初一数学下册知识点汇总
- 格式:doc
- 大小:93.00 KB
- 文档页数:6
七年级数学下册知识点归纳汇总一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF 的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线及其判定平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。
如果b//a,c//a,那么b//c平行线的判定:1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。
七年级数学下册知识点归纳一、图形的认识1. 点、线、面的定义和特征2. 线段、直线、射线的区别和特征3. 角的定义和特征4. 图形的种类和特点:三角形、四边形、多边形等5. 同种图形的分类和比较二、平面图形的性质研究1. 三角形的内角和外角关系2. 三角形的分类及其性质3. 三角形内切圆和外接圆的应用4. 平行四边形的性质及其判定5. 长方形、正方形、菱形和矩形的性质及其判定三、图形的相似与全等1. 图形相似的概念和判定条件2. 相似三角形的性质及其判定3. 图形全等的概念和应用4. 证明图形全等的方法和步骤四、直角三角形的研究1. 直角三角形的定义和性质2. 勾股定理的应用3. 余弦定理和正弦定理的应用五、多边形的面积和周长1. 一般多边形的周长计算2. 三角形的面积计算和性质3. 四边形的面积计算和性质4. 多边形的面积计算和性质六、圆的研究1. 圆的定义和性质2. 圆的元素:圆心、半径、直径、弧长等的概念和关系3. 圆内角和弧度的关系及其应用4. 弧长、扇形面积和圆的面积计算七、线性方程的解法1. 一元一次方程的解方法2. 解一元一次方程的应用3. 解一元一次方程组的方法和步骤4. 一次函数及其应用八、比例与相似1. 比和比例的概念及其应用2. 相似三角形的比例关系3. 解直角三角形的比例问题4. 解平行四边形的比例问题九、数据的收集和处理1. 数据收集的方法和意义2. 数据的整理和描述3. 数据图形的绘制和解读4. 统计与概率的基本知识十、考试技巧与思维方法1. 解题方法和思维技巧的培养2. 数学解题策略与问题解决能力的提升3. 拓展数学的应用能力和创新思维。
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
初一数学下册基本知识点总结(优秀5篇)新人教版初一下册数学知识点总结归纳篇一平行线与相交线一、互余、互补、对顶角1、相加等于90°的两个角称这两个角互余。
性质:同角(或等角)的余角相等。
2、相加等于180°的两个角称这两个角互补。
性质:同角(或等角)的补角相等。
3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。
对顶角的性质:对顶角相等。
4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。
(相邻且互补)二、三线八角:两直线被第三条直线所截①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。
②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。
③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。
三、平行线的判定①同位角相等②内错角相等两直线平行③同旁内角互补四、平行线的性质①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
五、尺规作图(用圆规和直尺作图)①作一条线段等于已知线段。
②作一个角等于已知角。
生活中的轴对称一、轴对称图形与轴对称①一个图形沿其中一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。
这条直线叫做对称轴。
②两个图形沿其中一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。
这条直线叫做对称轴。
③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形二、角平分线的性质:角平分线上的点到角两边的距离相等。
∵∠1=∠2PB⊥OBPA⊥OA∴PB=PA三、线段垂直平分线:①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。
②性质:线段垂直平分线上的点到线段两个端点的距离相等。
∵OA=OBCD⊥AB∴PA=PB四、等腰三角形性质:(有两条边相等的三角形叫做等腰三角形)①等腰三角形是轴对称图形;(一条对称轴)②等腰三角形底边上中线,底边上的高,顶角的平分线重合;(三线合一)③等腰三角形的两个底角相等。
初一下册数学必考知识点归纳整理一、几何图形概念:从实物中抽象出来的各种图形,分为立体图形和平面图形。
1、立体图形:几何图形的各个部分没有都在同一平面内。
2、平面图形:几何图形的各个部分都在同一平面内。
二、点、线、面、体1、组成几何图形点:线和线相交的地方就是点,是几何图形中最基本的图形。
线:面和面相交的地方就是线,包括直线和曲线。
面:包围着体的就是面,包括平面和曲面。
体:几何体简称为体。
2、点动成线,线动成面,面动成体。
三、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,每个面都是长方形。
正方形是特殊的长方形,正方体是特殊的长方体。
棱柱:上下两个面是棱柱的底面,别的面是侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各个面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面,侧面是曲面,两个底面是半径相等的圆。
圆柱的表面展开图是两个相同的圆形和一个长方形组成。
圆锥:有一个底面和一个侧面,侧面展开图是扇形,底面是圆。
球:由一个面围成的几何体,这个面是曲面。
四、棱柱棱:在棱柱中,任何相邻两个面的交线叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,一共是(n+2)个面,3n条棱,n 条侧棱,2n个顶点。
五、正方体的平面展开图:有11种六、平面截几何体1、用平面去截正方体,截出来的面可能是三角形,四边形,五边形,六边形。
注意:正方体只有六个面,所以截面最多有六条边,截面边数最多的图形是六边形。
长方体、棱柱的截面与正方体的截面有相似的地方。
2、用平面截圆锥,可以截出圆和三角形两种截面。
3、用平面截球体,只能出现圆的截面。
七年级下册数学知识点超全七年级下册数学知识点
七年级下册数学知识点主要涉及到有理数、比例、几何图形等方面的知识,以下是相关知识点介绍。
一、有理数
1.有理数的定义:有理数是整数和分数的集合,用Q表示。
2.有理数的分类:正数、负数、零。
3.有理数的加减法:同号相加减,异号相加减。
4.有理数的乘除法:同号得正,异号得负;除法可以转换成乘法。
5.有理数的绝对值:一个数的绝对值是它与0的距离,用符号| |表示。
二、比例
1.比例及其应用:比例是两个量之间的比值,用a:b或a/b表示。
2.比例的性质:比例中,有理数的乘除法对比例的值没有影响;比例可以转换成分数和百分数等。
3.比例的分配定理:如果a:b=c:d,那么a:c=b:d。
4.比例的合并定理:如果a:b=q:r,b:c=s:t,那么a:c=q:s,
b:d=r:t。
三、几何图形
1.线段和角度度量:线段是由两个端点所确定的一段线段,用AB表示;角度用度来度量,用°表示。
2.三角形及其分类:三角形是由三条线段所围成的图形,根据
三边的长短和三角形的角的大小不同,可以将三角形分为等边三
角形、等腰三角形、直角三角形、钝角三角形和锐角三角形。
3.直线和角:直线是无数个点所组成的一条线,用AB表示;
角是由两个线段所夹成的图形,用∠ABC表示。
4.相似和全等:两个图形如果形状相似,则它们的对应角相等,对应边成比例;如果两个图形完全相同,则它们全等。
以上是七年级下册数学知识点的介绍,希望对大家有所帮助。
初一下册数学重点知识总结归纳初一下册数学重点学问1.等式的性质(1)等式的性质性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.(2)利用等式的性质解方程利用等式的性质对方程进展变形,使方程的形式向x=a的形式转化.应用时要留意把握两关:①怎样变形;②依据哪一条,变形时只有做到步步有据,才能保证是正确的.2.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.3.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,敏捷应用,各种步骤都是为使方程渐渐向x=a形式转化.(2)解一元一次方程时先视察方程的形式和特点,假设有分母一般先去分母;假设既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于ax+bx=c的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程渐渐转化为ax=b的最简形式表达化归思想.将ax=b系数化为1时,要精确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要精确判定符号,a、b 同号x为正,a、b异号x为负.4.一元一次方程的应用(一)、一元一次方程解应用题的类型有:(1)探究规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价x101%);(4)工程问题(①工作量=人均效率x人数x时间;②假如一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度x时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)安排问题;(9)竞赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)、利用方程解决实际问题的根本思路如下:首先审题找出题中的未知量和全部的确定量,干脆设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:细致审题,确定确定量和未知量,找出它们之间的等量关系.2.设:设未知数(x),依据实际状况,可设干脆未知数(问什么设什么),也可设间接未知数.3.列:依据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.初一数学学习复习打算建议上课前,同学们可以提前预习数学课本,把课本例题中自己的不会的点都记录下来,便利大家上课的时候运用。
一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。
2. 同底数幂的除法:底数不变,指数相减。
3. 幂的乘方:底数不变,指数相乘。
4. 积的乘方:等于各因式分别乘方后的积。
5. 单项式与单项式的和:系数相加,字母部分不变。
6. 单项式与单项式的差:系数相减,字母部分不变。
7. 单项式与单项式的积:系数相乘,字母部分合并。
8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。
9. 多项式与多项式的和:同类项的系数相加,字母部分不变。
10. 多项式与多项式的差:同类项的系数相减,字母部分不变。
11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。
二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。
2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。
3. 一元一次方程的解法:移项、合并同类项、化系数为1。
4. 一元一次不等式的解法:移项、合并同类项、化系数为1。
5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。
6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。
7. 二元一次方程组的解法:消元法、代入法。
8. 二元一次不等式组的解法:消元法、代入法。
9. 分式方程:含有分母的方程。
10. 分式方程的解法:去分母、化系数为1、检验。
11. 分式不等式:含有分母的不等式。
12. 分式不等式的解法:去分母、化系数为1、检验。
三、几何图形1. 点、线、面的概念。
2. 直线的性质:无端点、无限延伸、不可度量长度。
3. 射线的性质:有一个端点、无限延伸、不可度量长度。
4. 线段的性质:有两个端点、有限长度、可度量长度。
5. 角的概念:两条射线从同一点出发所形成的图形。
6. 角的分类:锐角、直角、钝角、平角、周角。
7. 角的性质:度数大小关系、补角和余角、角的和差。
8. 三角形的概念:由三条边和三个内角组成的封闭图形。
初一下册数学知识点总结第一章 二元一次方程1、二元一次方程的概念2、二元一次方程组的概念3、解二元一次方程组⎪⎩⎪⎨⎧程组)引入解复杂二元一次方换元法(书本上没有,加减消元法代入法.3.2.1 4、二元一次方程的实际应用⎩⎨⎧;分配类何图形的体积面积变化题型:时间路程类;几、解、验、答解题步骤:审、设、列.2.1 5、三元一次方程和三元一次方程组概念6、姐三元一次方程组:方法和解二元一次方程组的一样第二章 整式乘法1、同底数幂的乘法:n m n m n m n m x x x x x x -+=÷=⨯;2、幂的乘方:()mn nm x x =3、单项式乘单项式:11++=⨯m n n m y x y x xy ;11842++=⨯n m n m y x y x xy4、单项式乘多项式:1221)(+++=+n m n m y x y x xy y x xy5、多项式乘多项式:()()ny y mx y ny x mx x ny mx y x ∙+∙+∙+∙=++6、乘法公式:平方差公式()()()()()()2222323232)()(y x y x y x nb ma nb ma nb ma -=-+-=-+,例如 完全平方公式()()()()()b a b a b a nb ma nb ma nb ma 32232322)()(222222-∙∙+-+=-∙∙++=+例如第三章 因式分解1、因式分解的概念:把一个多项式变成若干个多项式的乘积的形式。
例如()()32652++=++x x x x ,()()b a b a b a -+=-22,()22321294-=-+a a a 2、提公因式法:()()1,248442222322++=++++=++x x xy xy y x y x c b a c b a 3、十字相乘法:能把某些二次三项式分解因式。
要务必注意各项系数的符号。
方法是:交叉相乘,水平书写。
初一数学(下)应知应会的知识点
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解). 4.二元一次方程组的解法: (1)代入消元法;(2)加减消元法; (3)注意:判断如何解简单是关键. ※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”; (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式. 2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; 不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变; 不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集. 4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b >0或ax+b <0 ,(a ≠0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:
在数轴上表示不等式的解集时,要注意空圈和实点.
6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab >0 ⇔
0b a
>⇔ ⎩⎨⎧>>0b 0a 或⎩
⎨⎧<<0b 0a ; ab <0 ⇔
0b a
< ⇔ ⎩⎨⎧<>0b 0a 或⎩⎨⎧><0b 0
a ; ab=0 ⇔ a=0或b=0; ⎩
⎨⎧≤≥m a m
a ⇔ a=m .
7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集. 8.一元一次不等式组的解集的四种类型:设 a >b
9.几个重要的判断:
是正数、y x 0xy 0y x ⇔⎭⎬⎫>>+, 是负数、y x 0xy 0y x ⇔⎭
⎬⎫
><+, 异号且正数绝对值大,、y x 0xy 0y x ⇔⎭⎬⎫<>+ .y x 0xy 0y x 异号且负数绝对值大、⇔⎭
⎬⎫
<<+
整式的乘除
1.同底数幂的乘法:a m ·a n =a m+n ,底数不变,指数相加.
2.幂的乘方与积的乘方:(a m )n =a mn ,底数不变,指数相乘; (ab)n =a n b n ,积的乘方等于各因式乘方的积. 3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.
4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.
5.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加. 6.乘法公式:
(1)平方差公式:(a+b)(a-b)= a 2-b 2,两个数的和与这两个数的差的积等于这两个数的平方差; (2)完全平方公式:
① (a+b)2=a 2+2ab+b 2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a 2-2ab+b 2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍; ※ ③ (a+b-c)2=a 2+b 2+c 2+2ab-2ac-2bc ,略. 7.配方:
(1)若二次三项式x 2+px+q 是完全平方式,则有关系式:q 2p 2
=⎪⎭
⎫
⎝⎛;
※ (2)二次三项式ax 2+bx+c 经过配方,总可以变为a(x-h)2+k 的形式,利用a(x-h)2+k ①可以判断ax 2+bx+c 值的符号; ②当x=h 时,可求出ax 2+bx+c 的最大(或最小)值k. ※(3)注意:2x 1x x 1
x 2
22
-⎪⎭⎫ ⎝
⎛
+=+.
8.同底数幂的除法:a m ÷a n =a m-n ,底数不变,指数相减. 9.零指数与负指数公式: (1)a 0=1 (a ≠0); a -n =
n
a
1,(a ≠0). 注意:00,0-2无意义;
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .
10.单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式. 11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.
※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式·商式. 13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内. 线段、角、相交线与平行线
几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一基本概念:
直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.
二定理:
1.直线公理:过两点有且只有一条直线.
2.线段公理:两点之间线段最短.
3.有关垂线的定理:
(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短. 4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
三 公式:
直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.
四 常识:
1.定义有双向性,定理没有.
2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.
3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论. 4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解. 5.数射线、线段、角的个数时,应该按顺序数,或分类数.
6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析. 7.方向角:
(1) (2)
8.比例尺:比例尺1:m 中,1表示图上距离,m 表示实际距离,若图上1厘米,表示实际距离m 厘米. 9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.
北偏西30°
南偏东60°
30°
60°
北
南
东
西东北
东南
西北
西南。