博弈论(课一)
- 格式:doc
- 大小:284.50 KB
- 文档页数:4
Document serial number [UU89WT-UU98YT-UU8CB-UUUT-UUT108]第一章导论1、什么是博弈博弈论的主要研究内容是什么2、设定一个博弈模型必须确定哪儿个方面3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。
4、"囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。
5、博弈有哪些分类方法,有哪些主要的类型6、你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。
请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。
第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么2、为什么说纳什均衡是博弈分析中最重要的概念3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。
4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响5、下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡t専弈的结果是什么6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
7、博弈方1和2就如何分10 000元进行讨价还价。
假设确定了以下规则:双方同时提出自己要求的数额S1和S2, 0< sl,s2< 10 000,如果sl+s2W10 000,则两博弈方的要求都得到满足,即分别得到si和s2, 但如果是sl+s2>10 000,则该笔钱就被没收。
耶鲁公开课一博弈论笔记第一节、名词解释优势策略(Dominant strategy ):不论其他局中人采取什么策略,优势策略对一个局中人而言都是最好的策略。
即某些时候它胜于其他策略,且任何时候都不会比其他策略差。
注:1、"优势策略”的优势是指你的这个策略对你的其他策略占有优势,而不是无论对手采用什么策略,都占有优势的策略。
2、采用优势策略得到的最坏的结果不一定比采用另外一个策略得到的最佳的结果略胜一筹。
严格劣势策略(strictly dominated strategy):被全面的严格优势策略压住的那个策略,也就是说不是严格优势策略以外的策略。
弱劣势策略:原来不是严格劣势策略,但是经过剔除严格劣势策略后,这个策略就成了严格劣势策略。
例:囚徒困境甲沉默{合作)甲认罪(背叛乙沉默(合作)二人同服刑半年甲即时获释!乙眼刑F评乙认罪(背扳)甲腮刑10年;乙即时获释二炯服刑2年囚徒到底应该选择哪一项策略,才能将自己个人的刑期缩至最短?两名囚徒由于隔绝监禁,并不知道对方选择;而即使他们能交谈,还是未必能够尽信对方不会反口。
就个人的理性选择而言,检举背叛对方所得刑期,总比沉默要来得低。
试设想困境中两名理性囚徒会如何作出选择:若对方沉默、背叛会让我获释,所以会选择背叛。
若对方背叛指控我,我也要指控对方才能得到较低的刑期,所以也是会选择背叛。
二人面对的情况一样,所以二人的理性思考都会得出相同的结论一一选择背叛。
背叛是两种策略之中的支配性策略。
因此,这场博弈中唯一可能达到的纳什均衡,就是双方参与者都背叛对方,结果二人同样服刑2年。
例:协和谬误20 世纪60 年代,英法两国政府联合投资开发大型超音速客机,即协和飞机。
该种飞机机身大、装饰豪华并且速度快,其开发可以说是一场豪赌,单是设计一个新引擎的成本就可能高达数亿元。
难怪政府也会被牵涉进去,竭力要为本国企业提供更大的支持。
项目开展不久,英法两国政府发现:继续投资开发这样的机型,花费会急剧增加,但这样的设计定位能否适应市场还不知道;但是停止研制也是可怕的,因为以前的投资将付诸东流。
博弈学
-----博览全局对弈棋局课一
博弈在中国的理解--略观围棋,法于用兵,怯者无功,贪者先亡。
西方国家的理解--Game fair play。
(中国人在博弈中关注的是获胜,西方人在博弈中关注的是怎么玩的开心。
)
博弈可以在工作领域,可以在社交往来,可以在家庭相处,无处不在,博大精深。
知人者智,自知者明;
胜人者力,自胜者强;
小胜者术,大胜者德。
推荐书刊
1、蒋文华:《用博弈的思维看世界》,浙江大学出版社,2014年。
2、张维迎:《博弈论与信息经济学》,上海三联书店,上海人民出版社,1996年。
3、詹姆斯·米勒:《活学活用博弈论-如何利用博弈论在竞争中取胜》,中国财政经济出版社,2006年。
4、阿维纳什·K·迪克西特、巴里·J·奈尔伯夫:《策略思维》,中国人民大学出版社,2002年。
5、阿维纳什·K·迪克西特、巴里·J·奈尔伯夫:《妙趣横生博弈论》,机械工业出版社,2009年。
博弈
指在一定的游戏规则约束下,基于直接相互作用的环境条件,各参与人依据所掌握的信息,选择各自的策略(行动),以实现利益最大化的过程。
故事1,两人同行打猎,忽遇一猛狮。
一人卸下身上物品狂奔,同伴不解,问道:“汝能胜狮?”答曰:“非需胜狮,只需胜汝!”(博弈既可以是竞争,也可以是合作!)
游戏1,每位同学写1个介于1与100之间的自然数(整数,包括1与100在内),然后求出所有数字的平均数,如果你所写的数字最接近该平均数的二分之一,那么你将在游戏中胜出。
(博弈,必须学会换位思考!)
博弈
只需领先一步,高人一筹!大智若愚如果因为对方眼中的你的傻,而让对方更愿意和你合作,何乐而不为呢?
游戏2,每位同学写5个大于0的自然数,如果你所写的5个数字中有一个是所有同学中所写的数字中最小的(在没有重合的情况下),那么你将在该游戏中胜出。
(选对市场(对手)比选对策略更重要!)
故事2“刚整理东西的时候发现了这张旧名片,隐约记得是N年前,有一次在杭州的一个路边店吃烧烤,认识了一位其貌不扬的朋友,聊得甚欢,他非常欣赏我,不嫌我年纪轻轻,说让我别读书了,读出来也是给别人做苦力,去他公司跟他一起打天下,看他吊样和山寨般的公司名我断然拒绝了,现在我只想一个人
安静一会儿。
”(在博弈之前,博弈就已经开始了!)
夫未战而庙算胜者,得算多也;未战而庙算不胜者,得算少也。
多算胜,少算不胜,而况於无算呼!吾以此观之,胜负见矣。
掌握博弈学,这门学问让
一、当局者清
更有利的选择,更快速的反应
二、旁观者更清
理解历史与现实,预测未来的发展
三、提出完善游戏规则(制度)的建议。