人教版__初一数学知识点下册总结
- 格式:doc
- 大小:111.00 KB
- 文档页数:8
人教版初一下册数学知识点总结大全单元1:有理数- 有理数的定义- 正数和负数的概念- 有理数的比较- 有理数的加法和减法- 有理数的乘法和除法单元2:代数式与代数运算- 代数式的定义和性质- 代数式的加法和减法- 代数式的乘法和除法- 代数式的整理和简化- 代数式的值和未知数的取值范围单元3:图形的初步认识- 点、线、线段和射线的定义- 图形的分类与特征- 角的概念和分类- 直角、钝角和锐角的判断- 平行线和垂直线的判定单元4:图形的运动与变换- 平移、旋转和翻转的概念- 平移、旋转和翻转的性质- 任意图形的平移、旋转和翻转- 对称图形的性质和判定- 图形的变相和图形的坐标表示单元5:数据统计与概率- 数据的收集和整理- 数据的绘制和分析- 数据的比较和推断- 概率的概念和计算- 实际问题中的概率应用单元6:一次函数- 一次函数的定义和性质- 一次函数的图像和特征- 一次函数的斜率和截距- 一次函数的表达和应用- 一次函数在实际问题中的应用单元7:平方根与立方根- 平方根的定义和性质- 平方根的计算和应用- 立方根的定义和性质- 立方根的计算和应用- 平方根和立方根在实际问题中的应用单元8:线性方程- 线性方程的定义和性质- 一元一次方程的基本解法- 一元一次方程的实际应用- 二元一次方程的解法和应用- 二元一次方程组的解法和应用单元9:数字运算- 整数的四则运算和简便运算规则- 分数的表示和运算- 百分数的概念和计算- 千分数和万分数的计算- 数字运算在实际问题中的应用以上是人教版初一下册数学的主要知识点总结。
希望对你有帮助!。
2024年人教版初一数学下册知识点复习总结备战中一、整数及其运算1.整数的概念和整数的表示方法2.整数的比较与排序3.整数的加法、减法、乘法、除法及其规则4.数轴和绝对值5.加法逆元和减法逆元6.整数的乘方运算二、分数1.分数的概念和分数的表示方法2.分数化简3.分数的加法、减法、乘法、除法及其规则4.整数与分数的互化三、小数1.小数的概念和小数的表示方法2.有限小数和无限循环小数3.小数的加法、减法、乘法、除法及其规则4.小数与分数的互化四、图形的认识1.平面图形、立体图形和简单曲线的定义2.平行线和垂直线3.多边形的概念及常见的多边形4.圆的概念、半径、直径、圆心和弧长的关系6.矩形、正方形、长方形和平行四边形的特点7.正三角形、等边三角形和等腰三角形的特点8.直角三角形、钝角三角形和锐角三角形的特点五、图形的变换1.平移、旋转和对称的基本概念2.平移的性质和判断条件3.旋转的中心和角度4.对称的基本性质和判断条件六、数据统计1.调查和统计的基本概念2.调查数据的整理和表示方法3.频数、频率和相对频率的概念4.折线图的绘制和解读5.条形图的绘制和解读6.统计图的选择和使用七、方程和不等式1.方程和方程解的概念2.解方程的基本方法3.解方程的检验和方程求解的误差估计4.等式的性质和运算性质5.不等式的含义和表示方法6.不等式的解和不等式的解集表示法八、函数与方程2.函数的自变量和函数值的关系3.线性函数、反比例函数和正比例函数的特点和性质4.解一元一次方程和一元一次不等式九、比例与相似1.比例的概念和比例的表示方法2.比例的性质和四边形的比例关系3.相似的概念和相似的表示方法4.相似三角形的性质和应用5.比例尺和地图的测量十、平方根与实数1.平方根的概念和计算方法2.平方根的性质和应用3.实数的概念和实数的分类4.有理数和无理数的性质及其关系以上是人教版初一数学下册的知识点总结,复习备战时,可以按照此知识点的顺序进行有针对性的复习。
一、有理数1.有理数的定义和性质;2.整数的加、减、乘、除运算;3.有理数的加、减、乘、除运算;4.有理数的比较大小;5.有理数的绝对值;6.有理数的相反数;7.有理数的乘方运算;8.有理数的乘方与开方运算。
二、平面图形的认识1.几何图形的基本概念;2.三角形的分类与特性;3.平行四边形的性质;4.矩形、正方形、菱形、长方形的性质;5.正多边形的性质;6.直角三角形的性质;7.中位线的性质;8.三角形面积的计算。
三、勾股定理与三角形1.勾股定理的直角三角形判定;2.特殊直角三角形的性质;3.两线相交的性质;4.逆条件的判定;5.根据条件求解实际问题。
四、相似形1.相似三角形的判定;2.相似三角形的性质;3.相似三角形的相似比例与证明;4.根据相似比例求解实际问题;5.相似三角形与勾股定理的关系;6.相似三角形与线段的比例关系。
五、线性方程与线性方程组1.一元一次方程的定义和解;2.一元一次方程的判断与图象;3.一元一次方程解的性质;4.解一元一次方程的步骤及方法;5.列方程解实际问题;6.两个变量的一元一次方程组的解;7.解一元一次方程组的步骤及方法;8.一元一次方程组解实际问题。
六、数据的分析与概率1.列频数标表和频数直方图;2.列频率分布直方图和频率分布折线图;3.数据的整理与统计;4.众数、中位数与平均数的计算;5.数据的误差分析;6.概率的基本概念与计算;7.事件的排列与组合。
以上是《新人教版七年级下册数学知识点整理(1)》,总计1200字以上。
人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。
2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。
3. 掌握角的度量单位:度和弧度。
4. 学习如何用直尺和量角器画角。
第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。
2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。
3. 掌握平面的概念,理解平面的性质和表示方法。
4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。
第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。
2. 掌握三角形内角的和定理和外角的性质。
3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。
4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。
第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。
2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。
3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。
4. 理解梯形的定义和性质,学会计算梯形的面积和周长。
第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。
2. 学习如何用折纸法进行图形变化。
3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。
4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。
第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。
2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。
3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。
4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。
第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。
2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
人教版初一数学单元知识点初一下册数学知识点总结1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。
这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、全等图形:两个能够重合的图形称为全等图形。
18、变量:变化的数量,就叫变量。
19、自变量:在变化的量中主动发生变化的,变叫自变量。
20、因变量:随着自变量变化而被动发生变化的量,叫因变量。
21、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
22、对称轴:轴对称图形中对折的直线叫做对称轴。
初一下册数学知识点整理一、同底数幂的乘法(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;b)指数是1时,不要误以为没有指数;c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;二、幂的乘方与积的乘方三、同底数幂的除法(1)运用法则的前提是底数相同,只有底数相同,才能用此法则(2)底数可以是具体的数,也可以是单项式或多项式(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负四、整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
人教版七年级下册数学知识点总结
1. 整数与运算
- 整数的概念及表示方法(正整数、负整数、零)
- 整数加法与减法
- 整数的乘法与除法
- 整数的运算性质(结合律、交换律、分配律)
2. 分数与运算
- 分数的概念及表示方法(分子、分母)
- 分数的加法与减法
- 分数的乘法与除法
- 分数与整数的相互转化
3. 实数
- 实数的概念与分类(有理数、无理数)
- 实数的大小比较
- 实数的运算性质
4. 一次函数与一元一次方程
- 一次函数的概念与表示方法
- 一次函数的图像与性质
- 一元一次方程的概念与解法(解方程的基本步骤)
- 一元一次方程的应用
5. 几何图形
- 基本几何图形的概念与性质(点、线、面)
- 直线与线段的表示与性质
- 角的概念与性质
- 三角形的分类与性质
- 矩形、正方形、平行四边形的性质
6. 数据统计与概率
- 数据统计的基本概念(调查、统计、表示)
- 统计图表的制作与解读
- 概率的基本概念与计算
以上是人教版七年级下册数学知识点的简要总结。
对于每个知识点,建议学生们根据教材中的详细内容进行系统地学习和掌握,以便在数学学习中得到更好的成绩。
2024年人教版初一数学下册知识点复习总结备战中一:线的表示与类型①直线:通常用一个小写字母,如直线l,或者用两个大写字母表示,这两个字母代表直线上的任意两点,如直线AB。
②射线:作为直线的一部分,射线由一个小写字母表示,如射线l;或者用两个大写字母表示,其中第一个字母表示端点,如射线OA。
需注意,当使用两个字母表示时,表示端点的字母应置于前。
③线段:线段也是直线的一部分,可由一个小写字母表示,如线段a;或者用两个表示端点的大写字母表示,如线段AB(或线段BA)。
在使用字母表示时,端点的字母应置于前面。
二:点与直线的位置关系①若点位于直线上,表明该点属于直线。
②若点不位于直线上,说明该点位于直线外部。
三:两点间的距离①两点间的距离定义为连接这两点的线段的长度。
②在平面几何中,任意两点间都存在一定的距离,它特指连接两点的线段的长度。
在学习此概念时,应强调“长度”一词,即它是一个数量,具有大小,与线段本身相区别,线段是几何图形,而线段的长度才是两点间的距离。
可以画出线段,但不能说“画出距离”。
四:正方体①处理此类问题,通常的方法是通过折叠纸张以模拟三维形状,或者基于对展开图的理解直接进行推理。
②从实际物体出发,结合具体问题,辨析几何体的展开图,通过将立体图形与平面图形之间的转换,建立空间观念,这是解决这类问题的关键。
③正方体的展开图有多种情况,需要分析平面展开图的各种可能性,然后确定哪两个面是相对的。
五:一元一次方程的解定义:一元一次方程的解是指使方程左右两边相等的未知数的值。
将方程的解代入原方程,等式的左右两边保持相等。
13、解一元一次方程1. 解一元一次方程的一般步骤包括去分母、去括号、移项、合并同类项、将系数化为1。
____=b。
2. 解一元一次方程时,应先观察方程的结构。
若有分母,通常先去分母;若方程既有分母又有括号,且括号外的项乘以括号内各项后能消除分母,就先去括号。
3. 对于形如a____+b=cz+d的方程,可以将方程左边通过合并同类项简化为一项(a____+b)=cz+d。
七年级数学下册知识点归纳第五章相交线与平行线5.1 相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
6、垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB垂直于直线CD,垂足为O”,则记为AB⊥ CD。
7、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a⊥b时,= = = = 90°。
反之,。
三、同位角、错角、同旁角两条直线被第三条直线所截形成8个角。
(3线8角)1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.错角:(在两条直线部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫错角。
如:∠3和∠5。
3.同旁角:(在两条直线部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁角。
人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。
如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
人教版初一数学下册知识点人教版初一数学下册知识点概述一、实数1. 有理数和无理数的概念2. 实数的比较大小3. 绝对值的概念及性质4. 实数的四则运算规则5. 根号的计算方法6. 二次根式的概念及性质二、代数1. 字母表示数的意义2. 单项式与多项式的定义3. 多项式的加减运算4. 多项式的乘法运算5. 多项式的因式分解6. 代数式的简化三、方程与不等式1. 一元一次方程的解法2. 二元一次方程组的解法3. 不等式的概念及性质4. 一元一次不等式的解法5. 一元一次不等式的解集表示6. 含有绝对值的不等式解法四、几何1. 平行线的性质2. 平行线的判定3. 三角形的基本概念4. 三角形的分类5. 三角形的内角和外角性质6. 特殊三角形(等腰三角形、等边三角形)的性质7. 全等三角形的判定8. 角平分线、线段的垂直平分线的性质9. 多边形的基本概念10. 多边形的内角和外角性质五、统计与概率1. 统计的基本概念2. 数据的收集和整理3. 频数和频率的计算4. 概率的基本概念5. 简单事件的概率计算6. 等可能事件的概率计算六、函数1. 函数的概念2. 函数的表示方法3. 线性函数的图像和性质4. 函数的基本运算七、应用题1. 实际问题的数学建模2. 利用方程(组)解决实际问题3. 利用不等式解决最优化问题4. 利用几何知识解决实际问题请注意,以上内容是根据人教版初一数学下册的常见教学大纲和章节安排进行的概括。
具体的教学内容可能会根据不同学校、教师的教学计划和学生的学习进度有所调整。
教师和学生应根据实际情况,对知识点进行适当的扩展和深化。
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补。
•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
对顶角相等。
•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。
2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。
•平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
•平行线的性质:o两直线平行,同位角相等。
o两直线平行,内错角相等。
o两直线平行,同旁内角互补。
•平行线的判定:o同位角相等,两直线平行。
o内错角相等,两直线平行。
o同旁内角互补,两直线平行。
3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移不改变物体的形状和大小。
•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
连接各组对应点的线段平行且相等。
二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。
三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
人教版数学七年级下册知识点人教版数学七年级下册知识点概述一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数- 无理数:不能表示为分数形式的实数,如√2、π2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的计算3. 科学记数法- 表示非常大或非常小的数4. 实数的性质- 相反数、绝对值- 有理数和无理数的性质二、代数表达式1. 单项式- 单项式的概念- 同类项2. 多项式- 多项式的概念- 多项式的加减法- 多项式乘以单项式 - 多项式乘以多项式3. 代数式的简化- 合并同类项- 分配律- 因子提取三、方程与不等式1. 一元一次方程- 方程的概念- 解一元一次方程 - 方程的应用2. 一元一次不等式- 不等式的概念- 解一元一次不等式 - 不等式的应用3. 二元一次方程组- 代入法解方程组 - 消元法解方程组 - 方程组的应用四、几何1. 平面图形- 平行线与垂线- 三角形的性质- 四边形的性质2. 圆的基本性质- 圆的定义- 弦、弧、切线- 圆周角、圆心角3. 面积和体积的计算- 三角形、四边形的面积- 圆的面积- 长方体、立方体的体积五、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读2. 概率- 随机事件- 概率的初步认识- 简单事件的概率计算六、综合应用题- 结合所学知识点解决实际问题- 培养逻辑思维和解题能力请注意,以上内容是根据人教版数学七年级下册的教材大纲整理的知识点概述,具体的教学内容和顺序可能会根据不同学校和教师的教学计划有所调整。
初一下数学所有知识点归纳总结初中数学作为学生学习的一门基础学科,涵盖了较广泛的知识点。
下面将对初一下学期数学的所有知识点进行归纳总结。
一、数与计算1. 自然数的概念及性质2. 整数的概念及性质,包括正整数、负整数、零3. 分数与小数的介绍和转换4. 数的加法、减法、乘法、除法的计算规则5. 简便计算方法,如整数的乘法口诀、计算乘积相同时的加减法等6. 分数的加减法、乘法、除法的计算7. 小数的加减法、乘法、除法的计算8. 百分数的介绍和运算9. 精确到小数点后一位和两位的计算二、倍数与公约数1. 倍数的概念和判断方法2. 公约数的概念和判断方法3. 求两个数的最大公约数及最小公倍数4. 奇数与偶数的性质和判断方法三、代数式与方程式1. 代数式的概念及基本运算2. 方程的概念及解方程的基本方法3. 一元一次方程的解法4. 二元一次方程组的解法四、图形的性质与计算1. 平面图形的分类和性质,如长方形、正方形、三角形等2. 长方形和正方形的性质和计算3. 直角三角形的性质和计算,如勾股定理的运用4. 圆的概念、性质和计算5. 角度的概念和计算6. 一次函数的图像、性质和计算五、统计与概率1. 数据的搜集和整理2. 各种频数的计算3. 两个数据集的对比和分析4. 概率的基本概念和计算六、应用题与解决问题的方法1. 知识点的应用于实际问题的解决2. 选择合适的计算方法解决问题3. 运用数学思维解决实际问题以上是初一下学期数学的所有知识点的归纳总结,希望对同学们的学习有所帮助。
在学习过程中,要注重理论知识的学习,同时也要多进行实际应用题的训练,提高自己的问题解决能力和思维能力。
通过不断的学习和练习,相信大家能够掌握初一下学期数学的知识点,取得优异的成绩。
初一数学(下)应知应会的知识点
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).
4.二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;
(3)注意:判断如何解简单是关键.
※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b >0或ax+b <0 ,(a ≠0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性
质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.
6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;
注意:ab >0
0b a
> ⎩⎨⎧>>0b 0a 或⎩
⎨⎧<<0b 0a ; ab <0
0b a
< ⎩⎨⎧<>0b 0a 或⎩
⎨⎧><0b 0
a ; ab=0 a=0或b=0; ⎩
⎨⎧≤≥m a m
a a=m . 7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.
8.一元一次不等式组的解集的四种类型:设 a >b
9.几个重要的判断:
是正数、y x 0xy 0y x ⇔⎭⎬⎫>>+, 是负数、y x 0xy 0y x ⇔⎭
⎬⎫
><+, 异号且正数绝对值大,、y x 0xy 0y x ⇔⎭⎬⎫<>+ .y x 0xy 0y x 异号且负数绝对值大、⇔⎭
⎬⎫
<<+
整式的乘除
1.同底数幂的乘法:a m ·a n =a m+n ,底数不变,指数相加.
2.幂的乘方与积的乘方:(a m )n =a mn ,底数不变,指数相乘; (ab)n =a n b n ,积的乘方等于各因式乘方的积. 3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里. 4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加. 5.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加. 6.乘法公式:
(1)平方差公式:(a+b)(a-b)= a 2-b 2,两个数的和与这两个数的差的积等于这两个数的平方差; (2)完全平方公式:
① (a+b)2=a 2+2ab+b 2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a 2-2ab+b 2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍; ※ ③ (a+b-c)2=a 2+b 2+c 2+2ab-2ac-2bc ,略. 7.配方:
(1)若二次三项式x 2+px+q 是完全平方式,则有关系式:q 2p 2
=⎪⎭
⎫
⎝⎛;
※ (2)二次三项式ax 2+bx+c 经过配方,总可以变为a(x-h)2+k 的形式,利用a(x-h)2+k ①可以判断ax 2+bx+c 值的符号; ②当x=h 时,可求出ax 2+bx+c 的最大(或最小)值k. ※(3)注意:2x 1x x 1
x 2
22
-⎪⎭⎫ ⎝
⎛
+=+.
8.同底数幂的除法:a m ÷a n =a m-n ,底数不变,指数相减. 9.零指数与负指数公式: (1)a 0=1 (a ≠0); a -n =
n
a
1,(a ≠0). 注意:00,0-2无意义;
(2)有了负指数,可用科学记数法记录小于1的数,例如:=×10-5 .
10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.
11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.
※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式·商式.
13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.
线段、角、相交线与平行线
几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一基本概念:
直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.
二定理:
1.直线公理:过两点有且只有一条直线.
2.线段公理:两点之间线段最短.
3.有关垂线的定理:
(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.
4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
三 公式:
直角=90°,平角=180°,周角=360°,1°=60′,1′=60″. 四 常识:
1.定义有双向性,定理没有.
2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.
3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论.
4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解. 5.数射线、线段、角的个数时,应该按顺序数,或分类数.
6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析. 7.方向角:
(1) (2)
8.比例尺:比例尺1:m 中,1表示图上距离,m 表示实际距离,若图上1厘米,表示实际距离m 厘米. 9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.
北偏西30°
南偏东60°
30°
60°
北
南
东
西
东北
东南
西北西南。