LED-On).Slowly turn the adjustment back counter-clockwise, until the contacts reset to the normal condition (TRIP LED-Off).Remove the jumper, if installed. This setting will be correct for most applications.If nuisance tripping occurs, turn the adjustment slightly farther counter-clockwise. In adjustments to eliminate nuisance tripping, the VOLTS adjustment should be rotated in very small increments, until the true nuisance trips are eliminated.MANUAL RESET VERSIONS:During adjustment, you will need to press and hold the RESET button.Rotate the VOLTS adjustment slowly clockwise, until the contacts transfer to the failed condition (TRIP LED-On). A slight buzz in the contacts may occur when the relay is at the transfer point to the failed condition. This is normal and will not occur in operation.Slowly turn the VOLTS adjustment back counter-clockwise, until the contacts reset to the normal condition (NORMAL LED-On).Release the RESET button, and remove the jumper, if installed. This setting will be correct for most applications.If nuisance tripping occurs, turn the adjustment slightly farther counter-clockwise. In adjustments to eliminate nuisance tripping, the VOLTS adjustment should be rotated in very small increments, until the true nuisance trips are eliminated.WARRANTYThe Model 263 3-Phase Monitor is covered by Time Mark Corporation’s exclusive 5-Year Unconditional Warranty. Should this device fail, for any reason, within five years from the date of purchase, we will repair or replace it free. Contact the Time Mark Sales department, Monday through Friday; 8 a.m. to 5 p.m., CST, for further details.3-Phase MonitorREAD ALL INSTRUCTIONS BEFORE INSTALLING, OPERATING OR SERVICING THIS DEVICE.KEEP THIS DATA SHEET FOR FUTURE REFERENCE.Installation Instructions。
MAX2606芯片调频发射器
一个简单的调频发射机电路,使用一个MAX2606调频发射芯片。
它可以将家庭音响系统的音频发射到FM频段,用便携式调频收音机收听。
例如,可以在家里后院收听室内设备播放的音频。
MAX2606集成变容二极管的电压控制振荡器。
其标称的振荡频率是由电感L1决定,取390nh,在100MHz的频率。
然后让你通过调整电位器R1在88MHz至108MHz调频波段选择一个频道。
输出功率约为-21dBm 50Ω(大多数国家接受调频波段10dBm以下的发射)。
R3和R4把左和右音频信号汇合,衰减电位器R2是可选的,作为调制的RF频率的音量控制。
如果发射信号声音失真,需要电位器调低音频电平。
一个标准的FM收音机天线,或者75厘米(30英寸)的导线将足以作为发射天线。
IC电源范围在3V至5V单电源电压,电源电压应该是稳定的,没有噪声干扰。
MAX2606简介
MAX2606采用SOT230-6微型封装,工作温度范围是-40℃~+85℃。
390nH的电感可将中心频率设定在100MHz。
内部集成了变容二极管的压控振荡器,只需要外接少量的元件就能组成一台高品质调频发射机。
输出功率对50Ω的天线约为-21dB。
MAX323精密,单电源,SPST模拟开关。
(Precision, Single-Supply,SPST Analog Switches)这些是我用有道翻译的,中英文我全部写出吧General DescriptionThe MAX323/MAX324/MAX325 are precision, dual,SPST analog switches. They are single-supply devicesdesigned to operate from +2.7V to +16V. The MAX323has two normally open (NO) switches, and the MAX324has two normally closed (NC) switches. The MAX325has one NO and one NC switch. Low power consumption(5μW) makes these parts ideal for battery-poweredequipment. These switches offer low leakage currents(100pA max) and fast switching speeds (tON = 150nsmax, tOFF = 100ns max).When powered from a 5V supply, the MAX323 seriesoffers 2½ max matching between channels, 60½ maxon-resistance, and 6½ max RON flatness.These switches also offer 5pC max charge injection,and a minimum of 2000V ESD per Method 3015.7.For equivalent devices specified for dual-supply operation,see the MAX320/MAX321/MAX322 data sheet. Forquad versions of the MAX320 series, see MAX391/MAX392/MAX393 data sheet.总体描述MAX323 / MAX324 / MAX325的精度,是二元性的,SPST模拟转换器。
General DescriptionThe MAX220–MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V.24 communica-tions interfaces, particularly applications where ±12V is not available.These parts are especially useful in battery-powered sys-tems, since their low-power shutdown mode reduces power dissipation to less than 5µW. The MAX225,MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for appli-cations where printed circuit board space is critical.________________________ApplicationsPortable Computers Low-Power Modems Interface TranslationBattery-Powered RS-232 Systems Multidrop RS-232 Networks____________________________Features Superior to Bipolaro Operate from Single +5V Power Supply (+5V and +12V—MAX231/MAX239)o Low-Power Receive Mode in Shutdown (MAX223/MAX242)o Meet All EIA/TIA-232E and V.28 Specifications o Multiple Drivers and Receiverso 3-State Driver and Receiver Outputs o Open-Line Detection (MAX243)Ordering InformationOrdering Information continued at end of data sheet.*Contact factory for dice specifications.MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers________________________________________________________________Maxim Integrated Products 1Selection Table19-4323; Rev 9; 4/00Power No. of NominalSHDN RxPart Supply RS-232No. of Cap. Value & Three-Active in Data Rate Number (V)Drivers/Rx Ext. Caps (µF)State SHDN (kbps)FeaturesMAX220+52/24 4.7/10No —120Ultra-low-power, industry-standard pinout MAX222+52/2 4 0.1Yes —200Low-power shutdownMAX223 (MAX213)+54/54 1.0 (0.1)Yes ✔120MAX241 and receivers active in shutdown MAX225+55/50—Yes ✔120Available in SOMAX230 (MAX200)+55/04 1.0 (0.1)Yes —120 5 drivers with shutdownMAX231 (MAX201)+5 and2/2 2 1.0 (0.1)No —120Standard +5/+12V or battery supplies; +7.5 to +13.2same functions as MAX232MAX232 (MAX202)+52/24 1.0 (0.1)No —120 (64)Industry standardMAX232A+52/240.1No —200Higher slew rate, small caps MAX233 (MAX203)+52/20— No —120No external capsMAX233A+52/20—No —200No external caps, high slew rate MAX234 (MAX204)+54/04 1.0 (0.1)No —120Replaces 1488MAX235 (MAX205)+55/50—Yes —120No external capsMAX236 (MAX206)+54/34 1.0 (0.1)Yes —120Shutdown, three stateMAX237 (MAX207)+55/34 1.0 (0.1)No —120Complements IBM PC serial port MAX238 (MAX208)+54/44 1.0 (0.1)No —120Replaces 1488 and 1489MAX239 (MAX209)+5 and3/52 1.0 (0.1)No —120Standard +5/+12V or battery supplies;+7.5 to +13.2single-package solution for IBM PC serial port MAX240+55/54 1.0Yes —120DIP or flatpack package MAX241 (MAX211)+54/54 1.0 (0.1)Yes —120Complete IBM PC serial port MAX242+52/240.1Yes ✔200Separate shutdown and enableMAX243+52/240.1No —200Open-line detection simplifies cabling MAX244+58/104 1.0No —120High slew rateMAX245+58/100—Yes ✔120High slew rate, int. caps, two shutdown modes MAX246+58/100—Yes ✔120High slew rate, int. caps, three shutdown modes MAX247+58/90—Yes ✔120High slew rate, int. caps, nine operating modes MAX248+58/84 1.0Yes ✔120High slew rate, selective half-chip enables MAX249+56/1041.0Yes✔120Available in quad flatpack packageFor free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/ReceiversABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243(V CC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, T A = T MIN to T MAX ‚ unless otherwise noted.)Note 1:Input voltage measured with T OUT in high-impedance state, SHDN or V CC = 0V.Note 2:For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V Input VoltagesT IN ..............................................................-0.3V to (V CC - 0.3V)R IN (Except MAX220)........................................................±30V R IN (MAX220).....................................................................±25V T OUT (Except MAX220) (Note 1).......................................±15V T OUT (MAX220)...............................................................±13.2V Output VoltagesT OUT ...................................................................................±15V R OUT .........................................................-0.3V to (V CC + 0.3V)Driver/Receiver Output Short Circuited to GND.........Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW20-Pin Plastic DIP (derate 8.00mW/°C above +70°C)..440mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C)...696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW 20-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C).....800mW 18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW Operating Temperature RangesMAX2_ _AC_ _, MAX2_ _C_ _.............................0°C to +70°C MAX2_ _AE_ _, MAX2_ _E_ _..........................-40°C to +85°C MAX2_ _AM_ _, MAX2_ _M_ _.......................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________3Note 3:MAX243 R2OUT is guaranteed to be low when R2IN is ≥0V or is floating.ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)(V= +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, T = T to T ‚ unless otherwise noted.)M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 4_________________________________________________________________________________________________________________________________Typical Operating CharacteristicsMAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243108-1051525OUTPUT VOLTAGE vs. LOAD CURRENT-4-6-8-2642LOAD CURRENT (mA)O U T P U T V O L T A G E (V )1002011104104060AVAILABLE OUTPUT CURRENTvs. DATA RATE65798DATA RATE (kbits/sec)O U T P U T C U R R E N T (m A )203050+10V-10VMAX222/MAX242ON-TIME EXITING SHUTDOWN+5V +5V 0V0V 500µs/div V +, V - V O L T A G E (V )MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________5V CC ...........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................+0.3V to -14V Input VoltagesT IN ............................................................-0.3V to (V CC + 0.3V)R IN ......................................................................................±30V Output VoltagesT OUT ...................................................(V+ + 0.3V) to (V- - 0.3V)R OUT .........................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T OUT ......................................Continuous Continuous Power Dissipation (T A = +70°C)14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)....800mW 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C)..........1.07W24-Pin Plastic DIP (derate 9.09mW/°C above +70°C)......500mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).........762mW20-Pin Wide SO (derate 10 00mW/°C above +70°C).......800mW 24-Pin Wide SO (derate 11.76mW/°C above +70°C).......941mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W 44-Pin Plastic FP (derate 11.11mW/°C above +70°C).....889mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C)..........727mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C)........800mW 20-Pin CERDIP (derate 11.11mW/°C above +70°C)........889mW 24-Pin Narrow CERDIP(derate 12.50mW/°C above +70°C)..............1W24-Pin Sidebraze (derate 20.0mW/°C above +70°C)..........1.6W 28-Pin SSOP (derate 9.52mW/°C above +70°C).............762mW Operating Temperature RangesMAX2 _ _ C _ _......................................................0°C to +70°C MAX2 _ _ E _ _...................................................-40°C to +85°C MAX2 _ _ M _ _ ...............................................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CABSOLUTE MAXIMUM RATINGS—MAX223/MAX230–MAX241ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 6_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (continued)(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________78.56.54.55.5TRANSMITTER OUTPUT VOLTAGE (V OH ) vs. V CC7.08.0V CC (V)V O H (V )5.07.57.46.02500TRANSMITTER OUTPUT VOLTAGE (V OH )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.46.27.27.0LOAD CAPACITANCE (pF)V O H (V )1500100050020006.86.612.04.02500TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE6.05.011.09.010.0LOAD CAPACITANCE (pF)S L E W R A T E (V /µs )1500100050020008.07.0-6.0-9.04.55.5TRANSMITTER OUTPUT VOLTAGE (V OL ) vs. V CC-8.0-8.5-6.5-7.0V CC (V)V O L (V )5.0-7.5-6.0-7.62500TRANSMITTER OUTPUT VOLTAGE (V OL )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES-7.0-7.2-7.4-6.2-6.4LOAD CAPACITANCE (pF)V O L (V )150010005002000-6.6-6.810-105101520253035404550TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CURRENT-2-6-4-886CURRENT (mA)V +, V - (V )420__________________________________________Typical Operating CharacteristicsMAX223/MAX230–MAX241*SHUTDOWN POLARITY IS REVERSED FOR NON MAX241 PARTSV+, V- WHEN EXITING SHUTDOWN(1µF CAPACITORS)MAX220-13SHDN*V-O V+500ms/divM A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 8_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244–MAX249ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1µF; T A = T MIN to T MAX ; unless oth-erwise noted.)Note 4:Input voltage measured with transmitter output in a high-impedance state, shutdown, or V CC = 0V.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V Input VoltagesT IN ‚ ENA , ENB , ENR , ENT , ENRA ,ENRB , ENTA , ENTB ..................................-0.3V to (V CC + 0.3V)R IN .....................................................................................±25V T OUT (Note 3).....................................................................±15V R OUT ........................................................-0.3V to (V CC + 0.3V)Short Circuit (one output at a time)T OUT to GND............................................................Continuous R OUT to GND............................................................ContinuousContinuous Power Dissipation (T A = +70°C)28-Pin Wide SO (derate 12.50mW/°C above +70°C).............1W 40-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...611mW 44-Pin PLCC (derate 13.33mW/°C above +70°C)...........1.07W Operating Temperature RangesMAX225C_ _, MAX24_C_ _ ..................................0°C to +70°C MAX225E_ _, MAX24_E_ _ ...............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering,10sec)..............................+300°CMAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________9Note 5:The 300Ωminimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or V CC =0V is 10M Ωas is implied by the leakage specification.ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249 (continued)(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1µF; T A = T MIN to T MAX ; unless oth-erwise noted.)M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 10________________________________________________________________________________________________________________________________Typical Operating CharacteristicsMAX225/MAX244–MAX24918212345TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE86416LOAD CAPACITANCE (nF)T R A N S M I T T E R S L E W R A T E (V /µs )14121010-105101520253035OUTPUT VOLTAGEvs. LOAD CURRENT FOR V+ AND V--2-4-6-88LOAD CURRENT (mA)O U T P U T V O L T A G E (V )64209.05.012345TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.05.58.5LOAD CAPACITANCE (nF)V +, V (V )8.07.57.06.5MAX220–MAX249Drivers/Receivers______________________________________________________________________________________11Figure 1. Transmitter Propagation-Delay Timing Figure 2. Receiver Propagation-Delay TimingFigure 3. Receiver-Output Enable and Disable Timing Figure 4. Transmitter-Output Disable TimingM A X 220–M A X 249Drivers/Receivers 12______________________________________________________________________________________ENT ENR OPERATION STATUS TRANSMITTERSRECEIVERS00Normal Operation All Active All Active 01Normal Operation All Active All 3-State10Shutdown All 3-State All Low-Power Receive Mode 11ShutdownAll 3-StateAll 3-StateTable 1a. MAX245 Control Pin ConfigurationsENT ENR OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All Active RA1–RA4 3-State,RA5 Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll 3-StateAll Low-Power Receive Mode All Low-Power Receive Mode 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RB5 Low-Power Receive ModeTable 1b. MAX245 Control Pin ConfigurationsTable 1c. MAX246 Control Pin ConfigurationsENA ENB OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All 3-State All Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll ActiveRA1–RA4 3-State,RA5 Active All Active 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RA5 Low-Power Receive ModeMAX220–MAX249Drivers/Receivers______________________________________________________________________________________13Table 1d. MAX247/MAX248/MAX249 Control Pin ConfigurationsM A X 220–M A X 249_______________Detailed DescriptionThe MAX220–MAX249 contain four sections: dual charge-pump DC-DC voltage converters, RS-232 dri-vers, RS-232 receivers, and receiver and transmitter enable control inputs.Dual Charge-Pump Voltage ConverterThe MAX220–MAX249 have two internal charge-pumps that convert +5V to ±10V (unloaded) for RS-232 driver operation. The first converter uses capacitor C1 to dou-ble the +5V input to +10V on C3 at the V+ output. The second converter uses capacitor C2 to invert +10V to -10V on C4 at the V- output.A small amount of power may be drawn from the +10V (V+) and -10V (V-) outputs to power external circuitry (see the Typical Operating Characteristics section),except on the MAX225 and MAX245–MAX247, where these pins are not available. V+ and V- are not regulated,so the output voltage drops with increasing load current.Do not load V+ and V- to a point that violates the mini-mum ±5V EIA/TIA-232E driver output voltage when sourcing current from V+ and V- to external circuitry. When using the shutdown feature in the MAX222,MAX225, MAX230, MAX235, MAX236, MAX240,MAX241, and MAX245–MAX249, avoid using V+ and V-to power external circuitry. When these parts are shut down, V- falls to 0V, and V+ falls to +5V. For applica-tions where a +10V external supply is applied to the V+pin (instead of using the internal charge pump to gen-erate +10V), the C1 capacitor must not be installed and the SHDN pin must be tied to V CC . This is because V+is internally connected to V CC in shutdown mode.RS-232 DriversThe typical driver output voltage swing is ±8V when loaded with a nominal 5k ΩRS-232 receiver and V CC =+5V. Output swing is guaranteed to meet the EIA/TIA-232E and V.28 specification, which calls for ±5V mini-mum driver output levels under worst-case conditions.These include a minimum 3k Ωload, V CC = +4.5V, and maximum operating temperature. Unloaded driver out-put voltage ranges from (V+ -1.3V) to (V- +0.5V). Input thresholds are both TTL and CMOS compatible.The inputs of unused drivers can be left unconnected since 400k Ωinput pull-up resistors to V CC are built in (except for the MAX220). The pull-up resistors force the outputs of unused drivers low because all drivers invert.The internal input pull-up resistors typically source 12µA,except in shutdown mode where the pull-ups are dis-abled. Driver outputs turn off and enter a high-imped-ance state—where leakage current is typically microamperes (maximum 25µA)—when in shutdownmode, in three-state mode, or when device power is removed. Outputs can be driven to ±15V. The power-supply current typically drops to 8µA in shutdown mode.The MAX220 does not have pull-up resistors to force the ouputs of the unused drivers low. Connect unused inputs to GND or V CC .The MAX239 has a receiver three-state control line, and the MAX223, MAX225, MAX235, MAX236, MAX240,and MAX241 have both a receiver three-state control line and a low-power shutdown control. Table 2 shows the effects of the shutdown control and receiver three-state control on the receiver outputs.The receiver TTL/CMOS outputs are in a high-imped-ance, three-state mode whenever the three-state enable line is high (for the MAX225/MAX235/MAX236/MAX239–MAX241), and are also high-impedance whenever the shutdown control line is high.When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than 1µA with the driver output pulled to ground. The driver output leakage remains less than 1µA, even if the transmitter output is backdriven between 0V and (V CC + 6V). Below -0.5V, the transmitter is diode clamped to ground with 1k Ωseries impedance. The transmitter is also zener clamped to approximately V CC + 6V, with a series impedance of 1k Ω.The driver output slew rate is limited to less than 30V/µs as required by the EIA/TIA-232E and V.28 specifica-tions. Typical slew rates are 24V/µs unloaded and 10V/µs loaded with 3Ωand 2500pF.RS-232 ReceiversEIA/TIA-232E and V.28 specifications define a voltage level greater than 3V as a logic 0, so all receivers invert.Input thresholds are set at 0.8V and 2.4V, so receivers respond to TTL level inputs as well as EIA/TIA-232E and V.28 levels.The receiver inputs withstand an input overvoltage up to ±25V and provide input terminating resistors withDrivers/Receivers 14Table 2. Three-State Control of ReceiversMAX220–MAX249Drivers/Receivers______________________________________________________________________________________15nominal 5k Ωvalues. The receivers implement Type 1interpretation of the fault conditions of V.28 and EIA/TIA-232E.The receiver input hysteresis is typically 0.5V with a guaranteed minimum of 0.2V. This produces clear out-put transitions with slow-moving input signals, even with moderate amounts of noise and ringing. The receiver propagation delay is typically 600ns and is independent of input swing direction.Low-Power Receive ModeThe low-power receive-mode feature of the MAX223,MAX242, and MAX245–MAX249 puts the IC into shut-down mode but still allows it to receive information. This is important for applications where systems are periodi-cally awakened to look for activity. Using low-power receive mode, the system can still receive a signal that will activate it on command and prepare it for communi-cation at faster data rates. This operation conserves system power.Negative Threshold—MAX243The MAX243 is pin compatible with the MAX232A, differ-ing only in that RS-232 cable fault protection is removed on one of the two receiver inputs. This means that control lines such as CTS and RTS can either be driven or left floating without interrupting communication. Different cables are not needed to interface with different pieces of equipment.The input threshold of the receiver without cable fault protection is -0.8V rather than +1.4V. Its output goes positive only if the input is connected to a control line that is actively driven negative. If not driven, it defaults to the 0 or “OK to send” state. Normally‚ the MAX243’s other receiver (+1.4V threshold) is used for the data line (TD or RD)‚ while the negative threshold receiver is con-nected to the control line (DTR‚ DTS‚ CTS‚ RTS, etc.). Other members of the RS-232 family implement the optional cable fault protection as specified by EIA/TIA-232E specifications. This means a receiver output goes high whenever its input is driven negative‚ left floating‚or shorted to ground. The high output tells the serial communications IC to stop sending data. To avoid this‚the control lines must either be driven or connected with jumpers to an appropriate positive voltage level.Shutdown—MAX222–MAX242On the MAX222‚ MAX235‚ MAX236‚ MAX240‚ and MAX241‚ all receivers are disabled during shutdown.On the MAX223 and MAX242‚ two receivers continue to operate in a reduced power mode when the chip is in shutdown. Under these conditions‚ the propagation delay increases to about 2.5µs for a high-to-low input transition. When in shutdown, the receiver acts as a CMOS inverter with no hysteresis. The MAX223 and MAX242 also have a receiver output enable input (EN for the MAX242 and EN for the MAX223) that allows receiver output control independent of SHDN (SHDN for MAX241). With all other devices‚ SHDN (SH DN for MAX241) also disables the receiver outputs.The MAX225 provides five transmitters and five receivers‚ while the MAX245 provides ten receivers and eight transmitters. Both devices have separate receiver and transmitter-enable controls. The charge pumps turn off and the devices shut down when a logic high is applied to the ENT input. In this state, the supply cur-rent drops to less than 25µA and the receivers continue to operate in a low-power receive mode. Driver outputs enter a high-impedance state (three-state mode). On the MAX225‚ all five receivers are controlled by the ENR input. On the MAX245‚ eight of the receiver out-puts are controlled by the ENR input‚ while the remain-ing two receivers (RA5 and RB5) are always active.RA1–RA4 and RB1–RB4 are put in a three-state mode when ENR is a logic high.Receiver and Transmitter EnableControl InputsThe MAX225 and MAX245–MAX249 feature transmitter and receiver enable controls.The receivers have three modes of operation: full-speed receive (normal active)‚ three-state (disabled)‚ and low-power receive (enabled receivers continue to function at lower data rates). The receiver enable inputs control the full-speed receive and three-state modes. The transmitters have two modes of operation: full-speed transmit (normal active) and three-state (disabled). The transmitter enable inputs also control the shutdown mode. The device enters shutdown mode when all transmitters are disabled. Enabled receivers function in the low-power receive mode when in shutdown.M A X 220–M A X 249Tables 1a–1d define the control states. The MAX244has no control pins and is not included in these tables. The MAX246 has ten receivers and eight drivers with two control pins, each controlling one side of the device. A logic high at the A-side control input (ENA )causes the four A-side receivers and drivers to go into a three-state mode. Similarly, the B-side control input (ENB ) causes the four B-side drivers and receivers to go into a three-state mode. As in the MAX245, one A-side and one B-side receiver (RA5 and RB5) remain active at all times. The entire device is put into shut-down mode when both the A and B sides are disabled (ENA = ENB = +5V).The MAX247 provides nine receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs each control four drivers. The ninth receiver (RB5) is always active.The device enters shutdown mode with a logic high on both ENTA and ENTB .The MAX248 provides eight receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs control four drivers each. This part does not have an always-active receiver. The device enters shutdown mode and trans-mitters go into a three-state mode with a logic high on both ENTA and ENTB .The MAX249 provides ten receivers and six drivers with four control pins. The ENRA and ENRB receiver enable inputs each control five receiver outputs. The ENTA and ENTB transmitter enable inputs control three dri-vers each. There is no always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB . In shutdown mode, active receivers operate in a low-power receive mode at data rates up to 20kbits/sec.__________Applications InformationFigures 5 through 25 show pin configurations and typi-cal operating circuits. In applications that are sensitive to power-supply noise, V CC should be decoupled to ground with a capacitor of the same value as C1 and C2 connected as close as possible to the device.Drivers/Receivers16______________________________________________________________________________________。
常见集成运放型号大全LF351 BI-FET单运算放大器NSLF353 BI-FET双运算放大器NSLF356 BI-FET单运算放大器NSLF357 BI-FET单运算放大器NSCA3130高输入阻抗运算放大器IntersilCA3140 高输入阻抗运算放大器CD4573 四可编程运算放大器MC14573ICL7650斩波稳零放大器LF347(NS[DATA]) 带宽四运算放大器KA347LF398 采样保持放大器NS[DATA]LF411 BI-FET单运算放大器NS[DATA]LF412 BI-FET双运放大器NS[DATA]LM318 高速运算放大器NS[DATA]LM324四运算放大器NS[DATA]HA17324,/LM324(TI)LM348四运算放大器NLM358NS[DATA] 通用型双运算放大器HA17358/LM358P(TI)LM380 音频功率放大器NS[DATA]LM386-1 NS[DATA] 音频放大器NJM386D,UTC386LM386-3 音频放大器NS[DATA]LM386-4 音频放大器NS[DATA]LM3886 音频大功率放大器NS[DATA]LM3900 四运算放大器LM124 低功耗四运算放大器(军用档) NS[DATA]/TI[DATA]LM1458 双运算放大器NS[DATA]LM148 四运算放大器NS[DATA]LM224J 低功耗四运算放大器(工业档) NS[DATA]/TI[DATA]LM2902 四运算放大器NS[DATA]/TI[DATA]LM2904 双运放大器NS[DATA]/TI[DATA]LM301 运算放大器NS[DATA]LM308 运算放大器NS[DATA]LM308H 运算放大器(金属封装)NS[DATA]LM725 高精度运算放大器NS[DATA]LM733 带宽运算放大器LM741 NS[DATA] 通用型运算放大器HA17741TBA820M 小功率音频放大器ST[DATA]TL061 BI-FET单运算放大器TI[DATA]TL062 BI-FET双运算放大器TI[DATA]TL064 BI-FET四运算放大器TI[DATA]TL072 BI-FET双运算放大器TI[DATA]TL074 BI-FET四运算放大器TI[DATA]TL081 BI-FET单运算放大器TI[DATA]TL082 BI-FET双运算放大器TI[DATA]TL084 BI-FET四运算放大器TI[DATA]MC34119 小功率音频放大器NE592 视频放大器OP07-CP精密运算放大器TI[DATA]OP07-DP 精密运算放大器TI[NE5532 高速低噪声双运算放大器TI 双运放NE5534 高速低噪声单运算放大器TI 单运放OPA602 高速高精度运放(无OPA2602)OPA604单OPA2604双低噪声运放OPA132单OPA2132双OPA4132四高速低噪运放OPA227 OPA2227 OPA4227 OPA228 OPA2228 OPA4228 高精度低噪声运放AD844:60MHz、2000V/us单芯片运算放大器高带宽、非常快速的大信号响应特性常用的压控放大器:AD603 VCA810 VCA820AD603:低噪声电压控制增益运放90MHz带宽VCA810:35MHz高增益可调节范围宽带压控放大器25mV/dB(-40dB~40dB)VCA820:150MHz增益可调运放(-20~+20dB)已经申得的样片:TLV5616- 12 位3us DAC 串行输入可编程设置时间/功耗,电压O/P 范围= 2x 基准电压TLV5616CDTLC2543- 12 位66kSPS ADC 串行输出,可编程MSB/LSB 优先,可编程断电/输出数据长度,11 通道TLC2543CDBOPA690- 具有禁用功能的宽带电压反馈运算放大器OPA690IDVCA810- 高增益可调节范围宽带压控放大器VCA810IDOPA2604- 双路FET 输入、低失真运算放大器OPA2604APTLC2543 - 12 位66kSPS ADC 串行输出,可编程MSB/LSB 优先,可编程断电/输出数据长度,11 通道TLC2543CNTLV5616 - 12 位3us DAC 串行输入可编程设置时间/功耗,电压O/P 范围= 2x 基准电压TLV5616CPVCA810 - 高增益可调节范围宽带压控放大器VCA810IDTLV5638 - 12 位、1 或3.5us DAC,具有串行输入、双路DAC、可编程内部参考和稳定时间、功耗TLV5638CDAD526精确程控放大器ADI公司,AD603,低噪声、90 MHz可变增益放大器.,ADI公司,AD605双通道、低噪声、单电源可变增益放大器,ADI公司,AD620低漂移、低功耗仪表放大器,增益设置范围1~10000 ADI公司, AD783,采样保持电路,ADI公司,AD811高性能视频运算放大器(电流反馈型宽带运放),ADI公司,AD818高速低噪声电压反馈型运放,ADI公司,AD8011 300 MHz、1 mA 电流反馈放大器,ADI公司,AD8056双路、低成本、300 MHz电压反馈型放大器ADI公司,AD8564,四路7 ns单电源高速比较器,ADI公司,AC524/AC525 5~500 MHz级联放大器,teledyne 公司,BUF634,250mA高速缓冲器,TI公司,/cnCA3140单运算直流放大器,Intersil Corporation,HFA1100 850MHz、低失真电流反馈放大器,Intersil Corporation,INA118精密低功耗仪表放大器,TI公司,/cnLF356 JFET输入运算放大器,National Semiconductor Corpora,LM311具有选通信号的差动比较器,National Semiconductor Corpora, LF356,JFET输入运算放大器,National Semiconductor Corpora,LM393电压比较器,National Semiconductor Corpora,LM7171高速电压反馈运算放大器,National Semiconductor Corpora, LM358/LM158/LM258/LM2904双运算放大器,National Semiconductor Corpora,LM2902,LM324/LM324A,LM224/ LM224A四运算放大器,National Semiconductor Corpora,LT1210 1.1A,35MHz电流反馈放大器,linear公司,/product/LT12 MAX4256,UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器,Maxim公司,MAX912, MAX913单/双路、超高速、低功耗、精密的TTL比较器,Maxim公司,MAX477 ,300MHz、高速运算放大器,Maxim公司,MAX427/ MAX437低噪声、高精度运算放大器,Maxim公司MAX900高速、低功耗、电压比较器,Maxim公司NE5532双路低噪声高速音频运算放大器,TI公司,/cnNE5534低噪声高速音频运算放大器,TI公司,/cnOP27低噪声、精密运算放大器ADI公司,OP37低噪声、精密运算放大器ADI公司,OPA637,精密、高速、低漂移、高增益放大器,TI公司,/cn OPA637,精密、高速、低漂移高增益放大器,TI公司,/cn OPA642高速低噪声电压反馈型运放,TI公司,/cnOPA690,宽带50MHz、电压反馈运算放大器,TI公司,/cnOPA690 高速、电压反馈型运放(大于等于50MHz),TI公司,/cn PGA202KP,数字可编程仪表放大器,TI公司,/cnTHS3091单路高压低失真电流反馈运算放大器,TI公司,/cnTHS3092高压低失真电流反馈运算放大器,TI公司,/cnTL084,JFET 输入运算放大器,TI公司,/cnµA741标准线性放大器,TI公司,/cn。
MAX262 原理说明2011-04-30 13:56:48| 分类:默认分类| 标签:|字号大中小订阅2 多频段切比雪夫型带通滤波器2.1 MAX262简介MAX262作为MAXIM公司推出的双二阶通用开关电容有源滤波器,其中心频率范围为1.0 Hz ~140 kHz,输入时钟最大为4 MHz,可以通过微处理器精确控制滤波器的传递函数,利用对中心频率和品质因数的编程设置,实现64级中心频率、128级品质因数的智能控制,并且可以通过附带的滤波器设计软件,任意改善滤波特性。
其工作原理图如图2所示。
与此同时,硬件电路采用CMOS工艺制造完成,无需外部元件即可构成各种带通、低通、高通、陷波及全通滤波器。
MAX262内部有2个二阶滤波器A和B,它们可以单独使用,也可级联成四阶滤波器使用。
每个滤波器组件都有其各自的输入时钟fCLK、独立的中心频率fO和品质因数Q。
实际滤波器的中心频率fO 由滤波器的输入时钟频率fCLK、6位中心频率控制字(F0~F5)和工作方式(M0,M1)三者共同确定。
每个组件的品质因数Q是由7位控制字(Q0~Q6)独立设置的。
外部时钟分别从引脚CLKA、CLKB引入,对外部时钟无占空比要求。
但需要注意的是,在MAX262滤波器的内部,其采样速率是输入(CLKA或CLKB)的一半。
2.2 在8通道声发射监测仪中的应用2.2.1 硬件设计在声发射监测仪的信号采集模块中,通过单片机C8051F020改变MAX262的控制字和工作方式来实现不同截止频率之间的切换。
滤波模块的硬件电路如图3所示。
MAX262内部的两个二阶滤波器是完全独立的,利用MAX262内部的滤波器A实现低通滤波,滤波器B实现高通滤波,再将两个滤波器级联起来,以实现满足系统设计要求的四阶切比雪夫型带通滤波器。
由于低通三档和高通三档所要求的截止频率都是低频且间隔宽,所以针对不同的截止频率和工作模式,在不超过MAX262的比率的范围情况下,必须提供多种不同的时钟频率。
Package Information
MAX263/MAX264/MAX267/MAX268Pin Programmable Universal and Bandwidth Filters (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to /packages.)
M A X 263/M A X 264/M A X 267/M A X 268
Pin Programmable
Universal and Bandwidth Filters 24______________________________________________________________________________________
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)
Package Information (continued)
MAX263/MAX264/MAX267/MAX268Pin Programmable Universal and Bandwidth Filters (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to /packages.)
M A X 263/M A X 264/M A X 267/M A X 268
Pin Programmable
Universal and Bandwidth Filters 26______________________________________________________________________________________
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)
MAX263/MAX264/MAX267/MAX268
Pin Programmable
Universal and Bandwidth Filters
______________________________________________________________________________________27
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages
.)
M A X 263/M A X 264/M A X 267/M A X 268
Pin Programmable
Universal and Bandwidth Filters Maxim cannot assum e responsibility for use of any circuitry other than circuitry entirely em bodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
28____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2008 Maxim Integrated Products
is a registered trademark of Maxim Integrated Products, Inc.。