管桩的挤土效应(最新总结)
- 格式:pdf
- 大小:284.77 KB
- 文档页数:3
浅谈静压管桩挤土效应及预防措施静压管桩在沉桩的过程中会产生挤土效应,进而对周围的环境产生不良的影响,严重的可能造成周围的建筑物的开裂、道路隆起以及地下管线断裂等事故。
所以在施工的过程中,应该采取适当的措施来减少挤土效应的产生。
静压管桩在施工的过程中产生挤土效应是不可避免的,具体的表现主要分为两个方面:一个是在挤土的过程中,桩周的土体发生变形,从而对其周围的建筑物造成了一定的影响;另外一个是在压桩前后土体的应力状况也发生了很大的改变,对承载力也有一定的影响。
一、静压管桩挤土效应影响表现如下(1)沉桩时在压桩区一定范围内产生土体的水平位移。
在饱和软土中沉桩时,由于桩要置换相同体积的土,对周围土体产生侧向挤压,引起土体水平位移,过量的土体水平位移作用在先前打入的桩上,会造成桩位的偏移、桩身的弯曲,甚至会造成桩的折断。
(2)沉桩时,桩对周围土体产生的挤压作用,还会在一定范围内造成地面的垂直隆起和抬高,并有可能造成先沉入桩上浮。
由于地面隆起,己沉入桩上抬,造成桩尖脱空,对于端承桩而言,极大地影响了单桩承载力的发挥。
(3)静压桩挤土效应引发的环境问题。
土体的垂直隆起和水平位移会对沉桩范围外一定距离内的建筑物、道路、隧道,地铁和管线造成一定程度的破损,有可能引发工程事故。
(4)沉桩过程中,特别是在饱和软新土中沉桩,会产生很高的超静孔隙水压力。
过高的超静孔隙水压力也妨碍施工的速度,甚至威胁邻近建筑物的安全,也会影响桩基的承载力。
超静孔隙水压力在施工后一段时间内的消散还会对土体的强度产生很大的影响,从而引起土体强度的变化。
(5)沉桩时桩对土体的扰动,使桩身周围土体的应力状态发生变化,桩周土体实际上是一个被撕裂、破坏、扰动和重塑的过程。
土体的原始结构被破坏,土体工程性质较沉桩前有较大的改变。
二、施工过程中控制防止挤土的预防措施(1)井点降水:静压桩施工过程中会在瞬间产生很大的超孔隙水压力,对周围环境产生很大影响。
如果能在压桩之前就将地下水位降低到一定深度,施工过程中产生的超孔隙水压力就会大大减小。
挤土效应
预应力管桩施工中会遇到一种称为挤土效应的现象,这是由于沉桩时使桩四周的土体结构受到扰动,改变了土体的应力状态而产生的。
挤土效应一般表现为浅层土体的隆起和深层土体的横向挤出,挤土效应对周围路面和建筑物引起破坏,使周围开挖基坑坍塌或推移增大,对已经施打的桩的影响表现为桩身倾斜及浅桩(≤20 m)上浮。
如果压桩施工方法与施工顺序不当,每天成桩数量太多、压桩速率太快就会加剧挤土效应。
挤土类桩在沉桩过程中,由于桩自身的体积“占用”了土体原有的空间,使桩周的土体向四周排开。
当桩周土为非饱和土层时,在土体受到挤压时,土体的体积会发生收缩,能有效的消散挤压应力。
因此挤土类桩在非饱和土层中的挤土效应不明显,所造成的负面影响也较小;当桩周土为饱和软土时,土体受挤压时体积不会收缩或收缩量极小,挤压应力主要通过土体位移来消减,挤土效应十分显著,因此所造成的负面影响更大。
挤土类桩的挤土效应所造成的影响主要表现在以下几个方面:
(1)沉桩时,由于桩周土层被压密并挤开,使土体产生垂直方向的隆起和水平方向的位移,可能造成近邻已压入的桩产生
上浮,桩端被“悬空”,使桩的承载力达不到设计要求;也会造成桩位偏移和桩身翘曲折断等质量事故;并可使相邻建筑物和市政设施的发生不均匀变形以致损坏。
(2)压桩过程中孔隙水压力升高,造成土体破坏,未破坏的土体也会因孔隙水压力的不断传播和消散而蠕变,也会导致土体的垂直隆起和水平方向的位移。
挤土类桩的处理方法:桩进行复压,重新压倒设计的持力层。
管桩挤土效应距离全文共四篇示例,供读者参考第一篇示例:管桩挤土效应距离是指在管桩施工过程中,管桩周围土体遭受挤压的距离范围。
管桩挤土效应距离的大小直接影响到管桩的承载力和变形性能,因此在工程设计和施工中必须对管桩挤土效应距离进行准确的分析和计算。
管桩挤土效应距离的影响因素主要包括土体的性质、管桩的尺寸和埋设深度以及周围环境的情况。
一般情况下,挤土效应距离与管桩的直径成正比,与土体的固结状态和土体的摩擦角有关。
在设计中,通常采用经验公式或数值分析方法来确定管桩挤土效应距离。
管桩挤土效应距离的大小直接影响到管桩的承载力和变形性能。
挤土效应距离越大,管桩的承载力越小,变形越大。
因此,在设计中必须合理选择管桩的尺寸和埋设深度,以确保管桩在承受荷载时不会发生过大的变形或破坏。
为了准确计算管桩挤土效应距离,一般可以采用公式或数值模拟方法。
常用的计算方法包括Westergaard、Mindlin、Poulos和Davis等公式。
此外,还可以利用有限元软件进行数值模拟分析,来确定管桩挤土效应距离及其对管桩的影响。
在管桩的施工过程中,要特别注意管桩挤土效应对周围土体的影响。
挤土效应会导致土体的变形和沉降,甚至引起附近建筑物的损坏。
因此,在施工过程中,必须采取适当的措施来减小挤土效应造成的影响。
总的来说,管桩挤土效应距离是管桩施工中一个重要的参数,对管桩的承载力和变形性能有着重要影响。
设计人员在设计过程中必须对管桩挤土效应距离进行充分考虑,采取合适的设计和施工措施,以确保管桩的安全可靠性。
同时,未来研究还需要对管桩挤土效应距离的计算方法和影响机理进行深入研究,以进一步提高管桩的设计水平和施工质量。
【字数不足,请问是否还需要继续完善内容?】第二篇示例:管桩挤土效应是指在进行地基处理或者地下结构建设时,由于挤土作用引起的土体变形和应力分布。
管桩挤土效应距离则是指管桩施工后,挤土效应对周围土体的影响范围。
管桩挤土效应距离对地基处理和结构设计具有重要意义,合理的管桩挤土效应距离确定可以保证工程的安全性和经济性。
试论静压管桩挤土效应的防治措施在城市化进程不断加快的背景下,建筑工程技术也在随之不断更新与推广。
工程中的静压预应力管柱施工中,需要重视机械自重与静压力的共同作用。
相比于传统施工模式来讲,这种模式不仅具有较高的实用性,也能够大幅度提升施工效率,在工程项目中得到了广泛推广,同时,各施工单位还要正视相应的挤土效应,注重防治措施的探究。
标签:静压管桩;挤土效应;防治措施前言对于静压管桩来讲,虽然拥有承载力高,施工周期较短以及施工质量较高等优势,但其在压桩施工过程中,往往都会产生挤土效应,极易造成周围土体出现侧向、竖向位移的现象,严重的甚至还会导致场地附近的建筑物产生裂缝、管道断裂等一系列损坏现象。
因此,在具体施工中,各施工单位应充分认识到挤土效应可能带来的不利影响,并紧紧围绕实际施工情况,探索出更科学有效的防治措施,增强施工质量。
1 静压管桩挤土效应首先,管桩变形与超孔隙水压力。
一方面,对于管桩变形来讲。
在将管桩压进土里的过程中,避免会将其周围的土向四周挤压,不仅会侵占周围地基土的空间,还会导致其原来部分的土体出现变形,严重破坏其受力平衡状态,尤其是对于一些施工工程桩位密度较大的项目来讲,会产生更加显著的挤土效应,再加上挤土会产生的垂直力相对较强,往往会导致周围土体的大面积鼓起,在上浮力作用下,会引发浮桩现象,且对工程整体质量与安全造成严重影响;另一方面,对于超孔隙水压力来讲。
在相关施工区域的软弱土里,若超孔隙水压力的土体平衡状态受到不同程度的扰动,不仅会导致深度土层出现位移现象,若其压力未能得到及时有效的分散,极易导致管桩阻力的快速增加,给管桩的贯入产生严重阻碍,此外,在孔隙水压力慢慢消退之后,桩端与桩四周的承载力也都会发生不同程度的变化,从而影响到工程整体质量与建设进度,并带来较大的经济损失[1]。
其次,给环境带来的一系列影响。
静压管桩施工通常都属于挤土类型,其在沉桩过程中,不可避免的会对四周土体产生不同程度的扰动,且还可能会影响、改变其土体原有的应力状态。
浅谈建筑施工中静压管桩的挤土效应本文通过对管桩压入土体后产生自身的上浮,承载力的影响,对周围的建筑物及环境的影响等一系列问题,进行分析和探讨,提出有效的技术措施,以供设计、施工、监理参考。
标签:静压管桩挤土效应超空隙水压浮桩技术措施0 引言随着城市环境要求减少施工污染及静压管桩大力推广和应用。
静压法沉桩由于其有无噪音、无振动、无污染、无冲击力等优点,同时选用高强预应力管桩作为基础,具有工艺简明、技术可靠、造价便宜、检测方便等特点,使得越来越多的建设单位认识到了管桩的优越性和良好的社会经济效益。
以下对管桩入土后产生的挤土效应所引发的一系列问题进行深入探讨,希望对设计、施工、监理有所帮助。
1 挤土桩的分类首先我们将桩按挤土情况进行分类,在桩挤土的过程中,体积等代率越大,其危害越大。
根据挤土效应的大小,将桩分为三类:排挤土桩(Displacement piles)通常指预制钢筋混凝土桩、木桩、沉管灌注桩等。
非排挤土桩(Non-displacement piles)如挖孔桩,钻孔灌注桩等。
低排挤土桩(Small-displacement piles)概念不够明确,排土程度多少没有具体的标准,一般认为如H型钢桩,开口管桩等。
部分工程人员认为,管桩与开口钢管桩类似,均为管状,如在设计时才用开口桩尖,应属于低排土桩,这是一个误区,根据现场压桩观察分析,开口管桩在入土过程中,会较快地在桩尖处形成一土楔,使其入土时的挤土情况与闭口桩无异。
即便管内入土,由于其管桩型号、桩尖形式、土质情况等问题,管内也只能充填很小一部分地基土。
因此考虑到挤土效应的危害,从更加安全的角度,将钢筋混凝土管桩归类于排挤土桩。
2 管桩挤土效应的产生及危害2.1 桩的上浮和变形管桩压入土中,要将桩周土体向旁侧挤压,而占据原来地基土的空间,导致原土体受较大塑性剪切变形而使结构受很大扰动和破坏,尤其在桩位较密集时,桩挤土产生的垂直应力下,引起大范围的土体隆起,当桩的上浮力较大时,即产生浮桩现象,管桩接头断裂等问题。
浅谈打桩挤土效应及注意事项摘要:随着我国经济的快速发展,建筑业也迎来了发展的高峰期,各方各业都在大兴土木,预应力管桩作为一种新型的基础形式被广泛运用。
预应力管桩具有单桩承载力高、适用范围广、造价低、接桩速度快、施工工期短等优点而被业界广泛使用。
钢筋混凝土预应力管桩由于其承载力高、施工速度快等优点而被广泛运用各个领域,然而由于打桩过程中,会产生打桩挤土效应,对周围环境造成一定的影响,而广泛受到岩土工程界的关心。
本文从打桩挤土效应的相关机理谈起,提出几种比较典型土层中挤土桩施工中的常见问题,包括老黏土中打桩、饱和黏土中打桩、饱和松散砂性土中打桩等,并给出相应的解决措施。
并给出了相应的防治措施,为各个预应力管桩施工工地提供借鉴。
关键词:预应力管桩;打桩挤土效应;防治措施1打桩挤土效应的机理1.1动荷载作用下土的性能桩打入黏土中,地基土的状态将主要从三个方面被改变;一是地基土的天然结构将被破坏,使预应力管桩周围的土体重塑部分结构改变;二是土的应力历史因为打桩而被改变,桩邻近土的应力状态也随之改变;三是土体随着打桩的进行受到急速的挤压,造成桩周土体中的孔隙水压力急剧上升,有效应力随之而减少。
沉桩过后,由于上述三种作用的存在,使得桩周土(包括桩端土)的强度大为降低,但随着打桩后时间的不断增长,土的强度会随着粘性土不排水强度的触变回复和孔隙水压力的消散而增长。
在黏性土中打桩易造成地面隆起。
管桩打入松砂中,由于打桩挤密了周围的砂土,而使得桩周土体强度提高,相反,对密实砂反而会降低桩周土体的强度,但两者都会使桩周土体中的孔隙水压力急剧上升,在重复大量的振动作用下,最坏的情况会造成桩周土体局部液化。
土的摩擦力、黏聚力、黏滞系数、孔隙比、相对密实度、强度等参数会随着打桩振动而出现不同的变化。
1.2饱和黏性土打桩机挤土效应的影响范围打桩对周围环境是要产生影响的,但不同土有不同影响。
1)一般来说对饱和淤泥质土的影响最远范围约为1.5倍桩长。
静压管桩挤土效应分析及控制措施探究摘要:当前,社会各界对静压桩挤土效应带来的各种问题越发关注,本文从静压桩挤土效益机理出发,重点介绍了施工中挤土效应的控制措施,并结合某工程实践进行总结,可供广大工程技术人员借鉴参考。
关键词:静压管桩;挤土效应;控制静压管桩于上世纪50年代初在我国部分沿海地区首用,因具有施工无噪音、无废气、无振动、无冲击力、无泥浆、排放管桩质量可靠、施工速度较快等优点,目前已成为商品房建设中最常用的桩基形式。
然而,因静压管桩属于排土置换桩,压桩施工所产生的挤土效应对周边环境影响极大,严重时甚至可能导致邻近建(构)筑物的表面开裂及结构破坏、道路隆起、地下管线断裂等工程事故的发生。
现结合实践经验,就静压管桩挤土效应及其对周边建筑物的影响以及相关控制措施进行粗浅探讨,以供参考。
1挤土效应机理2 挤土效应控制措施2.1 设计要点在设计时,可采用大排土量的空心管桩以及承载力高的长桩,以扩大桩距,减少桩数,利用桩内土芯减少桩的挤土率,从而降低沉桩引起的超孔隙水压力值和地基变形值,缩小其影响范围,尽可能加大沉桩区与邻近建筑物之间的距离。
桩尖设计应尽可能采用开口桩尖,减小桩的上浮机会,缩小其影响范围等。
2.2 施工要点2.2.1严格控制沉桩速率应根据挤土过程中遇到的不同情况控制沉桩速率。
沉桩速率对土体变形的影响作用主要来自于超静孔隙水压力,而土中应力的传递与超孔隙水压力的消散却需要一个时间过程。
压桩时,超孔隙水压力增长速度比其消散速度要快得多,而在压桩间隙,超孔隙水压力会明显回落。
因此,控制沉桩速率对于保护邻近建(构)筑物与地下管线不受损坏极为关键。
施工中,应有计划地控制单桩一次性压入时间及每日压桩数量,不能一味求快,为方便土体受挤压后向外缓慢扩散,每日施工成桩数量以10根之内为宜。
2.2.2合理地安排打桩顺序2.2.3预钻孔取土打桩2.2.4 设置排水砂井或塑料排水板以上仅为一些常用措施,当然,在采取保护措施时,为及时掌握周围被保护建筑物的反应,还须进行现场监测,从而随时调整打桩的具体方案。
静压预应力管桩施工中的挤土效应与控制摘要:经济在快速发展,社会在不断进步,静压管桩施工产生的挤土效应会给施工周围地面环境带来不同程度的影响与破坏,为此,对静压管桩施工中所产生的挤土效应进行了分析,提出了采用防震沟、长螺旋原位引空、承台四周钻孔、基坑换填等技术措施,以减少挤土效应对基坑及桩基的影响。
经实践,取得了较好的效果。
关键词:静压预制桩;挤土效应;控制引言静压预应力管桩因其成本低、制作简易、桩身质量优良等特点广泛用于建筑桩基工程施工中,但在软土地基应用静压管桩时需考虑沉桩挤土效应对周围地基有无影响,避免因开挖不当导致管桩出现损坏。
1概述1.1建筑设计简况本工程位于广东省佛山市禅城区南庄镇禅港路南侧、科潮路北侧、弘德北路东侧;项目占地面积62956.83平方米,总建筑面积101887.63平方米(其中:一期工程约83885.78平方米,二期工程约18001.85平方米),其中计容总建筑面积79969.23平方米,不计容总建筑面积21941.19平方米,项目容积率1.27,建筑密度29.94%,绿地率35.86%,停车位300个(兼12个大型客车停车位);包括小学教学楼、初中教学楼、教育文化传播中心、食堂宿舍楼、体育馆、门卫岗亭、连廊、400米跑道运动场、7米公共指导性道路、围墙、附属设施及道路绿化配套设施等。
结构形式为钢筋混凝土框架(剪力墙)结构,地基基础设计等级为乙级。
1.2工程地质特点经钻探揭露,本场地地基土由人工填土层、第四纪冲淤积层、风化残积层组成,基底岩石为始新世华涌组风化基岩。
其工程地质综合剖面共分10层,夹层透镜体4层(2-1)淤泥质土夹层、(4-1)粉砂夹层、(9-1)强风化夹层、(9-2)微风化夹层。
2静压预应力管桩施工中的挤土效应与控制2.1静压法施工过程的压力表静压法施工过程压力表显示的单桩极限承载力值,是一个瞬间力,是高强度管桩对桩端岩土体不发生剪切破坏或剪切破坏极少,对桩端岩土体压硬而形成对管桩的反力。
管桩的挤土效应
静压预制桩属挤土桩,由于大量桩体积的压入,破坏了土体的相对平衡状态,在不排水条件下桩必须向外挤开与自身体积相等的土体体积。
施工的桩数越多,压桩的速度越快,土侧压力增量就越大,当桩周围土体结构破坏并产生隆起时,对周围建筑或地下管线设施就可能造成损害。
在饱和软土层中,由于其渗透系数小,土体挤压后导致了孔隙水压力的急剧增大,即产生了“超静孔隙水压力”。
它通过地层中的含水层迅速向四周传播,其影响的范围更甚于一般土体挤密的挤压应力。
压入1根桩后,就能使桩周围2m~3m范围内饱和软粘土中孔隙水压力U>G(G为上覆土总重),在此范围之外超静孔隙水压力△U逐渐减小。
在不同的地质条件下,由于土的渗透系数不同,孔隙水压力的变化规律亦不同。
淤泥渗透系数低,超静孔隙水压力不易消散;而在淤泥与粉细砂交互层中,由于粉细砂层渗透性相对较好,淤泥中产生的超静孔隙水压力将通过粉细砂层较快消散。
在沉桩过程中,土体挤压应力和所造成的超静孔隙水压力对邻近建筑物的影响,起了共同的作用。
根据施工实践反映为浅层大、深层小、近处大、远处小,影响范围可达1~1.5倍桩长,并与地质状况、平面布桩率、压桩速度、施工顺序等因素有关。
同时,沉桩本身产生的土体挤压与超静孔隙水压力还将对已施工的桩产生水平位移与上浮,造成桩基质量事故。
随着打桩间歇时间的推移,所增大的土体应力与超静孔隙水压力将逐步扩散以至消失,地层重新固结又对周围建(构)筑物形成不利影响。
静压法沉桩与锤击法相比,除了无振动、无油污、无噪音外,对降低土体的挤压应力与超静孔隙水压力没有优势性,另外,由于昼夜施工以及设备太重致使地基沉陷而产生的影响更甚于锤击桩。
在饱和软粘土中压桩,特别是在平面布桩率高、施工场地狭小、四周有毗邻旧建筑物的情况下,对周围环境的影响更为直接,而采取文中所述的几项防护措施并辅以施工过程跟踪监测,是能够取得预期效果的。
影响范围1~1.5倍桩长,可以采用限打,或周边开挖防震沟。
钻孔等方法减少对周围的影响。
3、布设应力释放孔及开挖防震沟
为了降低孔隙水压力,减轻土体挤压产生的位移,在主要受影响的西南侧(靠马路一侧)布设一排Φ600、深度15米的应力释放孔,间距1.5米,上面再开挖一条深3米、宽2米的防震沟。
同样在3幢大厦的分界线处布设2排同样直径、深度的应力释放孔。
受挤压的水释放入应力释放孔,该孔及防震沟中的水不断抽出,在打桩期间一直保护最低水位,缓解了孔隙水压力的上升趋势,有效地控制了土体位移的发展。
4、钻孔取土
为减少桩位土体挤压,通过与设计院协调,在不影响桩基承载力的前提下,确定预先取土15米,直径Φ600,既加快了压桩速度,又有效地减小了挤土效应。
管桩的挤土效应与土的性质、桩的密度、桩的入土深度有关,在淤泥质地基中,桩的密度越大,这种影响也就越明显,其影响范围大体为1~1.5h(h为桩入土深度)。
桩越深,影响范围越大,但由于受到四周土自重的约束,桩的挤土效应也受到限止;而对于入土深度不大的浅埋基础,这种影响就不能小视的了,其影响的大小与桩的密度有关,根据本人观察和分析认为桩的密度在 2.5%以下时可不
考虑挤土效应的影响,2.5~5%时,有影响,当桩的密度在5%以上时,必须小心从事,采取必要的措施。
其关键是要降低孔隙水压。