数学实验与MATLAB(周晓阳)-赛才数学建模
- 格式:ppt
- 大小:1.44 MB
- 文档页数:229
《数学建模与数学实验》课程公共课教学大纲一、课程名称:数学建模与数学实验(Mathematical Modeling and MathematicalExperiment )二、学时与学分:30学时三、适用专业:全校各专业(除艺术系)四、课程教材:《数学建模与数学实验》(第2版)赵静,旦琦编著,高等教育出版社,2003年。
五、参考教材:1. 萧树铁主编,姜启源等编著,大学数学《数学实验》,高等教育出版社,1999年;2.胡良剑,丁晓东等著,《数学实验使用MA TLAB》,上海科学技术出版社,2001年;3. 姜启源,谢金星等编,《数学模型》,高等教育出版社,2003年;4. 李海涛,邓樱等编,《MATLAB程序设计与教程》,高等教育出版社,2002年.六、开课单位:数理教学部七、课程的性质、目的和任务“数学实验”是近几年来才开设的一门新兴课程,它以实际问题为载体,把数学建模、数学知识、数学软件和计算机应用有机地结合,容知识性、启发性、实用性和实践性于一体,特别强调学生的主体地位,在教师的引导下,用学到的数学知识和计算机技术,借助适当的数学软件,分析、解决一些经过简化的实际问题。
该课程的引入,是数学教学体系、内容和方法改革的一项有益的尝试。
开设本课程的目的是使学生掌握数学实验的基本思想和方法。
从实际问题出发,借助计算机,通过学生亲自设计和动手,体验解决问题的全过程,从实验中去探索、学习和发现数学规律,充分调动学生学习的主动性。
培养学生的创新意识,运用所学知识,建立数学模型,使用计算机并利用数学软件解决实际问题的能力,最终达到提高学生数学素质和综合能力的目的。
该课程主要讲授一些最常用的解决实际问题的方法及其MATLAB软件实现,包括数值计算、优化方法、统计计算、图论及网络优化方法等。
我们还将介绍一些大型的数学建模案例,这些案例主要取材于最近几年的全国大学生数学建模竞赛试题。
总之学生通过该课程的学习,要求他们掌握数学建模的全过程;掌握对各种数学模型如何选择合适的数学方法和数学软件去解决它;掌握数学数值软件的强大的运算功能、图形功能以及开发应用功能。
实验报告实验课程名称数学实验与Matlab实验项目名称函数的可视化与Matlab作图年级专业学生姓名学号理学院实验时间:201 年月日学院:专业:班级:姓名学号实验组指导教成绩实验时间师实验项目名称函数的可视化与MATLAB作图实验目的及要求:第一,MATLAB二维绘图命令。
第二,多元函数的可视化与空间解析几何。
实验(或算法)原理:用MATLAB绘制一阶微分方程的斜率场。
使用quiver指令画向量和gradient指令求数值梯度。
可直接算出方程的解的表达式再画图,也可以用ode45指令直接求出方程的数值解。
实验硬件及软件平台:MATLAB软件实验步骤:xyz295[function dy=xyz295f(x,y)dy=sin(x).*sin(y);]clf,clear» a=0;b=4;c=0;d=4;n=15;» [X,Y]=meshgrid(linspace(a,b,n),linspace(c,d,n)); » z=sin(X).*sin(Y);» Fx=cos(atan(sin(X).*sin(Y)));Fy=sqrt(1-Fx.^2); » quiver(X,Y,Fx,Fy,0.5),hold on,axis([a,b,c,d])» [x,y]=ode45('xyz295f',[0,4],0.4);» plot(x,y,'r.-')实验内容(包括实验具体内容、算法分析、源代码等等):绘制dy/dx=sin(x)sin(y)的斜率场并选取初始值,在斜率场中画出解轨线。
你遇到什么问题?怎么解决?实验结果与讨论:实验结果:实验讨论:通过这次试验让我更加的熟悉用MATLAB作图。
指导教师意见:签名:年月日。
matlab 数学实验《管理数学实验》实验报告班级姓名实验 1:MATLAB的数值运算【实验目的】(1)掌握 MATLAB 变量的使用(2)掌握 MATLAB 数组的创建,(3)掌握 MA TLAB 数组和矩阵的运算。
(4)熟悉 MATLAB 多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。
【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。
(2)使用 MA TLAB 提供的库函数 reshape,将一维数组转换为二维和三维数组。
(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。
(4)使用 MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M 文件。
【实验内容】( 1)在 [0,2*pi] 上产生 50 个等距采样数据的一维数组,用两种不同的指令实现。
0:(2*pi-0)/(50-1):2*pi或linspace(0,2*pi,50)( 2)将一维数组A=1:18 ,转换为2×9 数组和 2× 3× 3 数组。
reshape(A,2,9)ans =Columns 1 through 713 5 24 6 789111012131415171618reshape(A,2,3,3) ans(:,:,1) =1 3 52 4 6 ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 1714 16 18matlab 数学实验( 3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5] ,计算数组 A、 B 乘积,计算 A&B,A|B,~A,A==B,A>B 。
A.*Bans=0 0 15 121 15 0 0A&Bans =0 0 1 11 1 0 0A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0t t ( 4)绘制 y= 0.5 e3 -t*t*sin(t),t=[0,pi] 并标注峰值和峰值时间,添加标题 y= 0.5 e3 -t*t*sint ,将所有输入的指令保存为M 文件。
MATLAB在高等数学实验中的应用在高等数学实验中,MATLAB是一种广泛应用的计算软件,它具有强大的数学计算能力和可视化处理功能。
本文将探讨MATLAB在高等数学实验中的应用,并展示其在解决实际问题和学习数学概念中的优势。
一、MATLAB在函数绘图中的应用函数绘图是高等数学实验中常见的任务之一。
MATLAB提供了丰富的绘图函数和图形工具箱,可以方便地绘制各种函数的图像,并进行定量分析。
使用MATLAB绘制函数图像的基本步骤如下:1. 定义函数表达式:通过MATLAB的符号计算工具箱或直接使用符号表达式来定义函数。
2. 创建绘图窗口:使用MATLAB的绘图函数,如plot、scatter等来创建绘图窗口,并设置绘图参数。
3. 绘制函数图像:将定义好的函数表达式作为参数传递给绘图函数,即可绘制函数图像。
4. 添加坐标轴、标题和图例:通过MATLAB的绘图函数设置坐标轴、标题和图例等信息,以增强图像的可读性。
除了基本的函数绘图,MATLAB还可以绘制等高线图、三维曲面等复杂的图形,帮助学生更直观地理解数学概念和解决实际问题。
二、MATLAB在求解微分方程中的应用微分方程是高等数学中的重要内容,解微分方程需要进行数值计算。
MATLAB具有强大的数值计算能力和求解微分方程的工具箱,可以高效地求解各种类型的微分方程。
MATLAB中求解微分方程的基本步骤如下:1. 定义微分方程:使用MATLAB的符号计算工具箱来定义微分方程。
可以采用符号表达式或匿名函数的形式定义微分方程。
2. 设置初值条件:对于常微分方程,需要给出初值条件。
通过定义符号变量或直接赋值的方式,设置初值条件。
3. 调用求解函数:使用MATLAB的求解微分方程工具箱中的函数,如ode45、ode23等,传入定义好的微分方程和初值条件,即可求解微分方程。
4. 绘制解曲线:将求解得到的数值解通过MATLAB的绘图功能进行可视化展示,以增加对解的理解和分析。
matlab数学建模方法与实践1. 引言1.1 概述本篇长文旨在介绍并探讨Matlab数学建模方法的基本概念、实践步骤和相关技巧。
数学建模作为现代科学和工程领域中重要的问题解决方法,通过构建适当的数学模型来揭示问题背后隐藏的规律,并进一步求解和分析这些模型以得出有价值的结论。
1.2 文章结构本文将分为五个主要部分,每个部分均包含多个子章节,以便系统地介绍Matlab 数学建模方法和其应用实践。
以下是各部分内容的简要描述:2. Matlab数学建模方法:此部分将对Matlab进行介绍,并探讨数学建模的基本概念和原理,以及Matlab在数学建模中的应用和优势。
3. 实践步骤:在此部分中,我们将详细说明进行数学建模时需要遵循的实践步骤。
首先是确定问题与目标阶段,了解需要解决的具体问题并确立目标;接下来是收集数据与背景信息阶段,获取所需数据并深入了解研究领域;最后是建立数学模型与方程组阶段,在Matlab环境下构建数学模型和相应的方程组来描述现实问题。
4. 模型求解与分析结果:本部分将涉及参数估计与拟合优度检验、数值求解技巧和优化算法选择以及模型验证与灵敏度分析。
这些步骤将有助于我们对所建模型进行求解和分析,从而得出科学而可靠的结论。
5. 结论与展望:在此部分中,我们将总结文章中的研究成果,并进一步探讨当前方法的局限性以及未来发展的方向。
这将帮助读者了解Matlab数学建模方法在实践中的价值和潜力。
1.3 目的本篇文章旨在帮助读者深入理解并掌握Matlab数学建模方法,并能够在实际问题中运用这些方法进行科学建模、求解和分析。
通过阅读本文,读者将能够了解Matlab作为一种重要工具在数学建模中的应用,并获得为实际问题提供可靠解决方案所需的基本知识和技能。
2. Matlab数学建模方法:2.1 Matlab介绍Matlab是一种强大且广泛应用于科学、工程和数据分析领域的编程语言与环境。
它提供了丰富的数值计算、图形绘制、数据处理和模拟等功能,使得它成为数学建模过程中最常用的工具之一。