新型干法水泥回转窑系统
- 格式:pdf
- 大小:12.21 MB
- 文档页数:78
新型干法水泥回转窑系统1. 引言干法水泥生产是指在生产过程中不添加水分的一种水泥生产方法。
回转窑系统是干法水泥生产过程中的关键设备之一。
随着科技的不断进步,新型的干法水泥回转窑系统得到了广泛应用,带来了许多优势和创新。
本文将介绍新型干法水泥回转窑系统的构成、工作原理、优势以及应用范围,以帮助读者更好地了解和应用该系统。
2. 新型干法水泥回转窑系统的构成新型干法水泥回转窑系统由以下几个主要部分构成:2.1 窑体新型干法水泥回转窑系统的窑体采用高温耐火材料制作,能够耐受高温和化学腐蚀等恶劣条件。
窑体通常为圆筒形,具有一定的倾斜角度,倾斜角度的选择对于干法水泥生产的效果具有重要影响。
2.2 进料装置新型干法水泥回转窑系统的进料装置主要包括料斗和给料机构。
料斗用于储存原料,并通过给料机构将原料均匀地输送到回转窑系统中。
2.3 燃料装置新型干法水泥回转窑系统采用了先进的燃烧技术,能够利用多种不同的燃料,如煤炭、天然气或者油气。
燃料装置确保了系统的高效运行和能源利用率。
2.4 排出装置新型干法水泥回转窑系统的排出装置用于排出已经被煅烧和烧结的水泥熟料。
排出装置通常由滚筒、冷却器和排气系统组成。
2.5 辅助设备新型干法水泥回转窑系统还配备了一些辅助设备,如预热器、除尘设备等。
这些设备可以提高系统的热能利用率和环境保护效果。
3. 新型干法水泥回转窑系统的工作原理新型干法水泥回转窑系统的工作原理是将原料从进料口导入窑体中,通过窑体的旋转和倾斜,使原料逐渐移动向出料口的方向。
在这个过程中,燃料通过燃烧装置进行燃烧,释放热能,使窑体内部的温度升高。
原料在窑体中被加热和煅烧,逐渐形成水泥熟料。
随着窑体的旋转,熟料在窑体内部不断地翻动和混合,使得熟料能够充分烧结。
熟料最终通过排出装置排出,并经过冷却器进行冷却,然后进一步处理和细磨,最终得到水泥产品。
4. 新型干法水泥回转窑系统的优势新型干法水泥回转窑系统相比传统干法水泥回转窑系统具有以下几个优势:4.1 高效能新型干法水泥回转窑系统采用先进的燃烧技术和热交换设备,能够提供更高的热能利用效率,达到更高的生产能力。
X X 理工学院课程设计说明书课程名称:新型干法水泥生产技术与设备设计题目: 5000t/d新型干法水泥生产线回转窑工艺设计专业:无机非金属材料工程班级:学号:姓名:成绩:指导教师(签名):设计时间: 2011.12.19——2012.01.06原始资料一、物料化学成分(%)二、煤的工业分析及元素分析(%)三、热工参数1、温度。
入预热器生料温度:50℃;入窑回灰温度:50℃;入窑一次风温度:25℃;入窑二次风温度:1100℃;环境温度:25℃;入窑、分解炉燃料温度:60℃;入分解炉三次风温度:900℃;出窑熟料温度:1360℃;废气出预热器温度:330℃;出预热器飞灰温度:300℃。
窑尾气体温度:1100℃。
2、入窑风量比(%)。
一次风(K1):二次风(K2):窑头漏风(K3)=10:85:5。
3、燃料比(%)。
回转窑(Ky):分解炉(Kf) =40:60。
4、出预热器飞灰量。
0.1kg/kg熟料。
5、出预热器飞灰烧失量。
35.20%。
6、各处空气过剩系数。
窑尾,αy=1.05分解炉出口αL=1.15预热器出口αf=1.40。
7、入窑生料采用提升机输送。
8、漏风。
预热器漏风量占理论空气的比例K4=0.16;提升机带入空气量忽略;分解炉及窑尾漏风(包括分解炉一次空气量),占分解炉用燃料理论空气量的比例K6=0.05。
9、袋收尘器和增湿塔综合收尘效率为99.9%。
10、熟料形成热。
根据简易公式(6-20)计算。
11、系统表面散热损失。
460kJ/kg熟料。
12、生料水分。
0.2%。
13、窑的设计产量。
5000t/d。
目录前言 (4)一、物料平衡、热平衡计算 (5)1.1物料平衡计算 (5)1.1.1 收入项目 (5)1.1.2 支出项目 (7)1.2 热量平衡计算 (8)1.2.1 收入项目 (8)1.2.2 支出项目 (9)二、窑的计算 (11)2.1.窑的规格 (11)2.1.1 直径 (11)2.1.2 长度 (12)2.2 回转窑斜度、转速及功率的计算 (12)2.2.1 斜度和转速 (12)2.2.2 功率 (12)2.3 风速核算 (12)2.3.1 烧成带标准风速 (12)2.3.2 窑尾工况风速 (13)三、主要热工技术参数计算 (13)3. 1、熟料单位烧成热耗 (13)3.2、熟料烧成热效率 (13)3.3、窑的发热能力 (13)3.4、燃烧带衬砖断面热负荷 (13)四.结语 (14)五.参考文献 (14)前言当前世界水泥工业的发展是以节能、降耗、环保为中心,走可持续发展的道路。
新型干法水泥回转窑工艺及设备概述引言:干法水泥回转窑工艺及设备是一种现代水泥生产工艺,相比传统湿法水泥生产工艺,该工艺具有节约能源、环境友好、生产成本低等诸多优势。
本文将对新型干法水泥回转窑工艺及设备进行详细概述。
一、工艺流程1.矿石的破碎和磨碎:原料矿石经过破碎设备和磨碎设备进行初步处理,使其达到可进一步处理的状态。
2.预热分解:经过初步处理的原料矿石进入预热分解设备,以高温炉气对其进行预热和分解,使其转化为热稳定物质。
3.堆料及热交换:热稳定物质经过输送设备进入回转窑,与燃烧器燃烧产生的高温炉气进行热交换,使其达到烧成温度。
4.熟料烧成:经过热交换的烧成料矿石进一步在回转窑内进行热处理,以达到所需的熟料烧成状态。
5.冷却:熟料烧成后,通过冷却装置进行冷却,以使其达到可储存和包装的温度。
二、设备组成1.破碎和磨碎设备:主要包括颚式破碎机、锤式破碎机、圆锥破碎机等,用于对原料矿石进行初步处理和磨碎。
2.预热分解设备:主要包括预热器和分解炉,用于对原料矿石进行预热和分解,同时产生高温炉气用于后续热交换。
3.回转窑:为整个工艺的核心设备,主要由筒体、支承装置、传动装置、燃烧装置等组成。
回转窑内的烧成料矿石在高温环境下进行热处理。
4.冷却设备:主要包括冷却机和冷却器,用于对熟料烧成后的产物进行冷却。
除了上述核心设备外,还需要配套的输送设备、除尘设备、燃料供应系统等进行辅助。
三、优势与前景1.节能环保:相比于传统湿法水泥生产工艺,新型干法水泥回转窑工艺具有更低的能耗和排放,减少了燃料的消耗和烟气排放量,符合现代环保要求。
2.生产成本低:新型干法水泥回转窑工艺采用了高温炉气热交换的方式,可以充分利用烟气热能,降低能源消耗,从而降低生产成本。
3.适应性强:新型干法水泥回转窑工艺适用于不同原料的水泥生产,可以根据不同的原料特性进行调整和优化,提高生产效率和产品质量。
4.市场前景广阔:在国家加大环保政策的背景下,新型干法水泥回转窑工艺将成为水泥生产的主流工艺,具有广阔的市场发展前景。
第二代新型干法水泥生产线核心提示:第二代新型干法水泥技术装备实际上是不断提高产品质量和降低能耗,注重环保与绿色概念,融入现代智能技术,使我国新型干法水泥的技术、装备、资源能源利用效率、节能减排、自动化水平、经济技术指标都得到较大的提高和提升,达到世界领先水平。
所谓第二代新型干法水泥技术和装备是在不改变悬浮预热和预分解这一主要工艺技术特征的基础上的进一步创新。
下面具体介绍了“第二代新型干法水泥”的八大特征技术体系:1、高能效低氮预热预分解及烧成技术以科学的计算机模型和数字化模拟技术建立先进的高能效和低氮燃烧理论,提高悬浮预热、预分解和高温烧成过程的燃烧、传热效率和降低氮氧化物的产生量,生产更高品质、更高等级的水泥熟料,较大幅度降低能耗量和氮氧化物排放量。
2、高效节能料床粉磨技术深入研究料床破碎理论,进一步提升料床粉磨的效能效率,开发适用不同原料、燃料和熟料配比的大型辊磨,提高运行可靠性和不同粉体性能的可控性,特别要满足混凝土对水泥的级配、粒径、粒型和需水性等要求。
3、原料、燃料均化配置技术研究开发适用于不同种类和品位的原材料和燃料的均化配制技术,特别是适用于各种废弃物、城市垃圾作为替代燃料和原料的应用技术,使水泥窑炉在协同处置和资源化利用废弃物时,能确保提高产品质量、降低能耗、物耗、减少排放。
4、数字化智能型控制技术运用模糊逻辑、神经网络理论和模型预测控制技术,将自动化智能化技术融入水泥企业的生产和管理全过程,实现对安全生产、产品质量、物耗能耗、环保排放、物流和成本管理等全方位的智能化管理,整体提升控制力和运营效益。
5、废弃物安全无害化处置和资源化利用技术,充分发挥新型干法水泥窑的优势和特点,重点研究开发协同处置工业废弃物、城市垃圾、污泥的功能与利用技术,在保证水泥正常生产、产品质量和达标排放的前提下,实现废弃物的安全无害化处置和原料燃料替代利用技术,使水泥窑炉具备环保功能,替代燃料的利用率达到40%。
回转窑中控操作培训教程-新型干法水泥技术介绍1、新型干法的概念:新型干法水泥技术是以悬浮预热和预分解技术装备为核心,以先进的热工、粉磨、均化、储运、在线检测、信息化等技术装备为基础;采用新技术、新材料;节约资源和能源,充分利用废料、废渣,促进循环经济,实现人与自然和谐相处的现代化水泥生产方法。
2、新型干法的核心:(1)预分解技术的内涵预分解(或称窑外分解)技术是指将已经过悬浮预热后的水泥生料,在达到分解温度前,进入到分解炉内与进入炉内的燃料混合,在悬浮状态下迅速吸收燃料燃烧热,使生料中的碳酸钙迅速分解成氧化钙的技术。
传统水泥熟料城烧方法,燃料燃烧及需热量很大的碳酸盐分解过程都是在窑内进行的。
预分解技术发明后,熟料城烧所需的60%左右的燃料转移到分解炉内,并将其燃烧热迅速应用于碳酸盐分解进程,这样不仅减少了窑内燃烧带的热负荷,并且入窑生料的碳酸盐分解率达到95%左右,从而大幅度提高了窑系统的生产效率。
(2)回转窑燃烧工艺技术1971年窑外分解技术诞生T高效篦冷机发展T进一步缩短窑长T多通道喷煤管的发展一大型化发展阶段5000t∕d,7500t∕d x10000t∕d(成熟阶段)。
窑内气固传热:热源:煤粉燃烧产生高温烟气;回转窑旋转,物料、衬料(耐火砖)周期性变化,高温气体辐射、对流传热给堆积料表层,堆积料表层以下物料自身传导与衬料接触,接受热量。
砖衬是蓄热体、中介体,物料是受热体。
窑内气固反应:煤粉颗粒受到窑壁和高温烟气体的辐射、对流作用升温,生成干憎气体(挥发分)和固定碳,达到着火温度,迅速氧化燃烧,在二次风作用下完全燃烧。
窑内可以分为分解带、过渡带、烧成带、冷却带。
主要矿物C3S的形成速度取决于液相数量和黏度,物料细度和温度。
C3S反应完全需要12~20min o(3)冷却工艺技术:熟料冷却机在水泥工业生产过程中,已不再是当初仅仅为了冷却熟料的设备,而在当代预分解窑系统中与旋风筒、换热管道、分解炉、回转窑等密切结合,组成了一个完整的新型水泥熟料城烧装置体系,成为一个不可缺少的具有多重功能的重要装备。
XXXX建材有限公司新建2500t/d水泥熟料新型干法生产线及综合利用废渣生产130万吨/年水泥项目熟料烧成系统热平衡计算书(预热器+分解炉+回转窑+篦冷机)二〇一四年二月一、基础数据二、物料组分二、计算1、物料收入(1)燃料消耗量:m r kg/kg−cl (2)生料消耗量:①干生料理论消耗量(kg/kg-cl):m ysl=100−α100×Af×mr100−L s=100−100100×24.5×m r100−35.73=1.556−0.381m r kg/kg−cl②出预热器飞灰量:m fℎ=0.144 kg/kg−cl③烟囱飞损飞灰量:m Fℎ=m fℎ×(1−η)=0.144×(1−0.996)=0.001 kg/kg−cl ④入窑回灰量:m yℎ=m fℎ−m Fℎ=0.143 kg/kg−cl⑤考虑飞损后干生料实际消耗量:m gs=m ysl+m Fℎ×100−L Fℎ100−L s=1.556−0.381m r+0.001×100−34.4 100−35.73=1.557−0.381m r kg/kg−cl ⑥考虑飞损后生料(含物理水)实际消耗量:m s=m gs×100100−W s=(1.557−0.381m r)×100100−0.2 =1.56−0.382m r kg/kg−cl(4)空气消耗量①理论空气用量V lk=0.089C f+0.267H f−0.003(O f−S f)=0.089×59.94+0.267×4.84+0.033×(0.84−7.91)=6.394 N m3/kg−mm lk=V lk×ρk=6.394×1.293=8.569 kg/kg−m②窑头用实际干空气量由于过剩空气系统αy=1.05,窑头用燃料占47%,则窑头用实际干空气为:V yk=0.47×αy×V lk×m r=0.47×1.05×6.394×m r=3.155m r N m3/kg−clm yk=3.155m r×1.293=4.079m r kg/kg−cl其中:一次空气:V y1k=3.155m r×0.3=0.947m r N m3/kg−clm y1k=4.079m r×0.3=1.224m r kg/kg−cl二次空气:V y2k=3.155m r×0.65=2.051m r N m3/kg−clm y2k=4.079m r×0.65=2.651m r kg/kg−cl窑头漏风:V ylok=3.155m r×0.05=0.158m r N m3/kg−clm ylok=4.079m r×0.05=0.204m r kg/kg−cl③分解炉实际用干空气量(出口过量空气系数1.15)出分解炉过剩空气量:V1=(αf−1)×V lk×m r=(1.15−1)×6.394m r=0.959m r N m3/kg−cl分解炉用燃料燃烧理论空气量:V2=0.53×V lk×m r=0.53×6.394m r=3.389m r N m3/kg−cl窑尾废气中过剩空气量:V3=(αy−1)×0.47×V lk×m r=0.05×0.47×6.394m r=0.15m r N m3/kg−cl分解炉及窑尾漏风量(包括进分解炉一次空气,占比0.05):V flok=αflok×0.53×V lk×m r=0.05×0.53×6.394m r=0.169m r N m3/kg−clm flok=0.169m r×1.293=0.219 kg/kg−cl分解炉从三次风管抽风量:V f2k=0.959m r+3.389m r−0.15m r−0.169m r=4.029m r N m3/kg−clm f2k=4.029m r×1.293=5.209m r kg/kg−cl ④旋风预热器系统漏风量(漏风占理论空气量比0.16)V xlok=0.16×V lk×m r=0.16×6.394×m r=1.023 N m3/kg−clm xlok=1.023m r×1.293=1.323 kg/kg−cl ⑤喂料带入空气量(风料比19.8N m3/kg):V sk=m s+m yℎ19.8=1.56−0.382m r+0.14319.8=0.086−0.019m r N m3/kg−clm sk=(0.086−0.019m r)×1.293=0.111−0.025m r kg/kg−cl⑥进入冷却机冷空气量:V Lk=2.14 N m3/kg−clm Lk=2.14×1.293=2.767 kg/kg−cl 物料总收入:m zs=m r+m s+m yℎ+m y1k+m ylok+m flok+m xlok+m sk+m Lk=m r+1.56−0.382m r+0.143+0.204m r+1.224m r+0.219m r+1.323m r+0.086−0.019m r+2.767=4.581+3.563m r kg/kg−cl2、物料支出(1)出冷却机熟料量:m cl=1 kg/kg−cl(2)预热器出口飞灰量:m fℎ=0.144 kg/kg−cl(3)磨煤机抽冷却机空气量(2.396N m 3/kg −m )V mk =2.396m r N m 3/kg −clm mk =2.396m r ×1.293=3.098m r kg/kg −cl(4)冷却机烟囱排出空气量:V pk =V Lk −V y2k −V f2k −V mk =2.14−2.051m r −4.029m r −2.396m r=2.14−8.476m r N m 3/kg −clm pk =(2.14−8.476m r )×1.293=2.767−10.959m r kg/kg −cl(5)预热器出口废气量 ①生料中的物理水:W s =0.2%m ws=m s ×W s100=(1.56−0.382m r )×0.2100=0.003−0.001m r kg/kg −clV ws=m ws 0.804=0.004−0.001m r N m 3/kg −cl ②生料中的化合水m ℎs =0.00353×m gs ×Al 2O 3f=0.00353×(1.56−0.381m r )×2.75 =0.015−0.004m r kg/kg −clV ws =m ℎs0.804=0.019−0.005m r N m 3/kg −cl ③生料中分解的CO2: 生料中CO2的百分含量:CO 2s =CaO s×4456+MgO s×4440.3=44.65×4456+0.48×4440.3=35.604%m CO s2=m gs ×CO 2s 100−m fℎ×L Fℎ100=(1.56−0.381m r )×35.604100−0.144×34.4100=0.555−0.136m r kg/kg −clV CO 2s =m CO s 2×22.444=0.283−0.069m r N m 3/kg −cl ④燃料燃烧生成的理论烟气量:V CO 2r =22.412×C f 100×m r =22.412×59.94100×m r =1.119m r N m 3/kg −clV N 2r =22.428×N f100×m r +0.79×V lk ×m r =22.428×0.97100×m r +0.79×6.394×m r =5.059m r N m 3/kg −clV H 2O r =22.42×H f 100×m r +22.418×W f100×m r=22.42×4.84100×m r +22.42×0.63100×m r =0.554m r N m 3/kg −clV S 2O r=22.432×S f100×m r =22.42×0.84100×m r =0.006m r N m 3/kg −clV r =V CO 2r +V N 2r +V H 2O r +V S 2O r =6.783m r N m 3/kg −clm r =( m lk +1−A ar100)×m r =(8.569+1−24.5100)×m r =9.022m r kg/kg −cl ⑤烟气中过剩空气量:V k =(1.15−1+0.16)×V lk ×m r =1.982m r N m 3/kg −cl其中:V N 2k=0.79×V k ×m r =1.566m r N m 3/kg −cl V O 2k =0.21×V k ×m r =0.416m r N m 3/kg −cl m N 2k=2822.4×V N 2k=1.985m r kg/kg −cl m O2k =3222.4×V O 2k =0.594m r kg/kg −cl ⑥喂料用空气V sk =0.086−0.019m r N m 3/kg −cl m sk =0.111−0.025m r kg/kg −cl其中:V N 2sk =0.79×V sk ×m r =0.068−0.015m r N m 3/kg −cl V O 2sk =0.21×V sk ×m r =0.018−0.004m r N m 3/kg −cl m N 2sk=2822.4×V N 2sk=0.085−0.019m r kg/kg −cl m O2sk =3222.4×V O 2sk =0.026−0.006m r kg/kg −cl 废气总量:V f =V CO 2+V N 2+V H 2O +V O 2+V SO 2=(0.283−0.069m r +1.119m r )+(5.059m r +1.566m r +0.068−0.015m r )+(0.004−0.001m r +0.019−0.005m r +0.554m r )+(0.416m r +0.018−0.004m r )+0.006m r =0.392+8.62m r N m 3/kg −cl m f =m CO 2+m N 2+m H 2O +m O 2+m SO 2=m ws +m ℎs +m CO s 2+m r +m N 2k +m O 2k+m sk =0.003−0.001m r +0.015−0.004m r +0.555−0.136m r +9.022m r+1.985m r +0.594m r +0.111−0.025m r =0.684+11.408m r kg/kg −cl物料总支出:m zc =m cl +m fℎ+m mk +m pk +m f=1+0.144+3.098m r +2.767−10.959m r +0.684+11.408m r=4.595+3.547m r3、热量收入(1)燃料燃烧热:Q rR =23001m r kJ/kg −cl(2)燃料带入显热:Q r =m r ×c r ×t r =1.16×50×m r =58m r kJ/kg −cl(3)生料带入显热:Q s =(m gs ×c s +m ws ×c ws )×t s=[(1.557−0.381m r )×0.878+(0.003−0.001m r )×4.182]×60=69−16.95m r kJ/kg −cl(4)入窑回灰带入显热:Q yℎ=m yℎ×c yℎ ×t yℎ=0.143×0.836×60=7.173 kJ/kg−cl (5)空气带入显热:①窑头一次空气带入热量:Q y1k=m y1k×c y1k ×t y1k=1.224m r×1.297×36=57.151m r kJ/kg−cl②进冷却机空气带入热量:Q Lk=m Lk×c Lk ×t Lk=2.767×1.297×36=129.179 kJ/kg−cl③喂料空气带入热量:Q sk=m sk×c sk ×t sk=(0.111−0.025m r)×1.298×60=8.645−1.947m r kJ/kg−cl④窑头漏风带入热量:Q ylok=m ylok×c ylok ×t ylok=0.204m r×1.297×36=9.525m r kJ/kg−cl⑤分解炉漏风带入热量:Q flok=m flok×c flok ×t flok=0.219m r×1.297×36=10.226m r kJ/kg−cl⑥旋风预热器漏风带入:Q xlok=m xlok×c xlok ×t xlok=1.323m r×1.297×36=61.774m r kJ/kg−cl热量总收入:Q zs=Q rR+Q r+Q s+Q yℎ+Q y1k+Q Lk+Q sk+Q ylok+Q flok+Q xlok=23001m r+58m r+69−16.95m r+7.173+57.151m r+129.197+8.645−1.947m r+9.525m r+10.226m r+61.774m r=214.015+23178.779m r kJ/kg−cl4、热量支出(1)熟料形成热:对于石灰石和粘土配料的生料,不考虑碱性影响时,形成热计算如下:Q cl=17.21×Al2O3cl+27.13×MgO cl+32.03×CaO cl−21.44×SiO2cl −2.47Fe2O3cl=17.21×5.41+27.13×0.77+32.03×67.53−21.44×22.46−2.47×3.38=1787.09 kJ/kg−cl(2)出冷却机熟料显热:Q Lcl=m Lcl×c Lcl ×t Lcl=1×0.771×85=65.535 kJ/kg−cl (3)预热器出废气带走显热:Q f=V f×c f×t f=(V CO2×c CO2+V N2×c N2+V H2O×c H2O+V O2×c O2+V SO2×c SO2)×340=[(0.283−0.069m r+1.119m r)×1.899+(5.059m r+1.566m r+0.068−0.015m r)×1.311+(0.004−0.001m r+0.019−0.005m r+0.554m r)×1.552+(0.416m r+0.018−0.004m r)×1.356+ 0.006m r×0.768]×340=233.58+4106.18m r kJ/kg−cl(4)预热器出口飞灰带走显热:Q fℎ=m fℎ×c fℎ ×t fℎ=0.144×0.895×340=43.819 kJ/kg−cl (5)磨煤机抽冷却机空显热:Q mk=V mk×c mk×t mk=2.396m r×1.02×240=586.54m r kJ/kg−cl (6)冷却机排出空气热量:Q Lpk=V Lpk×c Lpk×t Lpk=(2.14−8.476m r)×1.027×200=439.556−1740.97m r kJ/kg−cl(7)系统表面散热损失热量:Q B=230 kJ/kg−cl(8)冷却水带走热量:Q ls=170 kJ/kg−cl热量总支出:Q zc=Q cl+Q Lcl+Q f+Q fℎ+Q mk+Q Lpk+Q B+Q ls=1787.09+65.535+233.58+4106.18m r+43.819+586.54m r+439.556−1740.97m r+230+170=2969.58+2951.75m r kJ/kg−cl热量平衡:总收入=总支出214.015+23178.779m r=2969.58+2951.75m r解得:m r=0.13623182≈0.136Q rR=23001m r=23001×0.136=3128.136 kJ/kg−clηy=1787.093128.136=57.13%说明:数据差是由于计算过程中四舍五入导致。
熟料生产线热工设备基础知识1.1新型干法水泥回转窑系统概述水泥是一种细磨材料,它加入适量水后,成为塑性浆体,这种浆体是既能在空气中硬化,又能在水中硬化(硬化后要达到一定的强度),并能把砂、石等材料牢固地胶结在一起的而且具有其他一些性能的水硬性胶凝材料。
水泥生产要经过“二磨一烧”(即生料磨、水泥窑和水泥磨),其中,水泥窑系统是将水泥生料在高温下烧成为水泥熟料的热工设备,是水泥生产中一个极为重要的关键环节。
新型干法水泥回转窑系统是以悬浮预热技术和窑外分解技术为核心,以NSP窑(或称:PC窑)为主导的水泥熟料烧成系统。
没有分解炉的新型干法水泥回转窑系统叫做SP窑,有分解炉的新型干法水泥回转窑系统叫做NSP窑,在一些欧美国家也将NSP窑称为PC窑,即预分解窑。
窑外分解窑的工作原理为:(分别从料、煤、风的角度论述)第一,生料粉从第1级旋风筒和第2级旋风筒之间的联接管道加入,加入的生料进入联接管道内后马上被分散在上升气流中,从而被携带到第1级旋风筒(简称C1)内,在旋风筒内利用离心力的作用进行气固分离后,废气被排走,而生料粉被再一次加到C2和C3之间的联接管道内,然后再一次被携带到C2内进行气固分离。
这样依次类推,生料粉依次通过各级旋风筒及其联接管道。
生料粉每与上升的气流接触一次,就经过一次剧烈的热交换,从而生料粉被一次一次地预热升温,废气则被一次一次地冷却降温,从而达到回收废气余热来预热生料。
当生料达到一定温度,会发生一定程度的碳酸盐分解(小部分分解,因为废气的热焓不足以使其发生大量分解)。
出C4的预热生料进入分解炉,在分解炉内完成大部分碳酸钙的分解,分解反应所需热量来自于分解炉内的燃料燃烧。
分解后的生料与废气再一起进入C5内,经C5完成气固分离后,生料入回转窑内煅烧,再经过一系列物理化学反应后,最终烧成为水泥熟料。
出窑后熟料再经过冷却机冷却后被送到熟料库内。
熟料、石膏、混合材按一定比例在水泥磨内混合粉磨后就成为水泥。
水泥生产是一个高能耗、高污染的行业,其中煤炭燃烧过程是主要的能源消耗环节,同时也是燃烧生成氮氧化物(NOx)等大气污染物的主要来源。
针对这一问题,水泥回转窑系统低氮燃烧技术应运而生。
本文将对水泥回转窑系统低氮燃烧技术进行介绍,具体内容如下:一、水泥回转窑工艺概述1.1 水泥生产工艺流程水泥生产一般采用湿法、半干法和干法三种生产工艺,其中干法工艺在回转窑中煅烧石灰石为水泥熟料是最常见的工艺流程。
1.2 水泥回转窑系统组成水泥回转窑系统主要包括回转窑、预煅窑、冷却机、热风炉等设备,其中回转窑是系统的核心设备,是水泥熟料煅烧的主要场所。
二、水泥回转窑系统燃烧工艺介绍2.1 传统燃烧工艺存在的问题传统的水泥回转窑系统燃烧工艺往往会产生大量NOx等有害气体,对环境造成严重污染,排放不达标。
2.2 低氮燃烧技术原理低氮燃烧技术是在传统燃烧工艺基础上,通过优化燃烧参数,采用低氮燃烧器等装置,使燃烧过程中的氮氧化物排放明显减少,达到环保要求。
三、水泥回转窑系统低氮燃烧技术设计要点3.1 低氮燃烧器设计优化低氮燃烧器结构,提高燃烧效率的减少NOx排放。
3.2 燃烧参数调整合理调整燃烧参数,控制温度和氧气含量,降低燃烧过程中NOx的生成。
3.3 燃烧系统优化通过对燃烧系统进行优化设计,提高燃烧效率,减少能源消耗,降低NOx排放。
3.4 监测与控制系统建立完善的燃烧过程监测与控制系统,实时监测燃烧参数,并根据监测数据调整燃烧工艺,保证低氮燃烧效果。
3.5 现场操作与维护加强现场人员培训,严格执行操作规程,保证低氮燃烧技术的正常运行。
四、水泥回转窑系统低氮燃烧技术应用效果4.1 现场示范工程案例通过实际案例分析,低氮燃烧技术在水泥回转窑系统中的应用效果。
4.2 环保效益分析低氮燃烧技术的应用,降低了NOx等有害气体排放,提高了水泥生产的环保水平。
4.3 经济效益分析低氮燃烧技术的应用,优化燃烧工艺,降低能源消耗,减少了生产成本,具有显著的经济效益。
对于新型干法回转窑系统的初步理解摘要:本文基于所学知识和查阅资料,对新型干法回转窑的主要热工设备进行简单介绍。
并基于自己的理解,对系统均衡稳定操作和回转窑温度控制原则进行了简单的探讨。
关键词:新型干法回转窑热工设备系统稳定温度控制Abstract:Based on the knowledge learned and reference materials, this article briefly introduces the main thermal equipment of the new dry process rotary kiln. Based on my own understanding, a simple discussion was made on the principles of balanced and stable operation of the system and temperature control of the rotary kiln.Keywords: new dry process rotary kiln, thermal equipment, system stability, temperature control0.引言水泥是一种细磨材料,它加入适量水后,成为塑性浆体,这种浆体既能在空气中硬化,又能在水中硬化(硬化后要达到一定的强度),并能把砂、石等材料牢固地胶结在一起,而且具有其他一些性能的水硬性胶凝材料。
在水泥生产过程中要经过“两磨一烧”(生料磨、水泥窑和水泥磨)。
其中,水泥窑系统是将水泥生产过程中一个极为重要的关键环节。
就目前工业上所使用过的水泥窑来说,有两大类:立窑和回转窑。
后者又包括:干法中空回转窑(传统干法生产);湿法回转窑(各种长、短湿法回转窑);立波尔窑(半干法生产);悬浮预热器窑(SP 窑)和窑外分解窑(NSP窑)。
其中,SP窑和NSP窑又统称为:新型干法水泥回转窑系统。
吨新型水泥回转窑主要的工艺操作参数1000吨回转窑操作参数/2000吨回转窑操作参数在回转窑操作过程中,遵规合理的参数能使回转窑整生产线达到最理想的生产值。
以下内容以1000吨及2000吨水泥回转窑为例子。
相关的参数同样能宽泛的通用于,陶粒砂回转窑、石灰回转窑、镍铁回转窑等回转窑设备。
新型干法水泥回转窑的烧成工艺过程中需要控制的参数比较多,一般为60~65个,回转窑过程控制也比较复杂,从国内已投产厂的生产操作来看,大都以人工给定操作参数为主,辅以单参数调节回路自动控制,即使是采用计算机集中控制或集散型控制的2000t/d以上规模的厂,由于尚未有比较切合实际的数学模型,计算机很难实现全过程的自动控制。
虽然电机的开停(即开关量)控制可采用PLC程序控制,但是过程控制参数(即调节量)仍是人工键入校定值。
待系统稳定运转后可投入数条单参数调节回路进行自动控制。
在这些水泥回转窑工艺参数中,有小部分属于通过人工或计算机设定可直接操作控制的参数,通常称之为操作变量或自变量,而大部分则属于由于人工调节后随之改变的过程变量或称之为因变量,水泥回转窑操作变量可由人工或计算机主动直接改变,过程变量由于适时地显出调节后的结果,二者之间也具有互为因果的关系。
烧成系统主要的操作变量及其作用见表1.1。
表1.1 1000t/d烧成系统中控室主要操作变量表另外,水泥回转窑入窑生料及煤粉的化学成分对烧成而言也属于自变量,回转窑它们的变化会引起操作参数一系列的变化,但它们不由窑操作员控制。
当出现原燃料成分不符合要求波动时,应及时向有关部门提出意见。
中控室中的显示参数大都是过程变量,其测点设置各水泥回转窑厂也不尽相同,一般的主要过程变量参数及其作用见表1.2。
表1.2 1000t/d烧成系统中控室主要过程变量表随着水泥回转窑工业自动化水平的不断提高,尤其是采用计算机过程控制技术的发展,使得过程参数大量进入计算机检测、分析,近几年投产的大中型水泥回转窑厂,已很少见到仪表控制,但在1000t/d以下规模的厂,由于投资和回转窑工厂技术人员素质的限制,仍较多采用仪表控制。